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Alba Jené, Gunes Gundem, Sonja Hänzelmann,

Alfons Gonzalez and Miguel Sánchez, Carina Oliver, Khademul Islam,
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Abstract
The recent advent of high-throughput sequencing (HTS) methods has triggered
a revolution in gene regulation studies. Demand has never been higher to
process the immense amount of emerging data to gain insight into the regulatory
mechanisms of the cell.

We address this issue by describing methods to analyze, integrate and interpret
HTS data from different sources. In particular, we developed and benchmarked
Pyicos, a powerful toolkit that offers flexibility, versatility and efficient memory
usage. We applied it to data from ChIP-Seq on progesterone receptor in breast
cancer cells to gain insight into regulatory mechanisms of hormones. Moreover,
we embedded Pyicos into a pipeline to integrate HTS data from different sources.
In order to do so, we used data sets from ENCODE to systematically calculate
signal changes between two cell lines. We thus created a model that accurately
predicts the regulatory outcome of gene expression, based on epigenetic changes
in a gene locus. Finally, we provide the processed data in a Biomart database to
the scientific community.

Resumen
La llegada reciente de nuevos métodos de High-Throughput Sequencing (HTS) ha
provocado una revolución en el estudio de la regulación génica. La necesidad de
procesar la inmensa cantidad de datos generados, con el objectivo de estudiar los
mecanismos regulatorios en la celula, nunca ha sido mayor.

En esta tesis abordamos este tema presentando métodos para analizar, integrar
e interpretar datos HTS de diferentes fuentes. En particular, hemos desarollado
Pyicos, un potente conjunto de herramientas que ofrece flexibilidad, versatilidad
y un uso eficiente de la memoria. Lo hemos aplicado a datos de ChIP-Seq del
receptor de progesterona en células de cáncer de mama con el fin de investigar
los mecanismos de la regulación por hormonas. Además, hemos incorporado
Pyicos en una pipeline para integrar los datos HTS de diferentes fuentes. Hemos
usado los conjuntos de datos de ENCODE para calcular de forma sistemática los
cambios de señal entre dos lı́neas celulares. De esta manera hemos logrado crear
un modelo que predice con bastante precisión los cambios de la expresión génica,
basándose en los cambios epigenéticos en el locus de un gen. Por último, hemos
puesto los datos procesados a disposición de la comunidad cientı́fica en una base
de datos Biomart.
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Preface
Ever since the structure of the DNA was described, scientists have hoped to
reveal its role in life. The excitement was even bigger when the genetic code
was cracked. It discloses how a stretch of DNA is translated into a protein
sequence. Despite significant progress in genetic research, we are still far away
from understanding what happens exactly inside our cells.

The genome, located in the nucleus of each cell, is identical in every cell of
our body. So why do cells have different appearances and functions? This is
explained by differences in gene expression. Depending on the activity of the
genes, and thus the concentration of proteins and other molecules in the cell, a
certain cell state is expressed. This differentiates, for instance, a lung cell from a
kidney cell. The regulation of gene expression can further determine if a cell is
normal, or affected by a disease. Even though an individual genome can comprise
a predisposition (e.g. a mutation) for a disease, the expression of a diseased state
depends on gene regulation, which in turn relies on a complicated network of
intracellular molecules and can further be affected by extracellular conditions.

In gene regulation studies, a typical task is to look for active binding sites of
molecules that regulate a gene or a set of genes and to measure the corresponding
change in expression. The recent development of High-Throughput Sequencing
(HTS) methods has boosted the production of massive amounts of data, which
gives unforeseen opportunities to tackle this task. By now, gene regulation studies
are mainly based on HTS experiments, trying to reveal the complicated network
of the different factors in a cell. The HTS technology is constantly gaining new
applications, while computational methods to deal with the emerging data lag
behind. This PhD addresses the development of methods to analyze, integrate and
interpret HTS data, with the final goal of gaining insight into mechanisms of gene
regulation.
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Chapter 1

INTRODUCTION

All cells of one individual accommodate identical genomes (genotypes) in the
nucleus, however their appearances and functions (phenotypes) are different. This
can be explained by the fact that in different cell types genes are differentially
expressed. Genes code for proteins or non-coding RNAs. The abundance of these
different gene products is crucial for the identity of the cell. They determine, for
instance, whether a cell is normal or affected by a disease. Studying how genes
are regulated is therefore fundamental for biomedical research.

1.1 Mechanisms of gene regulation

A gene is known as a stretch of DNA that is usually composed of exons and
introns (see Figure 1.1). Within protein-coding genes, only exons code for the
protein sequence. The rest of the genome is non-coding and used to be referred to
as “junk DNA”. However by now, we know that non-coding DNA is anything but
“junk”. In fact, as described in this thesis, it plays very important rules in gene
regulation.

Genes can be regulated pre- or post-transcriptionally. Pre-transcriptionally,
proteins bind to their cis-regulatory targets, the promoter or distal regulatory
elements, where they affect the transcription of a gene. Transcription is initiated
by various transcription factors that recruit RNA Polymerase II (RNAPII), an
enzyme that transcribes DNA into RNA. At the post-transcriptional level, gene
regulation occurs first through precursor messenger RNA (pre-mRNA) splicing
and is controlled by splicing factors and small nuclear RNAs (snRNAs). The
splicing procedure removes introns, and concatenates exons to each other. Finally,
the mature mRNA is transported outside the nucleus and is translated into a protein
(see Figure 1.2).

The two levels of gene regulation can not be completely separated. As
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Figure 1.1: What is a gene? A gene is usually made up of exons and introns. In order to transcribe
a gene, the transcription machinery binds to the promoter region, which lies upstream of that gene.
Distal regulatory regions (enhancers or silencers) can further influence transcription.

the related factors are actually very close to each other, splicing can occur
co-transcriptionally [Kornblihtt et al., 2004, Bentley, 2005].

Even though a substantial part of the genome is transcribed, only
about 2% of it consists of protein coding genes. However the genome
comprises also non-coding genes, whose transcripts operate in the cell
either as structural RNAs (e.g. tRNAs) or as regulators for transcription
[ENCODE Project Consortium, 2007]. The packaging of eukaryotic genomes
into chromatin adds another layer of complexity to transcription regulation, which
is explained in more detail in the section ”Chromatin and gene regulation”.
Studying regulatory mechanisms of chromatin is a major challenge in epigenetics,
the study of heritable variations in gene expression that cannot be explained by
alterations in the DNA sequence [Waddington, 1953], but by epigenetic traits.
Another important epigenetic trait is DNA methylation. It plays an important
role in gene regulation, as hypermethylation of promoter regions has been shown
to be involved in gene silencing and its deregulation is tightly related to cancer
[Robertson, 2005]. Indeed, epigenetics has become very important for cancer
research. Epigenetic changes can result into activation of oncogenes or silencing
of tumor suppressor genes, and therefore initiate cell transformation.

