267 research outputs found

    Polarised press reporting about HIV prevention: social representations of pre-exposure prophylaxis in the UK press

    Get PDF
    Pre-exposure prophylaxis is a novel biomedical HIV prevention option for individuals at high risk of HIV acquisition. Although pre-exposure prophylaxis has yielded encouraging results in various clinical trials, opponents argue that pre-exposure prophylaxis poses a number of risks to human health and to sexually transmitted infection prevention efforts. Using qualitative thematic analysis and social representation theory, this article explores coverage of pre-exposure prophylaxis in the UK print media between 2008 and 2015 in order to chart the emerging social representations of this novel HIV prevention strategy. The analysis revealed two competing social representations of pre-exposure prophylaxis: (1) as a positive development in the ‘battle’ against HIV (the hope representation) and (2) as a medical, social and psychological setback in this battle, particularly for gay/bisexual men (the risk representation). These social representations map onto the themes of pre-exposure prophylaxis as a superlatively positive development; pre-exposure prophylaxis as a weapon in the battle against HIV/AIDS; and risk, uncertainty and fear in relation to pre-exposure prophylaxis. The hope representation focuses on taking (individual and collective) responsibility, while the risk representation focuses on attributing (individual and collective) blame. The implications for policy and practice are discussed

    Facilitation of Ca 2+ -dependent exocytosis by Rac1-GTPase in bovine chromaffin cells

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/66111/1/jphysiol.2003.039073.pd

    A parabolic approach to the control of opinion spreading

    Full text link
    We analyze the problem of controlling to consensus a nonlinear system modeling opinion spreading. We derive explicit exponential estimates on the cost of approximately controlling these systems to consensus, as a function of the number of agents N and the control time-horizon T. Our strategy makes use of known results on the controllability of spatially discretized semilinear parabolic equations. Both systems can be linked through time-rescalin

    The effects of the neurotoxin DSP4 on spatial learning and memory in Wistar rats

    Get PDF
    The aim of the present study was to investigate the effect of DSP4-induced noradrenaline depletion on learning and memory in a spatial memory paradigm (holeboard). Since Harro et al. Brain Res 976:209–216 (2003) have demonstrated that short-term effects of DSP4 administration include both noradrenaline depletion and changes in dopamine and its metabolites—with the latter vanishing within 4 weeks after the neurotoxic lesion—the behavioural effects observed immediately after DSP4 administration cannot solely be related to noradrenaline. In the present study, spatial learning, reference memory and working memory were therefore assessed 5–10 weeks after DSP4 administration. Our results suggest that the administration of DSP4 did not lead to changes in spatial learning and memory when behavioural assessment was performed after a minimum of 5 weeks following DSP4. This lack of changes in spatial behaviour suggests that the role of noradrenaline regarding these functions may be limited. Future studies will therefore have to take into account the time-course of neurotransmitter alterations and behavioural changes following DSP4 administration

    Cmr1/WDR76 defines a nuclear genotoxic stress body linking genome integrity and protein quality control

    Get PDF
    DNA replication stress is a source of genomic instability. Here we identify ​changed mutation rate 1 (​Cmr1) as a factor involved in the response to DNA replication stress in Saccharomyces cerevisiae and show that ​Cmr1—together with ​Mrc1/​Claspin, ​Pph3, the chaperonin containing ​TCP1 (CCT) and 25 other proteins—define a novel intranuclear quality control compartment (INQ) that sequesters misfolded, ubiquitylated and sumoylated proteins in response to genotoxic stress. The diversity of proteins that localize to INQ indicates that other biological processes such as cell cycle progression, chromatin and mitotic spindle organization may also be regulated through INQ. Similar to ​Cmr1, its human orthologue ​WDR76 responds to proteasome inhibition and DNA damage by relocalizing to nuclear foci and physically associating with CCT, suggesting an evolutionarily conserved biological function. We propose that ​Cmr1/​WDR76 plays a role in the recovery from genotoxic stress through regulation of the turnover of sumoylated and phosphorylated proteins

    Effects of DSP4 and methylphenidate on spatial memory performance in rats

    Get PDF
    In this experiment, we have investigated the spatial memory performance of rats following a central noradrenaline depletion induced by three different doses of the neurotoxin N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP4) and following administration of three different doses of methylphenidate (MPH). The rats were required to find food pellets hidden on a holeboard. The sole administration of DSP4 induced only minor cognitive deficits. However, the treatment with MPH increased the reference memory error, the impulsivity and the motor activity of the DSP4-treated rats. Since the noradrenergic terminals in a DSP4-treated rat are significantly reduced, the administration of MPH has little effect on the noradrenergic system and increases dopaminergic rather than noradrenergic activity, resulting in an imbalance with relatively high dopaminergic and low noradrenergic activities. It is suggested that a reduction of noradrenaline and an increase of dopamine induce ADHD-related deficits and that the depletion of noradrenaline is not sufficient for an appropriate rat model of ADHD

