179 research outputs found

    What's in your next-generation sequence data? An exploration of unmapped DNA and RNA sequence reads from the bovine reference individual.

    Get PDF
    BackgroundNext-generation sequencing projects commonly commence by aligning reads to a reference genome assembly. While improvements in alignment algorithms and computational hardware have greatly enhanced the efficiency and accuracy of alignments, a significant percentage of reads often remain unmapped.ResultsWe generated de novo assemblies of unmapped reads from the DNA and RNA sequencing of the Bos taurus reference individual and identified the closest matching sequence to each contig by alignment to the NCBI non-redundant nucleotide database using BLAST. As expected, many of these contigs represent vertebrate sequence that is absent, incomplete, or misassembled in the UMD3.1 reference assembly. However, numerous additional contigs represent invertebrate species. Most prominent were several species of Spirurid nematodes and a blood-borne parasite, Babesia bigemina. These species are either not present in the US or are not known to infect taurine cattle and the reference animal appears to have been host to unsequenced sister species.ConclusionsWe demonstrate the importance of exploring unmapped reads to ascertain sequences that are either absent or misassembled in the reference assembly and for detecting sequences indicative of parasitic or commensal organisms

    Genome-Wide microRNA Binding Site Variation between Extinct Wild Aurochs and Modern Cattle Identifies Candidate microRNA-Regulated Domestication Genes

    Get PDF
    peer-reviewedThe domestication of cattle from the now-extinct wild aurochs (Bos primigenius) involved selection for physiological and behavioral traits, with underlying genetic factors that remain largely unknown. Non-coding microRNAs have emerged as key regulators of the spatio-temporal expression of target genes controlling mammalian growth and development, including in livestock species. During the domestication process, selection of mutational changes in miRNAs and/or miRNA binding sites could have provided a mechanism to generate some of the traits that differentiate domesticated cattle from wild aurochs. To investigate this, we analyzed the open reading frame DNA sequence of 19,994 orthologous protein-coding gene pairs from extant Bos taurus genomes and a single extinct B. primigenius genome. We identified miRNA binding site polymorphisms in the 3′ UTRs of 1,620 of these orthologous genes. These 1,620 genes with altered miRNA binding sites between the B. taurus and B. primigenius lineages represent candidate domestication genes. Using a novel Score Site ratio metric we have ranked these miRNA-regulated genes according to the extent of divergence between miRNA binding site presence, frequency and copy number between the orthologous genes from B. taurus and B. primigenius. This provides an unbiased approach to identify cattle genes that have undergone the most changes in miRNA binding (i.e., regulation) between the wild aurochs and modern-day cattle breeds. In addition, we demonstrate that these 1,620 candidate domestication genes are enriched for roles in pigmentation, fertility, neurobiology, metabolism, immunity and production traits (including milk quality and feed efficiency). Our findings suggest that directional selection of miRNA regulatory variants was important in the domestication and subsequent artificial selection that gave rise to modern taurine cattle

    Worldwide Diaspora of Aethina tumida (Coleoptera: Nitidulidae), a Nest Parasite of Honey Bees

    Get PDF
    Native to sub-Saharan Africa, Aethina tumida Murray (Coleoptera: Nitidulidae) is now an invasive pest of honey bee, Apis mellifera L., colonies in Australia and North America. Knowledge about the introduction(s) of this beetle from Africa into and among the current ranges will elucidate pest populations and invasion pathways and contribute to knowledge of how a parasite expands in new populations. We examined genetic variation in adult beetle samples from the United States, Australia, Canada, and Africa by sequencing a 912-base pair region of the mitochondrial DNA cytochrome c oxidase subunit I gene and screening 10 informative microsatellite loci. One Canadian introduction of small hive beetles can be traced to Australia, whereas the second introduction seems to have come from the United States. Beetles now resident in Australia were of a different African origin than were beetles in North America. North American beetles did not show covariance between two mitochondrial haplotypes and their microsatellite frequencies, suggesting that these beetles have a shared source despite having initial genetic structure within their introduced range. Excellent dispersal of beetles, aided in some cases by migratory beekeeping and the bee trade, seems to lead to panmixis in the introduced populations as well as in Afric

    Identification and characterization of microRNAs expressed in chicken skeletal muscle.

    Get PDF
    MicroRNAs (miRNAs, miRs) encompass a class of small non-coding RNAs that often negatively regulate gene expression. miRNAs play an essential role in skeletal muscle, determining the proper development and maintenance of this tissue. In comparison to other organs and tissues, the full set of muscle miRNAs and its expression patterns are still poorly understood. In this report, a chicken skeletal muscle miRNA library was constructed, and the expression of selected miRNAs was further characterized during muscle development in chicken lines with distinct muscling phenotypes. Clone library sequence analysis revealed 40 small RNAs with similarities to previously described chicken miRNAs, seven miRNAs that were never identified before in chicken, and some sequence clusters representing other possible novel miRNAs. Temporal expression profiles of three miRNAs associated with cell proliferation and differentiation (miR-125b, miR-221, and miR-206) in two chicken lines (broiler and layer) revealed the differential steady-state levels of these miRs during skeletal muscle growth and suggests that miR-206 is involved in the muscling phenotype that is observed in growth-selected chicken lines