1.2 Methods to study gene regulation

The study of gene regulation is nowadays dominated by techniques that are based
on High-Throughput Sequencing (HTS), which overcome crucial limitations of
the predecessor techniques.
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Figure 1.2: From DNA to protein This simplified overview shows how a gene is transcribed into
pre-mRNA. The pre-mRNA is then spliced into mRNA. After leaving the nucleus, the mRNA is
transcribed into a protein.

1.3 High-Throughput Sequencing (HTS)

The first draft of the human genome was completed in 2001 [Lander et al., 2001,
Venter et al., 2001] and since then tremendous advances in sequencing technology
have led to a new era of genome research. Back in those days Sanger
sequencing used to be the method of choice, however since about six years it
has been replaced by improved methods to sequence large amounts of DNA:
The High-Throughput Sequencing (HTS) techniques. Currently Illumina/Solexa
Genome Analyser (GA) and Hi-Seq instruments, Roche 454 and SOLiD from
Life Technology, are the dominating HTS platforms that are commercially
available [Pareek et al., 2011]. Most data analyzed in this thesis was generated
on platforms from Illumina/Solexa, which produce short reads (typically as
long as 75 or 100 base pairs [Metzker, 2010]). The arrival of the HTS
technology has decreased the costs of sequencing significantly, which led to an
increasing variety of applications. At the moment, many large-scale projects
are based on HTS techniques, e.g. the Encyclopedia of DNA Elements
(ENCODE) [ENCODE Project Consortium, 2007] project, funded by the US
National Human Genome Research Institute (NHGRI). ENCODE aims to define
the functional elements encoded in the human genome, such as genes, transcripts
and transcriptional regulatory regions with their patterns of chromatin states and
DNA methylation. The HTS technology has made this project feasible at a
genome-wide scale. A major part of the present thesis relies on ENCODE data,
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Figure 1.3: HTS techniques and their applications. DNase-Seq to determine regulatory sites.
ChIP-Seq to detect protein-DNA binding sites. Bisulfite-Seq to identify DNA methylations.
CLIP-Seq to detect protein-RNA binding sites. RNA-Seq for transcript quantification. Modified
from [ENCODE Project Consortium, 2011]

since it provides a wide range of high quality HTS data sets in many different cell
lines. The data is released to the public, thereby enabling the scientific community
to interpret the human genome and apply it to medical research with the aim of
improving health. Regulatory genomics, the study of mechanisms that regulate
gene expression, is fundamental for medical research. In order to investigate
regulatory genomics, it has become essential to define regulatory sites in the
genome, to detect binding sites of specific proteins to DNA or RNA, to discover
methylated regions of DNA and, last but not least, to measure the abundances of
transcripts. Figure 1.3 shows different HTS techniques and their applications in
gene regulation studies. This thesis deals with the analyzes and the integration
of a great variety of HTS data whose generation involves different experimental
techniques, as explained below.

1.4 ChIP-Seq

The ChIP-Seq method was developed in 2007 [Johnson et al., 2007,
Robertson et al., 2007] and consists of Chromatin ImmunoPrecipitation (ChIP)
followed by HTS (Seq). It has become the method of choice for detecting the
binding sites of a specific protein to the DNA, offering higher sensitivity and
specificity [Johnson et al., 2007, Robertson et al., 2007] than its predecessor
ChIP-chip [Ren et al., 2000]. Moreover it solves limitations of the array, like the
number of probes in the array and cross hybridization issues. In gene regulation
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Figure 1.4: A: Chromatin immunoprecipitation. 1. DNA is bound by a protein of interest in the
nucleus. 2. Cells are lysed and DNA is fragmented. 3. Fragments bound by protein of interest
(purple) are bound by antibody bead complexes and precipitated. Some DNA fragments can be
precipitated nonspecifically(gray). 4. ProteinDNA complexes are eluted and DNA is purified.
Relative abundance of specific and non-specific fragments is analyzed by qPCR. B: ChIP-Seq
library construction. 1. Specific (colored) non-specific (gray) immunoprecipitated fragments
are shown mapped to genome. 2. DNA termini are polished, phosphorylated and adapters are
ligated. 3. Library is PCR amplified. 4. DNA fragments are hybridized to flowcell, clusters are
synthesized and sequenced. Adapted from Barski and Zhao [Barski and Zhao, 2009].
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studies the DNA-binding protein of interest is often a transcription factor or a
modified histone tail, whose presence or absence is typically associated with the
transcription level of a gene. The protocol of ChIP-Seq starts by lysing the cells
and fragmenting the chromatin, as illustrated in Figure 1.4. Bead complexes of
specific antibodies are used to select those DNA fragments that are bound to the
protein of interest. Next the protein-DNA complexes are eluted and the DNA is
purified. After amplifying the DNA by several rounds of PCR, the short ends of
the fragments are sequenced. The resulting sequenced tags, which we will refer
to as reads, are then mapped back to the reference genome, resulting into clusters
on the plus and minus strand, as illustrated in Figure 1.5. The binding site of the
protein of interest is expected to be located at the plus to minus transition point
between oppositionally directed clusters [Barski and Zhao, 2009].

There are several sources of biases to be aware of when analyzing ChIP-Seq
data. The most important factor is the quality of the antibody. If it is not specific
enough, fragments that are not actually bound to the protein of interest can be
captured. Another bias is the under representation of AT-rich regions when low
melting temperatures are used [Quail et al., 2008]. If a PCR amplification step
is needed an additional bias is introduced: Areas with high GC content are not
properly amplified [Barski and Zhao, 2009]. This leads to unequal distributions
of read coverage among the targeted sequences and can result into duplicated
reads, which have been preferentially synthesized due to their base composition.
In general, the number of PCR cycles should be kept low or even avoided as
in the amplification free library preparation [Kozarewa et al., 2009]. If PCR is
indispensable, duplicated reads are usually excluded from further analyzes. A
drawback of the short read length is that protein binding to repetitive regions
might not be captured when uniquely mapping reads are used. Another factor
is the preferred fragmentation of open chromatin, which can be compensated
by comparing to a control experiment. Finally protein-protein interactions and
looping of DNA can confound the interpretation of the data, as in this case there
might not be a direct binding [Barski and Zhao, 2009].

1.5 CLIP-Seq
Cross-Linking ImmunoPrecipitation followed by HTS (CLIP-Seq) or HITS-CLIP
is a powerful mean to detect protein-RNA interactions [Xue et al., 2009,
Licatalosi et al., 2008]. Being able to determine the location of specific
RNA-binding proteins can give insight into the regulation of alternative splicing.
Relying on a method called CLIP [Ule et al., 2005], the protein-RNA complexes
are crosslinked and purified, using a specific antibody. Next, the fragments of
bound RNA are isolated and their ends are sequenced. When we map the reads
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Figure 1.5: A: Interpretation of ChIP-Seq data. DNA fragments from a chromatin
immunoprecipitation experiment are sequenced from the 5’ end. Thus, alignment of these tags
to the genome results into two peaks, one on each strand, flanking the location where the protein
or nucleosome of interest was bound. Each tag can be extended by an estimated fragment size in
the appropriate orientation resulting into a profile. The binding site is expected to be located close
to the summit of this profile. Adapted from Park [Park, 2009].
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to the genome or transcriptome we retrieve stranded clusters that represent the
candidates of protein-RNA binding. Just as in the ChIP-Seq protocol, a crucial
factor here is the specificity of the antibody.

