15 research outputs found

    An evolutionary and structural characterization of mammalian protein complex organization

    Get PDF
    Background: We have recently released a comprehensive, manually curated database of mammalian protein complexes called CORUM. Combining CORUM with other resources, we assembled a dataset of over 2700 mammalian complexes. The availability of a rich information resource allows us to search for organizational properties concerning these complexes. Results: As the complexity of a protein complex in terms of the number of unique subunits increases, we observed that the number of such complexes and the mean non-synonymous to synonymous substitution ratio of associated genes tend to decrease. Similarly, as the number of different complexes a given protein participates in increases, the number of such proteins and the substitution ratio of the associated gene also tend to decrease. These observations provide evidence relating natural selection and the organization of mammalian complexes. We also observed greater homogeneity in terms of predicted protein isoelectric points, secondary structure and substitution ratio in annotated versus randomly generated complexes. A large proportion of the protein content and interactions in the complexes could be predicted from known binary protein-protein and domain-domain interactions. In particular, we found that large proteins interact preferentially with much smaller proteins. Conclusions: We observed similar trends in yeast and other data. Our results support the existence of conserved relations associated with the mammalian protein complexes

    Structural constraints revealed in consistent nucleosome positions in the genome of S. cerevisiae

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Recent advances in the field of high-throughput genomics have rendered possible the performance of genome-scale studies to define the nucleosomal landscapes of eukaryote genomes. Such analyses are aimed towards providing a better understanding of the process of nucleosome positioning, for which several models have been suggested. Nevertheless, questions regarding the sequence constraints of nucleosomal DNA and how they may have been shaped through evolution remain open. In this paper, we analyze in detail different experimental nucleosome datasets with the aim of providing a hypothesis for the emergence of nucleosome-forming sequences.</p> <p>Results</p> <p>We compared the complete sets of nucleosome positions for the budding yeast (<it>Saccharomyces cerevisiae</it>) as defined in the output of two independent experiments with the use of two different experimental techniques. We found that < 10% of the experimentally defined nucleosome positions were consistently positioned in both datasets. This subset of well-positioned nucleosomes, when compared with the bulk, was shown to have particular properties at both sequence and structural levels. Consistently positioned nucleosomes were also shown to occur preferentially in pairs of dinucleosomes, and to be surprisingly less conserved compared with their adjacent nucleosome-free linkers.</p> <p>Conclusion</p> <p>Our findings may be combined into a hypothesis for the emergence of a weak nucleosome-positioning code. According to this hypothesis, consistent nucleosomes may be partly guided by nearby nucleosome-free regions through statistical positioning. Once established, a set of well-positioned consistent nucleosomes may impose secondary constraints that further shape the structure of the underlying DNA. We were able to capture these constraints through the application of a recently introduced structural property that is related to the symmetry of DNA curvature. Furthermore, we found that both consistently positioned nucleosomes and their adjacent nucleosome-free regions show an increased tendency towards conservation of this structural feature.</p

    MCT4 blockade increases the efficacy of immune checkpoint blockade

    Get PDF
    Background & Aims Intratumoral lactate accumulation and acidosis impair T-cell function and antitumor immunity. Interestingly, expression of the lactate transporter monocarboxylate transporter (MCT) 4, but not MCT1, turned out to be prognostic for the survival of patients with rectal cancer, indicating that single MCT4 blockade might be a promising strategy to overcome glycolysis-related therapy resistance. Methods To determine whether blockade of MCT4 alone is sufficient to improve the efficacy of immune checkpoint blockade (ICB) therapy, we examined the effects of the selective MCT1 inhibitor AZD3965 and a novel MCT4 inhibitor in a colorectal carcinoma (CRC) tumor spheroid model co-cultured with blood leukocytes in vitro and the MC38 murine CRC model in vivo in combination with an antibody against programmed cell death ligand-1(PD-L1). Results Inhibition of MCT4 was sufficient to reduce lactate efflux in three-dimensional (3D) CRC spheroids but not in two-dimensional cell-cultures. Co-administration of the MCT4 inhibitor and ICB augmented immune cell infiltration, T-cell function and decreased CRC spheroid viability in a 3D co-culture model of human CRC spheroids with blood leukocytes. Accordingly, combination of MCT4 and ICB increased intratumoral pH, improved leukocyte infiltration and T-cell activation, delayed tumor growth, and prolonged survival in vivo. MCT1 inhibition exerted no further beneficial impact. Conclusions These findings demonstrate that single MCT4 inhibition represents a novel therapeutic approach to reverse lactic-acid driven immunosuppression and might be suitable to improve ICB efficacy