    A whole-genome assembly of the domestic cow, Bos taurus

    Get PDF
    Background: The genome of the domestic cow, Bos taurus, was sequenced using a mixture of hierarchical and whole-genome shotgun sequencing methods. Results: We have assembled the 35 million sequence reads and applied a variety of assembly improvement techniques, creating an assembly of 2.86 billion base pairs that has multiple improvements over previous assemblies: it is more complete, covering more of the genome; thousands of gaps have been closed; many erroneous inversions, deletions, and translocations have been corrected; and thousands of single-nucleotide errors have been corrected. Our evaluation using independent metrics demonstrates that the resulting assembly is substantially more accurate and complete than alternative versions. Conclusions: By using independent mapping data and conserved synteny between the cow and human genomes, we were able to construct an assembly with excellent large-scale contiguity in which a large majority (approximately 91%) of the genome has been placed onto the 30 B. taurus chromosomes. We constructed a new cow-human synteny map that expands upon previous maps. We also identified for the first time a portion of the B. taurus Y chromosome. © 2009 Zimin et al.; licensee BioMed Central Ltd

    Development and Characterization of a High Density SNP Genotyping Assay for Cattle

    Get PDF
    The success of genome-wide association (GWA) studies for the detection of sequence variation affecting complex traits in human has spurred interest in the use of large-scale high-density single nucleotide polymorphism (SNP) genotyping for the identification of quantitative trait loci (QTL) and for marker-assisted selection in model and agricultural species. A cost-effective and efficient approach for the development of a custom genotyping assay interrogating 54,001 SNP loci to support GWA applications in cattle is described. A novel algorithm for achieving a compressed inter-marker interval distribution proved remarkably successful, with median interval of 37 kb and maximum predicted gap of <350 kb. The assay was tested on a panel of 576 animals from 21 cattle breeds and six outgroup species and revealed that from 39,765 to 46,492 SNP are polymorphic within individual breeds (average minor allele frequency (MAF) ranging from 0.24 to 0.27). The assay also identified 79 putative copy number variants in cattle. Utility for GWA was demonstrated by localizing known variation for coat color and the presence/absence of horns to their correct genomic locations. The combination of SNP selection and the novel spacing algorithm allows an efficient approach for the development of high-density genotyping platforms in species having full or even moderate quality draft sequence. Aspects of the approach can be exploited in species which lack an available genome sequence. The BovineSNP50 assay described here is commercially available from Illumina and provides a robust platform for mapping disease genes and QTL in cattle

    Genome-wide association analysis of thirty one production, health, reproduction and body conformation traits in contemporary U.S. Holstein cows

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Genome-wide association analysis is a powerful tool for annotating phenotypic effects on the genome and knowledge of genes and chromosomal regions associated with dairy phenotypes is useful for genome and gene-based selection. Here, we report results of a genome-wide analysis of predicted transmitting ability (PTA) of 31 production, health, reproduction and body conformation traits in contemporary Holstein cows.</p> <p>Results</p> <p>Genome-wide association analysis identified a number of candidate genes and chromosome regions associated with 31 dairy traits in contemporary U.S. Holstein cows. Highly significant genes and chromosome regions include: BTA13's <it>GNAS </it>region for milk, fat and protein yields; BTA7's <it>INSR </it>region and BTAX's <it>LOC520057 </it>and <it>GRIA3 </it>for daughter pregnancy rate, somatic cell score and productive life; BTA2's <it>LRP1B </it>for somatic cell score; BTA14's <it>DGAT1-NIBP </it>region for fat percentage; <it>BTA1</it>'s <it>FKBP2 </it>for protein yields and percentage, BTA26's <it>MGMT </it>and BTA6's <it>PDGFRA </it>for protein percentage; BTA18's 53.9-58.7 Mb region for service-sire and daughter calving ease and service-sire stillbirth; BTA18's <it>PGLYRP1</it>-<it>IGFL1 </it>region for a large number of traits; BTA18's <it>LOC787057 </it>for service-sire stillbirth and daughter calving ease; BTA15's <it>CD82</it>, BTA23's <it>DST </it>and the <it>MOCS1</it>-<it>LRFN2 </it>region for daughter stillbirth; and BTAX's <it>LOC520057 </it>and <it>GRIA3 </it>for daughter pregnancy rate. For body conformation traits, BTA11, BTAX, BTA10, BTA5, and BTA26 had the largest concentrations of SNP effects, and <it>PHKA2 </it>of BTAX and <it>REN </it>of BTA16 had the most significant effects for body size traits. For body shape traits, BTAX, BTA19 and BTA3 were most significant. Udder traits were affected by BTA16, BTA22, BTAX, BTA2, BTA10, BTA11, BTA20, BTA22 and BTA25, teat traits were affected by BTA6, BTA7, BTA9, BTA16, BTA11, BTA26 and BTA17, and feet/legs traits were affected by BTA11, BTA13, BTA18, BTA20, and BTA26.</p> <p>Conclusions</p> <p>Genome-wide association analysis identified a number of genes and chromosome regions associated with 31 production, health, reproduction and body conformation traits in contemporary Holstein cows. The results provide useful information for annotating phenotypic effects on the dairy genome and for building consensus of dairy QTL effects.</p
    corecore