1.6 RNA-Seq

RNA-Seq [Nagalakshmi et al., 2008] is increasingly replacing the DNA
microarray technology [Schena et al., 1995] and is now the preferred method
to study gene expression. It overcomes hybridization related limitations and
makes possible to capture alternative splicing events [Pan et al., 2008], measure
expression levels [Pepke et al., 2009], detect single nucleotide polymorphisms
[Wang et al., 2008] or discover novel genes [Khalil et al., 2009].

The RNA-Seq experiment (Figure 1.6) starts typically by isolating
PolyAdenylated (Poly-A+) RNA. In order to sequence the RNA, it has to be
reverse transcribed into cDNA. Next, adapters are attached to one or both ends of
the fragment. The cDNAs are amplified and finally sequenced [Roy et al., 2011].
After this, the bioinformatics workflow begins by mapping the reads to a reference
genome or transcriptome. By counting the number of reads that fall within a
region of interest we are basically able to quantify its expression. However, there
are some issues one might want to consider beforehand. Additionally to the
biases from sequencing and mapping, there are further challenges encountered
with RNA-Seq data. First of all, it is not straightforward from which of the
alternative transcripts a read emerged. Several approaches [Trapnell et al., 2010,
Guttman et al., 2010] have been suggested to solve this problem. Furthermore,
simply counting the reads that fall within a transcript, results into a so called
length-bias: Longer transcripts contain more reads. To compensate for that,
typically the counts are divided by the length of the transcript in which they
were measured. Additionally one might want to divide by the library size
(number of reads in a sample), in order to make different libraries comparable
to each other. The combination of these two normalization methods has been
introduced by Mortazavi et al., as the Reads Per Kilo base per Million mapped
reads (RPKM) . [Mortazavi et al., 2008]. Another normalization approach is the
trimmed mean of M-values normalization [Robinson and Oshlack, 2010], which
targets the correction of biases from differences in sample sizes and expression
patterns. It is based on the hypothesis that the majority of genes are expressed
similarly between two samples. Even though several different normalization
methods have been suggested, there is room for improvement to remove the biases
that may confuse differential expression analysis.
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Figure 1.6: A typical RNA-Seq experiment. Briefly, long RNAs are first converted into a
library of cDNA fragments through either RNA fragmentation or DNA fragmentation. Sequencing
adaptors (blue) are subsequently added to each cDNA fragment and a short sequence is obtained
from each cDNA using high-throughput sequencing technology. The resulting sequence reads are
aligned with the reference genome or transcriptome, and classified as three types: exonic reads,
junction reads and poly(A) end-reads. These three types are used to generate a base-resolution
expression profile for each gene, as illustrated at the bottom; a yeast open reading frame (ORF)
with one intron is shown. Adapted from Wang et al. [Wang et al., 2009].
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1.7 Bisulfite Sequencing

Bisulfite sequencing is a method to detect CpGs with a methylated C in the
genome. The methylation of the C residues in CpG dinucleotides is the most
common epigenetic modification of DNA in mammals [Bird, 2002]. It has
been related to the silencing of the transcribed region located downstream
and is therefore considered as a key regulator of gene expression. We have
been using Reduced Representation Bisulfite Sequencing [Meissner et al., 2005]
data from ENCODE in our analysis. The protocol starts by digesting the
DNA with MspI, an enzyme that cuts at 5’-CCGG-3’ independent of its
methylation status [Waalwijk and Flavell, 1978]. A size selection step isolates
fragments with an appropriate size for sequencing, resulting into a ”reduced
representation”. Next, the DNA fragments are treated with bisulfite, which
converts all unmethylated cytocines (Cs) to uracils, while methylated Cs are left
intact. After PCR-amplification the DNA fragments are sequenced. When the
reads are mapped to a reference, all Cs in the bisulfite sequence are suspect of
methylation, while C to T transitions suggest the presence of unmethylated Cs.
One problem of this method is the size selection step. If by chance the distance
between two 5’-CCGG-3’ is too large, the information about their methylation
status might get lost.

1.8 DNase-Seq

DNase-Seq was developed [Boyle et al., 2008] to identify regulatory sites across
the genome. First the DNA is digested with DNase I, an enzyme that
preferentially digests nucleosome depleted regions, while it leaves the tightly
wrapped heterochromatin intact. Then, the resulting fragments are sequenced and
reads that have successfully been mapped to the reference genome are used to
create a map of open chromatin. DNase I hypersensitive sites have been related
to different types of regulatory elements, like promoters, enhancers, silencers and
insulators [Song and Crawford, 2010].

1.9 Challenges of HTS data analyzes

The result of each of the experiments explained above are short sequenced reads.
In order to assign the signal to genomic positions, the reads first need to be mapped
to a reference. This task is out of the scope of this work and several tools have
already been proposed for this purpose [Langmead et al., 2009, Li et al., 2008,
Li and Durbin, 2009]. After the reads have been mapped to the reference, there
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Figure 1.7: Sequencing progress vs compute and storage. A doubling of sequencing output
every 9 months has outpaced and overtaken performance improvements within the disk storage
and high-performance computation fields. Adapted from Kahn [Kahn, 2011].

are many challenges to overcome in order to detect significant signals. Depending
on the underlying experiment, several sources of biases have to be taken into
account and significance has to be calculated in an appropriate way. The final
goal is to integrate data from different kinds of experiments in order to gain a
better understanding of regulatory mechanisms and therefore provide a global,
unified view of regulatory genomics. The study of regulatory mechanisms and
how alterations can lead to diseases have an immense impact on biomedical
research. With the constant development of novel types of HTS experiments
during the last few years, the need for a unified tool to perform HTS analyzes and
manipulation has been growing [Hawkins et al., 2010]. At present, many large
collaborative projects are based on HTS and produce a massive quantity of data,
such as ENCODE, The Cancer Genome Atlas [Collins and Barker, 2007] and the
1000 Genome Project [1000 Genomes Project Consortium, 2010].

As shown in Figure 1.7, the amount of HTS data is actually growing
much faster than the capacity of disc storage and microprocessors [Kahn, 2011].
Therefore an important property of a HTS analysis tool is the ability of dealing
with data in a large-scale. As it facilitates the integration of results, it is of
great advantage to be able to analyze different data types with one tool. The
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development of such a tool is not straightforward, as different data types result into
different signals which have to be interpreted in a specific manner. For example,
to detect protein-DNA binding sites, the task consists of finding significant peaks
on ChIP-seq data. Many so-called ”peak-callers“ have been suggested to solve
this problem [Zhang et al., 2008, Fejes et al., 2008, Nix et al., 2008, Park, 2009,
Pepke et al., 2009].

