12 research outputs found

    BS69 : A novel adenovirus E1A-associated protein that inhibits E1A transactivation

    No full text
    The adenovirus ElA gene products are nuclear phosphoproteins that can transactivate the other adenovirus early genes as well as several cellular genes, and can transform primary rodent cells in culture. Transformation and transactivation by ElA proteins is most likely to be mediated through binding to several cellular proteins, including the retinoblastoma gene product pRb, the pRb-related p107 and p130, and the TATA box binding protein TBP. We report here the cloning of BS69, a novel protein that specifically interacts with adenovirus 5 ElA. BS69 has no significant homology to known proteins and requires the region that is unique to the large (289R) ElA protein for high affinity binding. BS69 and ElA proteins coimmunoprecipitate in adenovirus-transformed 293 cells, indicating that these proteins also interact in vivo. BS69 specifically inhibits transactivation by the 289R ElA protein, but not by the 243R ElA protein. BS69 also suppressed the ElA-stimulated transcription of the retinoic acid receptor in COS cells, but did not affect the cellular ElA-like activity that is present in embryonic carcinoma cells. Our data indicate that BS69 is a novel and specific suppressor of ElA-activated transcription

    BS69, a novel adenovirus E1A-associated protein that inhibits E1A transactivation.

    No full text
    The adenovirus E1A gene products are nuclear phosphoproteins that can transactivate the other adenovirus early genes as well as several cellular genes, and can transform primary rodent cells in culture. Transformation and transactivation by E1A proteins is most likely to be mediated through binding to several cellular proteins, including the retinoblastoma gene product pRb, the pRb-related p107 and p130, and the TATA box binding protein TBP. We report here the cloning of BS69, a novel protein that specifically interacts with adenovirus 5 E1A. BS69 has no significant homology to known proteins and requires the region that is unique to the large (289R) E1A protein for high affinity binding. BS69 and E1A proteins coimmunoprecipitate in adenovirus-transformed 293 cells, indicating that these proteins also interact in vivo. BS69 specifically inhibits transactivation by the 289R E1A protein, but not by the 243R E1A protein. BS69 also suppressed the E1A-stimulated transcription of the retinoic acid receptor in COS cells, but did not affect the cellular E1A-like activity that is present in embryonic carcinoma cells. Our data indicate that BS69 is a novel and specific suppressor of E1A-activated transcription

    Unliganded T3R, but not its oncogenic variant, v-erbA, suppresses RAR-dependent transactivation by titrating out RXR.

    No full text
    V-erbA is thought to be an antagonist of thyroid hormone receptor (T3R) function. Here we show that unliganded T3R, but not v-erbA, suppresses retinoic acid (RA)-dependent induction of the RAR-beta 2 promoter by competing for the common dimerization partner, the retinoid X receptor (RXR). Firstly, T3R suppression can be alleviated by co-transfection of RXR. Secondly, T3R, but not v-erbA, competes with RAR for RXR and causes the dissociation of a preformed RAR/RXR-RARE ternary complex in vitro. A single point mutation located in the dimerization interface of v-erbA (Pro349 to Ser) abolishes the transdominant phenotype when introduced at the respective position in T3R. The hypertransforming v-erbA variant r12, in which this mutation is reversed (Ser349 to Pro) suppresses RA-induced differentiation in chicken erythroid progenitors, while v-erbA does not. Our data thus suggest that unliganded T3R and v-erbA act as dominant suppressors through mechanistically distinct pathways

    Experimental searches for rare alpha and beta decays

    No full text
    corecore