6 research outputs found

    Conversion of Food Waste into 2,3-Butanediol via Thermophilic Fermentation: Effects of Carbohydrate Content and Nutrient Supplementation

    Get PDF
    Fermentation of food waste into 2,3-butanediol (2,3-BDO), a high-value chemical, is environmentally sustainable and an inexpensive method to recycle waste. Compared to traditional mesophilic fermentation, thermophilic fermentation can inhibit the growth of contaminant bacteria, thereby improving the success of food waste fermentation. However, the effects of sugar and nutrient concentrations in thermophilic food waste fermentations are currently unclear. Here, we investigated the effects of sugar and nutrients (yeast extract (YE) and peptone) concentrations on 2,3-BDO production from fermenting glucose and food waste media using the newly isolated thermophilic Bacillus licheniformis YNP5-TSU. When glucose media was used, fermentation was greatly affected by sugar and nutrient concentrations: excessive glucose (\u3e70 g/L) slowed down the fermentation and low nutrients (2 g/L YE and 1 g/L peptone) caused fermentation failure. However, when food waste media were used with low nutrient addition, the bacteria consumed all 57.8 g/L sugars within 24 h and produced 24.2 g/L 2,3-BDO, equivalent to a fermentation yield of 0.42 g/g. An increase in initial sugar content (72.9 g/L) led to a higher 2,3-BDO titer of 36.7 g/L with a nearly theoretical yield of 0.47 g/g. These findings may provide fundamental knowledge for designing cost-effective food waste fermentation to produce 2,3-BDO

    Revitalizing Unfermented Cabernet Sauvignon Pomace Using an Eco-Friendly, Two-Stage Countercurrent Process: Role of pH on the Extractability of Bioactive Phenolics

    No full text
    As the major byproduct of the winemaking industry, grape pomace remains an untapped source of valuable bioactive phenolic compounds. This study elucidated the optimal aqueous extraction parameters for maximizing phenolic extractability, while avoiding the use of harsh conventional solvents and limiting water usage, from Cabernet Sauvignon grape pomace in which the red grape was processed for white wine. In the single-stage aqueous extraction process (AEP), the concurrent impact of pH (2.64–9.36), solids-to-liquid ratio (SLR, g pomace/mL water) (1:50–1:5), and temperature (41.6–58.4 °C) on the total phenolic content (TPC) of Cabernet Sauvignon pomace was evaluated alongside a kinetic study (15–90 min). Optimal single-stage extraction conditions (pH 9.36, 1:50 SLR, 50 °C, 75 min) guided the development of a two-stage countercurrent extraction process (pH 9.36, 1:10 SLR, 50 °C, 75 min) to further reduce water consumption without compromising overall extractability. The countercurrent process reduced fresh water usage by 80%, increased the TPC of the extracts by 18%, and improved the in vitro antioxidant activities (ABTS and ORAC) of the extracts. Untargeted metabolomics enabled the identification of a diverse pool of phenolics, especially flavonol glycosides, associated with grape pomace, while further phenolic quantitation detected improvements in the release of commonly bound phenolics such as ferulic acid, p-coumaric acid, syringic acid, and protocatechuic acid in alkaline extracts compared to the ethanolic extract. This investigation provides an efficient, eco-friendly extraction strategy suitable for applications in functional food, beverage, nutraceutical, and cosmetic industries

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)

    No full text
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field
    corecore