Discovering protein-RNA binding sites from CLIP-Seq data is a different task,
since signals have to be detected within transcripts, rather than across the genome
and as reads derive from one RNA strand instead of from a double DNA strand
(like from ChIP-Seq). Yeo and colleagues have developed a method that deals
with analyzing CLIP-Seq data [Yeo et al., 2009].

Another challenge in HTS data analysis is to measure the expression of
transcripts, for which RNA-Seq data is used. To assess differential gene
expression between two cell lines, typically the reads within a genic region
are counted and compared. Several statistical models have been proposed
to evaluate significant differences [Anders and Huber, 2010, Wang et al., 2010,
Robinson et al., 2010]. The variety of experiments based on HTS is growing and
so is the need for tools to analyze the emerging data.

1.10 Chromatin and gene regulation
Chromatin is formed by nucleosomes and DNA, units in which DNA is wrapped
about 1.6 times around a histone octamer (a pair of each H2A, H2B, H3 and
H4) [Felsenfeld and Groudine, 2003, Richmond and Davey, 2003]. These histone
octamers bind approximately every 200 base pairs [Kornberg and Thomas, 1974]
to the DNA while they compact it, as shown in Figure 1.8. The positioning of
nucleosomes has been shown to be dependent on the underlying sequence. In
fact, Segal and colleagues suggested a genomic code for nucleosome positioning
based on the DNA sequence [Segal et al., 2006]. However, less than 10% of
all nucleosomes are well-positioned but interestingly show properties which
distinguish them from the bulk nucleosomes [Nikolaou et al., 2010]. Apart from
compaction, nucleosomes have been found to have further functionalities. They
influence pre-transcriptional regulation when they compete for binding sites
with transcription factors and other regulatory elements [Jiang and Pugh, 2009].
Furthermore, histone tails can be modified and, according to their local
concentration and combination, they can contribute to gene activation or silencing,
resulting into a so called histone code [Jenuwein and Allis, 2001]. This code
generally distinguishes between the epigenetic states, known as euchromatin
(”on“) and heterochromatin (”off“). These epigenetic states, in turn, are
created, kept and inherited during cell division, representing a so-called ”cellular
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Figure 1.8: The organization of DNA within the chromatin structure. The lowest level of
organization is the nucleosome, in which two superhelical turns of DNA are wound around the
outside of a histone octamer. Nucleosomes are connected to one another by short stretches of
linker DNA. At the next level of organization the string of nucleosomes is folded into a fiber about
30 nm in diameter, and these fibers are then further folded into higher-order structures. Adapted
from Felsenfeld et al. [Felsenfeld and Groudine, 2003]
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memory“.
Methylation and acethylation are the major types of histone modifications.

They occur mostly on the lysine residues of the histone tail. In Figure 1.9 we
show the densities of some well studied histone methylations and RNAPII around
Transcription Start Sites (TSS) of genes with different expression states. For
example RNAPII shows a significant peak at the TSS as well as higher densities
downstream of TSS. Tri-methylation of H3 Lysine 27 (H3K27me3), a repressive
mark, shows the highest densities around silent genes, while it is depleted around
active genes. On the contrary, activating marks like methylations of H3 Lysine
4 (H3K4) are concentrated at or around the TSS of highly expressed genes and
show very low occupancy in silent genes. The profile of tri-methylation of H3
Lysine 36 (H3K36me3), a transcription elongation mark, shows higher levels
downstream of active genes, while it is depleted in silent genes. These associations
of histone mark patterns with transcriptional activity motivated many groups to
predict gene expression based on the combination of histone modifications around
the TSS. Accordingly the application of different machine learning methods on
histone patterns is now an active field of research. To give some examples,
Yu et al. proposed a Bayesian network to derive relationships between histone
modifications and gene expression [Yu et al., 2008]. At the same time Hon et al.
applied an unsupervised learning method called ChromaSig to discover distinct
clusters of chromatin signature [Hon et al., 2008]. Two years later a multivariate
Hidden Markov Model that reveals discrete ”chromatin states“ was developed by
Ernst and Kellis [Ernst and Kellis, 2010]. However, predictive methods so far
have been focused on differences in gene expression considering only one cell
line or tissue at a time, rather than on the relative differences between cell lines.
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Figure 1.9: Profile of ChIP-Seq data near TSS (A)(L) Profiles of the methylated histones and
RNA Polymerase II (PolII) indicated above each panel across the TSS for highly active, two stages
of intermediately active and silent genes. Adapted from Barski et al. [Barski et al., 2007].
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Chapter 2

OBJECTIVES

The previous chapter aimed to give a general background about gene regulation
studies. In the beginning, it described mechanisms of gene regulation. Next,
it explained the experimental techniques for gene regulation studies, which are
mostly based on High Throughput Sequencing (HTS) nowadays. It also pointed
out the pitfalls of HTS data analysis before it finally explains what the integration
of various data sets can achieve. The main objectives of this thesis can be
summarized as follows:

1. The development of a versatile tool to analyze HTS data emerging from
different types of experiments. Important properties of this tool are
flexibility and memory efficiency, which are limitations of existing methods.

2. Applying the developed tool to elucidate the influence of progesterone on
breast cancer cells.

3. Integrating data from different types of HTS experiments into a pipeline to
gain insight into the epigenetic code that governs gene expression. The main
goal here is to generate a predictive model that, based on signal changes
from several epigenetic marks, predicts changes in gene expression between
two conditions with high accuracy.
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Results
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OF HIGH-THROUGHPUT
SEQUENCING DATA
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Chapter 4

STUDYING EFFECTS OF
PROGESTIN IN BREAST
CANCER CELLS
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4.1 Studying effects of progestin in breast cancer
cells

Within a collaborative project with the ”Chromatin and gene expression group”
from the Center for Genomic Regulation in Barcelona, we applied Pyicos on
ChIP-Seq data from the Progesterone Receptor (PR). Peaks of PR binding sites
(PRbs) were obtained for samples with different times of progestin induction (0,
5, 30, 60 and 360 minutes) in T47D-MTVL breast cancer cells, as explained
in methods. With ChIP followed by real time PCR, a number of regions were
validated, and we obtained a set of 57 positive and 73 negative regions for
PR binding. We considered these regions as a gold standard and compared
the performance of Pyicos to those of MACS [Zhang et al., 2008] and MICSA
[Boeva et al., 2010], two methods that have been specifically designed for peak
calling on ChIP-Seq data. By calculating the receiver operating characteristics we
show that Pyicos and MACS achieve very high accuracy, while they outcompete
MICSA (Figure 4.1).

Figure 4.1: Pyicos performance on regions validated for PR binding. Comparison of the
methods Pyicos, MACS and MICSA for peak calling on PR ChIP-Seq data. As a gold standard
we used 57 positive and 73 negative binding regions, validated by ChIP-PCR.

