428 research outputs found

    Redox-Dependent Stability, Protonation, and Reactivity of Cysteine-Bound Heme Proteins

    Get PDF
    Cysteine-bound hemes are key components of many enzymes and biological sensors. Protonation (deprotonation) of the Cys ligand often accompanies redox transformations of these centers. To characterize these phenomena, we have engineered a series of Thr78Cys/Lys79Gly/Met80X mutants of yeast cytochrome c (cyt c) in which Cys78 becomes one of the axial ligands to the heme. At neutral pH, the protonation state of the coordinated Cys differs for the ferric and ferrous heme species, with Cys binding as a thiolate and a thiol, respectively. Analysis of redox-dependent stability and alkaline transitions of these model proteins, as well as comparisons to Cys binding studies with the minimalist heme peptide microperoxidase-8, demonstrate that the protein scaffold and solvent interactions play important roles in stabilizing a particular Cys–heme coordination. The increased stability of ferric thiolate compared with ferrous thiol arises mainly from entropic factors. This robust cyt c model system provides access to all four forms of Cys-bound heme, including the ferric thiol. Protein motions control the rates of heme redox reactions, and these effects are amplified at low pH, where the proteins are less stable. Thermodynamic signatures and redox reactivity of the model Cys-bound hemes highlight the critical role of the protein scaffold and its dynamics in modulating redox-linked transitions between thiols and thiolates

    Analysis of Heme Iron Coordination in DGCR8: The Heme-Binding Component of the Microprocessor Complex

    Get PDF
    DGCR8 is the RNA-binding partner of the nuclease Drosha. Their complex (the “Microprocessor”) is essential for processing of long, primary microRNAs (pri-miRNAs) in the nucleus. Binding of heme to DGCR8 is essential for pri-miRNA processing. On the basis of the split Soret ultraviolet–visible (UV–vis) spectrum of ferric DGCR8, bis-thiolate sulfur (cysteinate, Cys–) heme iron coordination of DGCR8 heme iron was proposed. We have characterized DGCR8 heme ligation using the Δ276 DGCR8 variant and combined electron paramagnetic resonance (EPR), magnetic circular dichroism (MCD), electron nuclear double resonance, resonance Raman, and electronic absorption spectroscopy. These studies indicate DGCR8 bis-Cys heme iron ligation, with conversion from bis-thiolate (Cys–/Cys–) axial coordination in ferric DGCR8 to bis-thiol (CysH/CysH) coordination in ferrous DGCR8. Pri-miRNA binding does not perturb ferric DGCR8’s optical spectrum, consistent with the axial ligand environment being separated from the substrate-binding site. UV–vis absorption spectra of the FeII and FeII–CO forms indicate discrete species exhibiting peaks with absorption coefficients substantially larger than those for ferric DGCR8 and that previously reported for a ferrous form of DGCR8. Electron–nuclear double resonance spectroscopy data exclude histidine or water as axial ligands for ferric DGCR8 and favor bis-thiolate coordination in this form. UV–vis MCD and near-infrared MCD provide data consistent with this conclusion. UV–vis MCD data for ferrous DGCR8 reveal features consistent with bis-thiol heme iron coordination, and resonance Raman data for the ferrous–CO form are consistent with a thiol ligand trans to the CO. These studies support retention of DGCR8 cysteine coordination upon reduction, a conclusion distinct from those of previous studies of a different ferrous DGCR8 isoform

    Probing ultrafast spin-relaxation and precession dynamics in a cuprate Mott insulator with 7-fs optical pulses

    Get PDF
    A charge excitation in a two-dimensional Mott insulator is strongly coupled with the surrounding spins, which is observed as magnetic-polaron formations of doped carriers and a magnon sideband in the Mott-gap transition spectrum. However, the dynamics related to the spin sector are difficult to measure. Here, we show that pump-probe reflection spectroscopy with 7-fs laser pulses can detect the optically induced spin dynamics in Nd2_2CuO4_4, a cuprate Mott insulator. The bleaching signal at the Mott-gap transition is enhanced at ∌\sim18 fs, which corresponds to the spin-relaxation time in magnetic-polaron formations and is characterized by the exchange interaction. More importantly, ultrafast coherent oscillations appear in the time evolutions of the reflectivity changes, and their frequencies (1400-2700 cm−1^{-1}) are equal to the probe energy measured from the Mott-gap transition peak. These oscillations originate from interferences between charge excitations with two magnons and provide direct evidence for charge-spin coupling.Comment: 20 pages including 4 figures (Supplementary materials: 11 pages including 4 figures

