1,104 research outputs found
Design and Characterization of a Non-Linear Variable Inerter in Vehicle Suspension System
Inerter is a two-terminal component in suspension system such that the force at the two terminals is directly proportional to the relative acceleration of these two points. Studies have shown that the inerter can provide satisfactory vibration isolation for a number of suspension applications, including train suspension, building suspension and vehicle suspension. In the context of vehicle suspension, the existing passive inerter has been shown to provide benefits to vehicle dynamics performance measures, such as ride comfort and road holding ability. However, a basic passive inerter has fixed characteristic, and hence its potential is limited. This study overcome this limitation by incorporating variable inertia in inerter flywheel, however its non-linear characteristic needs to be determined. The method of achieving variable inertia in inerter flywheel is through introduction of movable masses or sliders attached with springs into inerter flywheel. The change of moment of inertia is caused by position change of sliders due to centrifugal force when the flywheel is rotating. Results showed that the proposed variable inerter exhibits a non-linear force-acceleration relationship with respect to its operating rotational speed. A vehicle suspension system equipped with a variable inerter is also able to further reduce vertical vehicle body acceleration and vehicle’s dynamic tire load when compared with vehicle suspension system without inerter and equipped with a passive inerter, which indirectly relates to a better vehicle ride and handling performance improvements. Hence, it can be proved that the proposed variable inerter is better than a passive inerter and is able to provide better ride comfort and road holding ability to a vehicle
Design and Characterization of a Non-Linear Variable Inerter in Vehicle Suspension System
Inerter is a two-terminal component in suspension system such that the force at the two terminals is directly proportional to the relative acceleration of these two points. Studies have shown that the inerter can provide satisfactory vibration isolation for a number of suspension applications, including train suspension, building suspension and vehicle suspension. In the context of vehicle suspension, the existing passive inerter has been shown to provide benefits to vehicle dynamics performance measures, such as ride comfort and road holding ability. However, a basic passive inerter has fixed characteristic, and hence its potential is limited. This study overcome this limitation by incorporating variable inertia in inerter flywheel, however its non-linear characteristic needs to be determined. The method of achieving variable inertia in inerter flywheel is through introduction of movable masses or sliders attached with springs into inerter flywheel. The change of moment of inertia is caused by position change of sliders due to centrifugal force when the flywheel is rotating. Results showed that the proposed variable inerter exhibits a non-linear force-acceleration relationship with respect to its operating rotational speed. A vehicle suspension system equipped with a variable inerter is also able to further reduce vertical vehicle body acceleration and vehicle’s dynamic tire load when compared with vehicle suspension system without inerter and equipped with a passive inerter, which indirectly relates to a better vehicle ride and handling performance improvements. Hence, it can be proved that the proposed variable inerter is better than a passive inerter and is able to provide better ride comfort and road holding ability to a vehicle
Internal fracture caused by focusing of explosive waves
Internal fracture caused by focusing of explosive wave
Two ~35 day clocks in Her X-1: evidence for neutron star free precession
We present evidence for the existence of two ~35 day clocks in the Her X-1/HZ
Her binary system. ~35 day modulations are observed 1) in the Turn-On cycles
with two on- and two off-states, and 2) in the changing shape of the pulse
profiles which re-appears regularly. The two ways of counting the 35 day cycles
are generally in synchronization. This synchronization did apparently break
down temporarily during the long Anomalous Low (AL3) which Her X-1 experienced
in 1999/2000, in the sense that there must have been one extra Turn-On cycle.
Our working hypothesis is that there are two clocks in the system, both with a
period of about ~35 days: precession of the accretion disk (the less stable
"Turn-On clock") and free precession of the neutron star (the more stable
"Pulse profile clock"). We suggest that free precession of the neutron star is
the master clock, and that the precession of the accretion disk is basically
synchronized to that of the neutron star through a feed-back mechanism in the
binary system. However, the Turn-On clock can slip against its master when the
accretion disk has a very low inclination, as is observed to be the case during
AL3. We take the apparent correlation between the histories of the Turn-Ons, of
the Anomalous Lows and of the pulse period evolution, with a 5 yr
quasi-periodicity, as evidence for strong physical interaction and feed-back
between the major components in the system. We speculate that the 5 yr (10 yr)
period is either due to a corresponding activity cycle of HZ Her or a natural
ringing period of the physical system of coupled components. The question
whether free precession really exists in neutron stars is of great importance
for the understanding of matter with supra-nuclear density.Comment: 6 pages, 5 figures, accepted for publication by A&
The expression of RUNX3 in colorectal cancer is associated with disease stage and patient outcome
RUNX3 is believed to have tumour suppressor properties in several cancer types. Inactivation of RUNX3 has been shown to occur by methylation-induced transcriptional silencing and by mislocalization of the protein to the cytoplasm. The aim of this study was to examine the clinical significance of RUNX3 expression in a large series of colorectal cancers using immunohistochemistry and tissue arrays. With advancing tumour stage, expression of RUNX3 in the nucleus decreased, whereas expression restricted to the cytoplasmic compartment increased. Nuclear RUNX3 expression was associated with significantly better patient survival compared to tumours in which the expression of RUNX3 was restricted to the cytoplasm (P=0.025). These results support a role for RUNX3 as a tumour suppressor in colorectal cancer
Macroscopic transport by synthetic molecular machines
Nature uses molecular motors and machines in virtually every significant biological process, but demonstrating that simpler artificial structures operating through the same gross mechanisms can be interfaced with—and perform physical tasks in—the macroscopic world represents a significant hurdle for molecular nanotechnology. Here we describe a wholly synthetic molecular system that converts an external energy source (light) into biased brownian motion to transport a macroscopic cargo and do measurable work. The millimetre-scale directional transport of a liquid on a surface is achieved by using the biased brownian motion of stimuli-responsive rotaxanes (‘molecular shuttles’) to expose or conceal fluoroalkane residues and thereby modify surface tension. The collective operation of a monolayer of the molecular shuttles is sufficient to power the movement of a microlitre droplet of diiodomethane up a twelve-degree incline.
Importin 13-dependent axon diameter growth regulates conduction speeds along myelinated CNS axons
Axon diameter influences the conduction properties of myelinated axons, both directly, and indirectly through effects on myelin. However, we have limited understanding of mechanisms controlling axon diameter growth in the central nervous system, preventing systematic dissection of how manipulating diameter affects myelination and conduction along individual axons. Here we establish zebrafish to study axon diameter. We find that importin 13b is required for axon diameter growth, but does not affect cell body size or axon length. Using neuron-specific ipo13b mutants, we assess how reduced axon diameter affects myelination and conduction, and find no changes to myelin thickness, precision of action potential propagation, or ability to sustain high frequency firing. However, increases in conduction speed that occur along single myelinated axons with development are tightly linked to their growth in diameter. This suggests that axon diameter growth is a major driver of increases in conduction speeds along myelinated axons over time
- …