The following analyzes were done using the induction time of 30 minutes.
We calculated the peak densities in different regions related to genes and found
that the region around the proximal promoter and the first exon were the most
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densely populated of all regions (see Figure 4.2 A). We further related the peaks
to differential expression data from whole genome microarrays before and after
progestin treatment. Figure 4.2 B demonstrates that genes that were up-regulated
after stimulation showed a significantly higher density of PR binding sites (PRbs)
in their surroundings, compared to down- or non-regulated genes. In fact, 66% of
the up-regulated genes and 39% of down-regulated genes had at least one PRbs in
the region starting 10 kilobases (kb) upstream and ending 5 kb downstream of a
gene.

Figure 4.2: Distribution of PRbs in breast cancer cells A) We describe the distribution of PRbs
in different regions related to genes. B) The density of PRbs is shown in the region starting 10kb
upstream and ending 5 kb downstream of genes that are up-, down-, and non-regulated and along
the genome.

In order to gain a better understanding of the regulatory mechanisms, we
investigated the RNA-Polymerase II (RNAPII) binding in the same cell line.
A ChIP-Seq experiment was performed on RNAPII, with different progestin
induction times (0, 5 and 60 minutes). We explored how PR binding recruits
RNAPII, by calculating the normalized number of reads from the different
samples of RNAPII that overlap with PRbs on average. PRbs were separated
according to the regulation of the nearest gene. In Figure 4.3 we see an elevation
of RNAPII reads at PRbs related to up-, down- and non-regulated genes, even
before hormone induction (0 minutes). The RNAPII peaks at PRbs related to
up-regulated genes are highest at 5 minutes and reduce slightly at 60 minutes after
hormone induction. Down-regulated genes show the highest RNAPII density after
5 minutes, and the lowest after 60 minutes. The RNAPII densities of 0 minutes
and 60 minutes are very similar at PRbs related to non-regulated genes and slightly
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Figure 4.3: RNAPII read density at PRbs At PRbs that were related to up-, down- and
non-regulated genes, we calculated read densities of RNAPII after different times of progestin
induction.

elevated after 5 minutes of progestin induction. Overall we observe an increase of
RNAPII after 5 minutes.

The PR binding in breast cancer cells described in this project, had an
implication on further studies on gene regulation by hormones (see chapter 7.2
and Vicent et al. [Vicent et al., 2011]).

4.2 Methods
PR peak selection: PR ChIP-Seq reads were aligned to the reference genome
(hg18) using GEM (http:// gemlibrary.sourceforge.net/) keeping only uniquely
mapped reads with up to 2 mismatches. We used Pyicos to call significant peaks
by performing the following steps:

1. We removed all reads falling in satellites or centromeric regions and we kept
a maximum of 4 duplicates.

2. Reads were extended to 130 base pairs, in agreement with the fragment
selection

3. The control (0 minutes) was subtracted from the normalized ChIP-Seq reads
and the resulting effective reads were clustered.

4. Possible artifacts were removed. We considered two types of artifacts:
peaks shorter than 100 base pairs, which may appear as an artifact after
subtraction; and block-like clusters, which may appear from PCR artifacts.
A block-like cluster was defined as such if the ratio between the length
covered by the maximum of the peak and the length of the peak was greater
than 0.25.
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5. We further split the peaks if the read coverage goes below 5% of the
peak summit, which is defined as the midpoint of the region of maximum
coverage in the peak.

6. Poisson analysis was applied using peak-height on the resulting
read-clusters and selected those that are significantly higher than the average
height of the peaks in a chromosome (p-value of at most 0.001).
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This article has been submitted for publication to the special issue ”Epigenetic
Control of Reprogramming and Cellular Differentiation“ of ”Comparative and
Functional Genomics“.
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Abstract

The  epigenetic  regulation  of  gene  expression  involves  variations  in  histone  marks,  DNA 

methylation,  as well  as changes in the protein-DNA binding activity  of  multiple  factors.  The 

synergistic  or  antagonistic  action  of  these  changes  have  suggested  the  existence  of  an 

epigenetic  code for  gene regulation. High-throughput Sequencing (HTS) datasets provide an 

opportunity without precedent to explore this code and to build quantitative models of gene 

regulation based on epigenetic changes between specific cellular conditions. 

We describe  a  new computational  framework that  facilitates  the systematic  analysis  of  HTS 

epigenetic data for integrative studies. Our framework allows the storage of processed data for 

easy querying and for performing Machine Learning analyses. Our method relates epigenetic 

signals to expression by comparing the same genomic locus between two conditions, instead of 

comparing genomic loci to each other, thereby mitigating various biases from HTS experiments. 

We show the effectiveness of this methodology by building a model of gene regulation, using 

epigenetic data from the ENCODE project, which predicts with high accuracy whether a gene has 

a significant increase, decrease or no change in expression between two cell lines. 

Our analyses indicates that the epigenetic code is quite degenerate and involve multiple regions 

of  genes.  We  find  that  removing  ambiguous signals  from overlapping genes  the  prediction 

accuracy improves considerably, the attributes discriminate better between regulatory classes 

and the model built from one pair of cell lines perform with high accuracy in a second pair. 

Moreover, signal changes at the 1st exon, 1st intron and downstream of the polyadenylation site 

for  specific  histone  marks  are  found  to  associate  strongly  with  expression  regulation.  Our 

analyses  also  show  a  different  epigenetic  code  for  expression  for  intron-less  and  intron-

containing  genes,  with  more  prominent  difference  for  genes  with  low  GC  content  in  the 

promoter. 

We are thus able to build a quantitative description of gene regulation based on epigenetic 

changes, which captures the relative importance of the location of epigenetic signals along the 

gene, thereby providing further evidence for a generic epigenetic code of expression regulation. 

Our  computational  framework provides  a  general  methodology to  do integrative  analysis  of 

epigenetic changes measured from HTS experiments, which can be applied to other studies, like 

cell differentiation or carcinogenesis. 



INTRODUCTION

DNA associates  with  histone  proteins to  conform the chromatin  [1].  Histones  generally  carry  post-

transcriptional modifications in cells and these modifications modulate the expression of genes [2], [3]. 

For  instance,  there  is  a  genome-wide  relation  between  the  histone  3  Lysine  36  trimethylation 

(H3K36me3) and transcription activity [4], [5]. This and other epigenetic modifications are key to cellular 

differentiation [6] and their alterations have been associated to early stages of cellular transformation in 

tumors  [7], [8]. The combinations of the histone modifications, which can have cooperative or opposed 

effects on the chromatin state, have been proposed to reflect a histone code that would determine the 

regulation of gene expression and the cell state  [9].  High-throughput sequencing (HTS) technologies 

provide a very effective way to obtain information about the histone modification patterns at genome 

wide  scale [10].  Efforts  to  integrate  available  genome-wide  data  sets  about  chromatin  in  various 

conditions are crucial towards improving our understanding of the role of epigenetics in gene regulation.