    Hand-foot-and-mouth disease caused by coxsackievirus A6 in a patient infected with HIV

    Get PDF
    Hand, foot and mouth disease (HFMD) is common in children ≀ 5 years of age, and is mainly caused by enterovirus 71 and coxsackievirus A16 (CVA6). A 12-year-old boy on treatment for human immunodeficiency virus (HIV) presented to an HIV clinic with fever and a rash on the palms and soles. The syphilis test were negative. Enterovirus was identified from a stool sample by PCR and characterised as as coxsackievirus A6(CVA6). The patient completely recovered a week later. CVA6 has recently been associated with HFMD. This case highlights the significance of the laboratory confirmation of suspected HFMD cases aand phylogenetic analysis of the identified virus.http://www.sajei.co.za/index.php/SAJEIam201

    Acute interaction between hydrocortisone and insulin alters the plasma metabolome in humans

    Get PDF
    With the aim of identifying biomarkers of glucocorticoid action and their relationship with biomarkers of insulin action, metabolomic profiling was carried out in plasma samples from twenty healthy men who were administered either a low or medium dose insulin infusion (n = 10 each group). In addition, all subjects were given metyrapone (to inhibit adrenal cortisol secretion) +/-hydrocortisone (HC) in a randomised crossover design to produce low, medium and high glucocorticoid levels. The clearest effects of insulin were to reduce plasma levels of the branched chain amino acids (BCAs) leucine/isoleucine and their deaminated metabolites, and lowered free fatty acids and acylcarnitines. The highest dose of hydrocortisone increased plasma BCAs in both insulin groups but increased free fatty acids only in the high insulin group, however hydrocortisone did not affect the levels of acyl carnitines in either group. The clearest interaction between HC and insulin was that hydrocortisone produced an elevation in levels of BCAs and their metabolites which were lowered by insulin. The direct modulation of BCAs by glucocorticoids and insulin may provide the basis for improved in vivo monitoring of glucocorticoid and insulin action

    The Mechanism of Substrate Inhibition in Human Indoleamine 2,3-Dioxygenase

    Get PDF
    Indoleamine 2,3-dioxygenase catalyzes the O(2)-dependent oxidation of L-tryptophan (L-Trp) to N-formylkynurenine (NFK) as part of the kynurenine pathway. Inhibition of enzyme activity at high L-Trp concentrations was first noted more than 30 years ago, but the mechanism of inhibition has not been established. Using a combination of kinetic and reduction potential measurements, we present evidence showing that inhibition of enzyme activity in human indoleamine 2,3-dioxygenase (hIDO) and a number of site-directed variants during turnover with L-tryptophan (L-Trp) can be accounted for by the sequential, ordered binding of O(2) and L-Trp. Analysis of the data shows that at low concentrations of L-Trp, O(2) binds first followed by the binding of L-Trp; at higher concentrations of L-Trp, the order of binding is reversed. In addition, we show that the heme reduction potential (E(m)(0)) has a regulatory role in controlling the overall rate of catalysis (and hence the extent of inhibition) because there is a quantifiable correlation between E(m)(0) (that increases in the presence of L-Trp) and the rate constant for O(2) binding. This means that the initial formation of ferric superoxide (Fe(3+)-O(2)(‱-)) from Fe(2+)-O(2) becomes thermodynamically less favorable as substrate binds, and we propose that it is the slowing down of this oxidation step at higher concentrations of substrate that is the origin of the inhibition. In contrast, we show that regeneration of the ferrous enzyme (and formation of NFK) in the final step of the mechanism, which formally requires reduction of the heme, is facilitated by the higher reduction potential in the substrate-bound enzyme and the two constants (k(cat) and E(m)(0)) are shown also to be correlated. Thus, the overall catalytic activity is balanced between the equal and opposite dependencies of the initial and final steps of the mechanism on the heme reduction potential. This tuning of the reduction potential provides a simple mechanism for regulation of the reactivity, which may be used more widely across this family of enzymes
    • 

    corecore