    Elucidating mechanisms of gene regulation. Integration of high-throughput sequencing data for studying the epigenome

    Get PDF
    The recent advent of High-Throughput Sequencing (HTS) methods has triggered a revolution in gene regulation studies. Demand has never been higher to process the immense amount of emerging data to gain insight into the regulatory mechanisms of the cell. We address this issue by describing methods to analyze, integrate and interpret HTS data from different sources. In particular, we developed and benchmarked Pyicos, a powerful toolkit that offers flexibility, versatility and efficient memory usage. We applied it to data from ChIP-Seq on progesterone receptor in breast cancer cells to gain insight into regulatory mechanisms of hormones. Moreover, we embedded Pyicos into a pipeline to integrate HTS data from different sources. In order to do so, we used data sets from ENCODE to systematically calculate signal changes between two cell lines. We thus created a model that accurately predicts the regulatory outcome of gene expression, based on epigenetic changes in a gene locus. Finally, we provide the processed data in a Biomart database to the scientific community.La llegada reciente de nuevos métodos de High-Throughput Sequencing (HTS) ha provocado una revolución en el estudio de la regulación génica. La necesidad de procesar la inmensa cantidad de datos generados, con el objectivo de estudiar los mecanismos regulatorios en la celula, nunca ha sido mayor. En esta tesis abordamos este tema presentando métodos para analizar, integrar e interpretar datos HTS de diferentes fuentes. En particular, hemos desarollado Pyicos, un potente conjunto de herramientas que ofrece flexibilidad, versatilidad y un uso eficiente de la memoria. Lo hemos aplicado a datos de ChIP-Seq del receptor de progesterona en células de cáncer de mama con el fin de investigar los mecanismos de la regulación por hormonas. Además, hemos incorporado Pyicos en una pipeline para integrar los datos HTS de diferentes fuentes. Hemos usado los conjuntos de datos de ENCODE para calcular de forma sistemática los cambios de señal entre dos líneas celulares. De esta manera hemos logrado crear un modelo que predice con bastante precisión los cambios de la expresión génica, basándose en los cambios epigenéticos en el locus de un gen. Por último, hemos puesto los datos procesados a disposición de la comunidad científica en una base de datos Biomart

    Predictive models of gene regulation from high-throughput epigenomics data

    Get PDF
    The epigenetic regulation of gene expression involves multiple factors. The synergistic or antagonistic action of these factors has suggested the existence of an epigenetic code for gene regulation. Highthroughput sequencing (HTS) provides an opportunity to explore this code and to build quantitative models of gene regulation based on epigenetic differences between specific cellular conditions. We describe a new computational framework that facilitates the systematic integration of HTS epigenetic data. Our method relates epigenetic signals to expression by comparing two conditions. We show its effectiveness by building a model that predicts with high accuracy significant expression differences between two cell lines, using epigenetic data from the ENCODE project. Our analyses provide evidence for a degenerate epigenetic code, which involves multiple genic regions. In particular, signal changes at the 1st exon, 1st intron, and downstream of the polyadenylation site are found to associate strongly with expression regulation. Our analyses also show a different epigenetic code for intron-less and intron-containing genes. Our work provides a general methodology to do integrative analysis of epigenetic differences between cellular conditions that can be applied to other studies, like cell differentiation or carcinogenesis.This work was supported by Grants BIO2011-23920 and CSD2009-00080 from the Spanish Ministry of/nScience and by the Sandra Ibarra Foundation. S. Althammer was supported by an FI grant from the Generalitat de Cataluny

    Predictive models of gene regulation from high-throughput epigenomics data

    No full text
    The epigenetic regulation of gene expression involves multiple factors. The synergistic or antagonistic action of these factors has suggested the existence of an epigenetic code for gene regulation. Highthroughput sequencing (HTS) provides an opportunity to explore this code and to build quantitative models of gene regulation based on epigenetic differences between specific cellular conditions. We describe a new computational framework that facilitates the systematic integration of HTS epigenetic data. Our method relates epigenetic signals to expression by comparing two conditions. We show its effectiveness by building a model that predicts with high accuracy significant expression differences between two cell lines, using epigenetic data from the ENCODE project. Our analyses provide evidence for a degenerate epigenetic code, which involves multiple genic regions. In particular, signal changes at the 1st exon, 1st intron, and downstream of the polyadenylation site are found to associate strongly with expression regulation. Our analyses also show a different epigenetic code for intron-less and intron-containing genes. Our work provides a general methodology to do integrative analysis of epigenetic differences between cellular conditions that can be applied to other studies, like cell differentiation or carcinogenesis.This work was supported by Grants BIO2011-23920 and CSD2009-00080 from the Spanish Ministry of/nScience and by the Sandra Ibarra Foundation. S. Althammer was supported by an FI grant from the Generalitat de Cataluny