Recent publications have made progress in the definition of  a histone code of  gene expression by 

generating predictive models of transcriptional activity based on histone mark information [11–16]. They 

provide  insights  into  possible  mechanisms of  regulation  and  a  formal  description  of  the postulated 

histone code [17], [18]. These methods generally relate the histone signals obtained from experiments 

of  chromatin  immunoprecipitation  followed  by  HTS  (ChIP-Seq)  [19],  with  a  read-out  of  the  gene 

expression based on expression microarrays or HTS for mRNAs (RNA-Seq) [20]. In the present work, 

we include additional epigenetic data to extend this relation, namely, HTS of  DNase I hypersensitive 

sites   (DNase-Seq)  [21],  DNA methylation  data   [22],  and  ChIP-Seq  data  for  CTCF  and  RNA-

Polymerase II. 

In previous approaches, a chromatin signal is generally represented in terms of read-counts or peak 

significance in the promoter and sometimes in the gene body of genes [23]. However, these methods 

are generally based on one single condition or cell line. Thus, they effectively compare the properties of 

different genes in a direct way; hence,  the accuracy of the predictive model will be dependent on the 

accuracy of the estimation of the significance of the ChIP-Seq signals and, more importantly, they rely 

on the premise that signals in two different genes should be comparable. However, genes present many 

variable properties,   like the number of introns or the presence of CpG islands in their promoter, that 

may affect these measurements. For instance, recent experiments show that the splicing machinery can 

recruit histone-modifying enzymes and influence the chromatin state, with the consequence that genes 

with introns tend to have higher levels of H3K36me3 signal  [24]. Thus, the comparison of genes with 

and without introns is not straight forward. Additionally,  various other factors may affect the local density 

of  HTS signal [25]. For  instance,  the tag counts  from a HTS experiment  will  be influenced by the 

chromatin  structure  of  the  DNA and  by  shearing  effects  [26–28],  not  all  regions  have  the  same 

mappability [29] and there is often a GC bias in the reads [30]. These issues will reflect on differences in 

coverage between regions, which will be even more exacerbated for the broad signals that are obtained 

for  histone ChIP-Seq experiments.  Control  samples can  partly  alleviate  this,  but  their  effectiveness 

depends  very  much on the sequencing  depth.  Thus,  HTS signals  from two genes  are not  directly 

comparable in general, 

We propose a new method to measure epigenetic signals and to relate them to expression based on the 

comparison between two conditions. In our approach, the same genomic locus is compared between 



two conditions; hence, the predictive model describes changes of gene expression in terms of changes 

in epigenetic mark densities between two conditions or cell types.  Significance of these changes is 

calculated taking the read density into account, thereby mitigating the confounding effects mentioned 

earlier. Additionally, our method has the advantage of providing a continuous description of the changes, 

rather than an on-off state description. 

To illustrate our method, we have built a model of expression regulation from epigeneticn changes using 

data from various ENCODE cell lines [31]. Our results show a different epigenetic code for expression 

for intron-less and intron-containing genes, being this difference more prominent in genes with low GC 

content  around  the  transcription  start  site.  Moreover,  eliminating  anti-sense  transcription  and 

overlapping promoters and tails from different genes, which has not been done before, the prediction 

accuracy  improves  considerably.  Furthermore  the  predictive  model  built  from one pair  of  cell  lines 

performs with high accuracy in a different pair.  Finally, we are able to generate a minimal code for 

expression regulation between two cell lines that is generic enough to correctly predict the regulatory 

outcome of up to 70% transcripts from a different pair of cell-lines.

MATERIAL AND METHODS

Genomic annotations

For  our  analyses  we  used  the  gene  set  from  the  7th release  of  the  GENCODE  annotation

(ftp://ftp.sanger.ac.uk/pub/gencode/release_7/gencode.v7.annotation.gtf.gz),  which  is  based  on  the 

assembly GRCh37 (hg19) and is included in the Ensembl release 62  [32]. All transcripts encoded at 

each gene loci and the genomic region defined by them, which we name transcript loci, were considered 

initially. Those transcript loci from chromosome M and of biotype “pseudogene” were removed for the 

analysis.

We separated transcript loci into four groups; according to whether they were intron-containing (IC) or 

intron-less (IL), and according to whether they had a promoter with high CG (HCG) or low CG (LCG) 

content. We classified transcripts as HCG if  the region of 4kb centred on the transcription start site 

(TSS) overlaps at least 200 bp with a CpG island, and LCG otherwise. CpG island annotations where 

obtained from the UCSC Table Browser (hg19)  [33]. In order to obtain balanced sets for training and 

testing, an equal number of up- (Up) and down- (Dw) regulated transcripts were selected from each of 

the four groups. These groups were taken to be as large as possible,  but such that the p-value of 

significance (Benjamini-Hochberg corrected) for the expression change for each transcript was smaller 

than 0.05. Furthermore, the same number of non-regulated (Nr) transcripts were selected. These are 

defined to have the highest p-values and sufficient expression, i.e. the density of reads measured in 

RPKM (reads per kilobase per million mapped reads as defined by [20]) was greater than 1 in a cell line 

from the pair. With this, we obtained four different sets(Table 1). As part of our analyses, we also filtered 

overlapping transcript loci that would make ambiguous the assignment of the marks with the correct 

expression change. We considered the following cases (Supplementary Figure 1):

• transcript loci that overlap in opposite strands.

• transcript loci whose promoters (2kb) overlap in opposite strands

• transcript loci whose tails (2kb) overlap in opposite strands



• transcript loci with overlapping promoter (2kb) and tail (2kb) on the same strand

• Overlapping transcript loci on the same strand but from different genes

Transcript-loci 
Set

Description Pair1 - all Pair1 - filtered Pair2 -all Pair2 - filtered

HCG IC High CG promoter and 
intron-containing

6510 1959 2964 792

HCG IL High CG promoter and 
intron-less

105 27 24 12

LCG IC Low CG promoter and 
intron-containing

6705 1767 1980 585

LCG IL Low CG promoter and 
intron-less

84 30 15 15

Table 1: Each of the four sets of transcript loci considered in our analysis. The numbers correspond to the loci before 
(all)  or  after  (filtered)  eliminating overlapping loci  (Methods).  From each set,  we considered up-,  down- or  non- 
regulated transcript loci, each corresponding to 1/3 of the indicated numbers.