    Effects of methylphenidate on attention in Wistar rats treated with the neurotoxin N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP4)

    Get PDF
    The aim of this study was to assess the effects of the neurotoxin N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP4) on attention in rats as measured using the 5-choice-serial-reaction-time task (5CSRTT) and to investigate whether methylphenidate has effects on DSP4-treated rats. Methylphenidate is a noradrenaline and dopamine reuptake inhibitor and commonly used in the pharmacological treatment of individuals with attention deficit/hyperactivity disorder (ADHD). Wistar rats were trained in the 5CSRTT and treated with one of three doses of DSP4 or saline. Following the DSP4 treatment rats were injected with three doses of methylphenidate or saline and again tested in the 5CSRTT. The treatment with DSP4 caused a significant decline of performance in the number of correct responses and a decrease in response accuracy. A reduction in activity could also be observed. Whether or not the cognitive impairments are due to attention deficits or changes in explorative behaviour or activity remains to be investigated. The treatment with methylphenidate had no beneficial effect on the rats’ performance regardless of the DSP4 treatment. In the group without DSP4 treatment, methylphenidate led to a reduction in response accuracy and bidirectional effects in regard to parameters related to attention. These findings support the role of noradrenaline in modulating attention and call for further investigations concerning the effects of methylphenidate on attentional processes in rats

    JC Virus Small t Antigen Binds Phosphatase PP2A and Rb Family Proteins and Is Required for Efficient Viral DNA Replication Activity

    Get PDF
    BACKGROUND: The human polyomavirus, JC virus (JCV) produces five tumor proteins encoded by transcripts alternatively spliced from one precursor messenger RNA. Significant attention has been given to replication and transforming activities of JCV's large tumor antigen (TAg) and three T' proteins, but little is known about small tumor antigen (tAg) functions. Amino-terminal sequences of tAg overlap with those of the other tumor proteins, but the carboxy half of tAg is unique. These latter sequences are the least conserved among the early coding regions of primate polyomaviruses. METHODOLOGY AND FINDINGS: We investigated the ability of wild type and mutant forms of JCV tAg to interact with cellular proteins involved in regulating cell proliferation and survival. The JCV P99A tAg is mutated at a conserved proline, which in the SV40 tAg is required for efficient interaction with protein phosphatase 2A (PP2A), and the C157A mutant tAg is altered at one of two newly recognized LxCxE motifs. Relative to wild type and C157A tAgs, P99A tAg interacts inefficiently with PP2A in vivo. Unlike SV40 tAg, JCV tAg binds to the Rb family of tumor suppressor proteins. Viral DNAs expressing mutant t proteins replicated less efficiently than did the intact JCV genome. A JCV construct incapable of expressing tAg was replication-incompetent, a defect not complemented in trans using a tAg-expressing vector. CONCLUSIONS: JCV tAg possesses unique properties among the polyomavirus small t proteins. It contributes significantly to viral DNA replication in vivo; a tAg null mutant failed to display detectable DNA replication activity, and a tAg substitution mutant, reduced in PP2A binding, was replication-defective. Our observation that JCV tAg binds Rb proteins, indicates all five JCV tumor proteins have the potential to influence cell cycle progression in infected and transformed cells. It remains unclear how these proteins coordinate their unique and overlapping functions

    Nonidentifiability of the Source of Intrinsic Noise in Gene Expression from Single-Burst Data

    Get PDF
    Over the last few years, experimental data on the fluctuations in gene activity between individual cells and within the same cell over time have confirmed that gene expression is a “noisy” process. This variation is in part due to the small number of molecules taking part in some of the key reactions that are involved in gene expression. One of the consequences of this is that protein production often occurs in bursts, each due to a single promoter or transcription factor binding event. Recently, the distribution of the number of proteins produced in such bursts has been experimentally measured, offering a unique opportunity to study the relative importance of different sources of noise in gene expression. Here, we provide a derivation of the theoretical probability distribution of these bursts for a wide variety of different models of gene expression. We show that there is a good fit between our theoretical distribution and that obtained from two different published experimental datasets. We then prove that, irrespective of the details of the model, the burst size distribution is always geometric and hence determined by a single parameter. Many different combinations of the biochemical rates for the constituent reactions of both transcription and translation will therefore lead to the same experimentally observed burst size distribution. It is thus impossible to identify different sources of fluctuations purely from protein burst size data or to use such data to estimate all of the model parameters. We explore methods of inferring these values when additional types of experimental data are available
    corecore