    Pyicos: a versatile toolkit for the analysis of high-throughput sequencing data

    No full text
    MOTIVATION: High-throughput sequencing (HTS) has revolutionized gene regulation studies and is now fundamental for the detection of protein-DNA and protein-RNA binding, as well as for measuring RNA expression. With increasing variety and sequencing depth of HTS datasets, the need for more flexible and memory-efficient tools to analyse them is growing. RESULTS: We describe Pyicos, a powerful toolkit for the analysis of mapped reads from diverse HTS experiments: ChIP-Seq, either punctuated or broad signals, CLIP-Seq and RNA-Seq. We prove the effectiveness of Pyicos to select for significant signals and show that its accuracy is comparable and sometimes superior to that of methods specifically designed for each particular type of experiment. Pyicos facilitates the analysis of a variety of HTS datatypes through its flexibility and memory efficiency, providing a useful framework for data integration into models of regulatory genomics. AVAILABILITY: Open-source software, with tutorials and protocol files, is available at http://regulatorygenomics.upf.edu/pyicos or as a Galaxy server at http://regulatorygenomics.upf.edu/galaxyGeneralitat de Catalunya by FI grant (to S.A.); Spanish Ministry of Science (MICINN) by FPI grant (to J.G.V.); MICINN grant BIO2008-01091 (to E.E.); European Commission grant EURASNET-(LSHG-CT-2005-518238) (to E.E.)

    Pyicos: a versatile toolkit for the analysis of high-throughput sequencing data

    No full text
    MOTIVATION: High-throughput sequencing (HTS) has revolutionized gene regulation studies and is now fundamental for the detection of protein-DNA and protein-RNA binding, as well as for measuring RNA expression. With increasing variety and sequencing depth of HTS datasets, the need for more flexible and memory-efficient tools to analyse them is growing. RESULTS: We describe Pyicos, a powerful toolkit for the analysis of mapped reads from diverse HTS experiments: ChIP-Seq, either punctuated or broad signals, CLIP-Seq and RNA-Seq. We prove the effectiveness of Pyicos to select for significant signals and show that its accuracy is comparable and sometimes superior to that of methods specifically designed for each particular type of experiment. Pyicos facilitates the analysis of a variety of HTS datatypes through its flexibility and memory efficiency, providing a useful framework for data integration into models of regulatory genomics. AVAILABILITY: Open-source software, with tutorials and protocol files, is available at http://regulatorygenomics.upf.edu/pyicos or as a Galaxy server at http://regulatorygenomics.upf.edu/galaxyGeneralitat de Catalunya by FI grant (to S.A.); Spanish Ministry of Science (MICINN) by FPI grant (to J.G.V.); MICINN grant BIO2008-01091 (to E.E.); European Commission grant EURASNET-(LSHG-CT-2005-518238) (to E.E.)

    Nucleosome-driven transcription factor binding and gene regulation

    No full text
    In fission yeast cells, Cds1 is the effector kinase of the DNA replication checkpoint. We previously showed that when the DNA replication checkpoint is activated, the repressor Yox1 is phosphorylated and inactivated by Cds1, resulting in activation of MluI-binding factor (MBF)-dependent transcription. This is essential to reinitiate DNA synthesis and for correct G1-to-S transition. Here we show that Cdc10, which is an essential part of the MBF core, is the target of the DNA damage checkpoint. When fission yeast cells are treated with DNA-damaging agents, Chk1 is activated and phosphorylates Cdc10 at its carboxy-terminal domain. This modification is responsible for the repression of MBF-dependent transcription through induced release of MBF from chromatin. This inactivation of MBF is important for survival of cells challenged with DNA-damaging agents. Thus Yox1 and Cdc10 couple normal cell cycle regulation in unperturbed conditions and the DNA replication and DNA damage checkpoints into a single transcriptional complex.The experimental work was supported by grants from the Spanish government (BMC 2003-02902 and 2010-15313; CSD2006-00049), the European Union (IP HEROIC), and the Catalan government (AGAUR). L.G. was a recipient of a fellowship from the International PhD program of LaCaixa; G.P.V. was a recipient of a fellowship from the Ramón y Cajal program
    corecore