Datasets

We downloaded ChIP-Seq data for RNA Polymerase II (RNAPII),   CCCTC-binding factor (CTCF) and 

various Histone marks (Table 2), data for DNase I hypersensitive sites (DNase-Seq), methylation data 

from Reduced Representation Bisulfite Sequencing (Methyl-RRBS) and RNA-Seq data from the Encode 

project  (http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/)  for  four  cell  lines:  a  chronic 

myelogenous leukemia line (K562), a lymphoblastoid line (GM12878), a human mammary epithelial line 

(HMEC) and a muscle myoblast line (HSMM) (Table 2). We considered two pairs of comparisons, P1: 

K562 vs GM12878 and P2: HSMM vs HMEC. We selected experiments that were available in at least 

four cell  lines, except for RNAPII, which was only available in two of the selected cell lines. For all 

datasets, we used only reads that did not contain any uncalled bases (N). Moreover, for ChIP-Seq and 

DNase-Seq reads we kept only reads with mapping quality greater than 30. The Methyl-RRBS data was 

filtered for positions covered by at least 10 reads. The mean methylation of a region was defined to be 

the proportion of  methylated sites over the total  number of  probed sites in that  region.  Further, we 

obtained  the  RPKMs  for  the  RNA-Seq  data  for  the  individual  transcript  loci  directly  from Encode 

(http://hgdownload-test.cse.ucsc.edu/goldenPath/hg19/encodeDCC/   /wgEncodeCshlLongRnaSeq  /releaseLatest/  ).

For our analysis we considered for each transcript locus, a number of regions related to its exon-intron 

structure (Table 3). Subsequently, for each one of these regions and for each experimental data set,  the 

z-score for the enrichment was calculated between a pair of cell lines using Pyicos [34]. The calculation 

was  based  on  2  replicas  in  one  condition  (K562  or  HSMM)  and  1  replica  in  the  other  condition 

(GM12878  or  HMEC).  Further,  pseudocounts  and  RPKM  normalization  were  used  (details  in 

Supplementary Material). These z-scores constitute the set of attributes  that were used for Machine 

Learning (ML) analyses and corresponds to each region-experiment pair. As a control, random attributes 

were generated for each region by random sampling z-score values from all attributes for that region 

type. 

Unless otherwise stated, accuracies of the models were measured calculating the average area under 

the receiver operating characteristic (ROC) curve (AUC) for a 10-fold cross validation. A ROC curve 

relates the rates of true positives (TPs) and false positives (FPs) produced by the model. The larger the 

area described by the ROC curve (AUC) the better the overall accuracy of the model. AUC = 1 indicates 

a model that predicts no false positives and all true cases correctly, and AUC = 0.5 indicates that the 

model is equivalent  to random. In 10-fold cross validation,  the data is split  into 10 subsets and 10 



evaluations are carried out iteratively, where in each iteration 9 subsets (nine-tenths of the instances) 

are used for training and one subset for testing. This method ensures that all instances are used for the 

evaluation and the overall accuracy is averaged over the ten iterations, so that it represents the mean 

behaviour of the model.

Pair 1 Pair 2

Cell lines K562 GM12878 HSMM HMEC

factor/mark

CTCF BROAD BROAD BROAD BROAD

H3K27ac BROAD BROAD BROAD BROAD

H3K27me3 BROAD BROAD BROAD BROAD

H3K36me3 BROAD BROAD BROAD BROAD

H3K4me1 BROAD BROAD BROAD BROAD

H3K4me2 BROAD BROAD BROAD BROAD

H3K4me3 BROAD BROAD BROAD BROAD

H3K9ac BROAD BROAD BROAD BROAD

H4K20me1 BROAD BROAD BROAD BROAD

RNAPII UT-A UT-A -- --

DNase-Seq UW UW UW UW

Methyl-RRBS HA HA HA HA

RNA-Seq CSHL CSHL CSHL CSHL

Table 2: ENCODE datasets and cell lines used for analysis: ChIP-Seq data for RNA Polymerase II (RNAPII), CTCF 
and various Histone marks, data for DNase I  hypersensitive sites (DNase-Seq), methylation data from  Reduced 
Representation Bisulfite Sequencing (Methyl-RRBS) and sequencing of long polyA+ whole cell RNA (RNA-Seq). For 
HMEC and HSMM cells  RNAPII  ChIP-Seq data  was  not  available  at  the  time of  our  analyses.  Datasets  were 
generated at the Broad Institute (BROAD), Cold Spring Harbor Laboratory (CSHL), University of Washington (UW), 
University of Texas at Austin (UT-A) and Hudson Alpha (HA). 

Type Region Description

Fixed-length 
regions

Promoter 2kb Region starting 2kb upstream of the transcription start site (TSS) and 
ending 1bp before the TSS;

Promoter 5kb Region starting 5kb upstream of the TSS and ending 1bp before the 
TSS;

TSS +/- 2kb Region starting 2kb upstream of the TSS and ending 2kb downstream

TSS +/- 5kb Region starting 5kb upstream of the TSS and ending 5kb downstream

pA +/- 2kb Region starting 2kb upstream of the pA and ending 2kb downstream

tail Region starting 1bp after the pA and ending 2kb downstream 

Variable-length 
regions

First exon Region corresponding to the first exon of the transcript locus

First intron Region corresponding to the first intron of the transcript locus

GB Gene body,  i.e. region between the TSS and the poly-adenylation site 
(pA) of an annotated transcript locus

GB3’ss Region  between  the  first  3’  splice-site  and  the  pA of  an  annotated 
transcript locus

GB +/- 1kb Gene body with additional 1kb stretches up- and downstream

GB +/- 5kb Gene body with additional 5kb stretches up- and downstream

GB + 5kb Gene body with an additional 5kb stretch downstream of the pA

Table 3: Regions considered per transcript locus for the calculation of the different attributes.



RESULTS AND DISCUSSION

A framework for integrative epigenetic studies

Our  computational  framework  addresses  three  fundamental  tasks  in  the  process  of  acquiring 

knowledge: data mining, data manipulation, and data analysis, and is comprised of the following steps 

(i)  an  analysis  pipeline  to  systematically  identify  the changes  in  expression  and  epigenetic  signals 

between two conditions in multiple genomic regions,  (ii)  an automatic way to store the results in a 

Biomart system [35] for easy querying and filtering and (iii) a connectivity to the application WEKA [36], 

to  allow the  application  of  Machine  Learning  (ML)  methods  for  creating  predictive  models  of  gene 

regulation. 

In order to relate epigenetic signals to expression regulation, our method measures signal changes 

between two conditions rather than the signal  level  in one single  condition.  With this methodology, 

relative changes of  the epigenetic  state  can  be related to  each other  or  to  the relative  change of 

expression. By considering relative signal changes, biases from HTS  are mitigated. To verify this, we 

checked whether selecting significant regions according to RPKM densities or z-scores from our method 

would be biased by the GC content. We therefore considered the top 10% of genes in terms of the 

H3K4me3 RPKM (K562) in the gene body and found a Spearman correlation of 0.34 with GC content. 

However, selecting the top 10% of genes according to absolute z-scores for H3K4me3, given by the 

comparison between K562 and GM12878, resulted in no correlation with GC content (Spearman 0.02). 

Thus relating RPKM values to gene expression could result into false positives due to GC bias. When 

we repeated the same calculation on the 4kb region centered on the TSS, none of the two measures, 

RPKMs or  z-scores,  showed a GC bias (correlation coefficient  of  -0.02 and 0.05,  respectively).  As 

H3K4me3 is mostly distributed around the TSS [10] we deduce that in this case the real signal obscures 

the bias, while in the gene body, where no strong signal for H3K4me3 is present, the bias dominates 

over the signal. 

We have developed an automatic pipeline that, given a set of regions and a number of high-throughput 

sequencing (HTS) datasets for two conditions, can systematically calculate the log-rate of change for 

each region and its significance in terms of a z-score (details in Supplementary File). Datasets used for 

this work are accessible in a Biomart database at http://regulatorygenomics.upf.edu/group/pages/software. We 

have modified Biomart so that datasets can also be exported as ARFF (attribute-relation file format), 

which can be uploaded directly to the WEKA system [36], a collection of open-source machine learning 

algorithms for  data mining  tasks,  issued under  the  GNU General  Public  License.  Our  system thus 

provides the possibility of using own custom data to train models and evaluate different ML algorithms 

for the study of mechanisms of gene regulation.

In order to illustrate the potential of our framework we analyzed high-throughput sequencing (HTS) data 

from ENCODE [31] (Methods). We started by systematically calculating the changes between cell lines 

in pair P1 (K562 vs GM12878) and pair P2 (HSMM vs HMEC)  for all the experiments in a variety of 

regions related to the transcript loci (Table 3).  Most of the recently developed predictive methods use 

signals in the promoter region of genes or in a window around the transcription start site (TSS). We also 

included the gene body, as recent evidence suggests that the signal along this region will be informative 

as well [23]. Besides promoter, TSS and gene body regions, we also include a region for the 1st exon, 

the 1st intron,  and the gene body downstream of  the 1st intron,  which have been shown to contain 



relevant chromatin signatures for  transcriptional  regulation  [24],  [37],  [38],  and have not been used 

before in a predictive model. We further considered additional windows around and beyond the poly-

adenylation site (pA), resulting in a total of 13 different regions (Table 3) (Supplementary Figure 1). 

Accordingly, for the two pairs of cell lines P1 and P2, we had a total of 13 x 12 = 156 and 13 x 11 = 143 

(as RNAPII was not available for P2) attributes per transcript locus, respectively, where each attribute is 

defined by the z-score of the enrichment value between the two cell lines for a region-experiment pair. 

As classification value, we used expression information from RNA-Seq experiments from ENCODE in 

the corresponding cell  lines. For each pair of cell  lines we calculated the transcripts with significant 

increase (Up) or decrease (Dw) of expression. In order to build a predictive model of expression that 

can distinguish between either type of regulation (Up or Dw) and no change, we also considered non-

regulated  (Nr)  transcripts,  defined  to  have  sufficient  expression  level  and  no  significant  change  in 

expression between the same pair of cell lines (Methods). 

Recent studies have shown that introns may influence the transcriptional regulation of genes [24], [38]. 

Therefore, we separated our transcripts sets according to whether they were intron-containing (IC) or 

intron-less (IL). Furthermore,  several studies have highlighted that human promoters present different 

regulation according to their CG content [39–41]. Thus, we further split the sets according to whether a 

4kb region centered on the TSS overlaps with a CpG island or not, resulting in high CG content (HCG) 

or low CG content (LCG) sets (Methods). Finally, in order to have a balanced set for training and testing, 

we selected from each type the same number of transcripts for each regulatory class  (Table 1). 

A generic epigenetic code for gene expression regulation

Using the datasets processed as above, we built a highly accurate and generic predictive model of gene 

expression changes based on epigenetic data. We tried various ML models to predict the three possible 

classes, up (Up), down (Dw) and non-regulated (Nr), and decided to use a Random Forest model [42], 

as it showed the best performance using 10-fold cross validation (data not shown). Table 4 shows the 

accuracies of this model tested on intron-containing sets for various training conditions. Remarkably, we 

obtain a higher accuracy for the LCG set than for the HCG set (Table 4). Incidentally, CpG-related genes 

are quite often housekeeping genes [43], which has been pointed out before as one of the reasons why 

predictions perform differently  on each set  [44].  According to this,  LCG transcripts  should be more 

frequently associated to genes with differential expression (Up or Dw). This is confirmed in our analysis, 

as we found that the performance was always higher for the prediction of Up and Dw loci than for non-

regulated transcripts (Table 4). For intron-less (IL) loci we found the opposite behaviour, i.e. HCG-IL has 

higher accuracy than LCG-IL (Supplementary Table 1). 



Table 4: We show the accuracy in terms of the area under the ROC curve (AUC) for the 10-fold cross validation for 
the IC transcript sets for various training conditions. The results are shown for all the transcript loci before A) and 
after B) filtering for the overlaps in opposite strands and overlaps of promoters and tails (Methods). P1 (with RNAPII) 
corresponds to pair P1 with the additional RNAPII attribute, i.e. the same attributes as P2 plus RNAPII. P1 and P2 
denote the models for each cell line pairs with all the attributes. P1(CFS) and P2(CFS) denote the models for P1 and 
P2, respectively, where the attributes used are those that have a score 80 or higher (maximum 100) using the CFS 
attribute selection method independently for P1 and P2. P2 (CFS-P1) indicates that the model was trained using the 
data from P2 but the attributes selected using CFS on P1. P1-on-P2 indicates that the model was trained with pair P1 
with all attributes and tested on pair P2. P1(CFS)-on-P2 indicates that the model was trained with pair P1 with only 
selected attributes and tested on pair P2.

Interestingly, training a model for the first pair with (Table 4A, P1 (with RNAPII) ) or without RNAPII data 

(Table 4A, P1) yields very similar accuracy for all sets, which suggests that the information provided by 

RNAPII is redundant with the histone data for prediction. Indeed, looking at the pairwise correlations of 

all marks for P1, separated per region and per transcript set (Figure 1 and Supplementary Figure 3), we 

observe  a high  correlation  of  the  z-scores  for  RNAPII  with  most  of  the other  signals  (H3K36me3, 

DNase-Seq, CTCF, H3K4me2, H3K9ac, H3K27ac and H3K4me3).

With the aim of obtaining a minimal set of attributes that are sufficient to attain high prediction accuracy, 

we applied Correlation-based Feature Selection (CFS)  [45]. This method works by iteratively testing 

subsets  of  attributes,  retaining  those that  best  correlate  with  the class values (Up,  Dw or  Nr)  and 

removing those that have high redundancy. In this way, a minimal set of non-redundant attributes with 

optimal performance is selected. We applied CFS to the data from both pairs of cell lines and selected 

attributes that were selected in at least 80% of the validation rounds (Table 4A, P1(CFS) and P2(CFS)). 

Interestingly, CFS provided attributes related to all the regions (Supplementary Table 2A), indicating that 

histone marks along all regions of the transcript locus may be relevant for regulation. Additionally, the 

prediction accuracy did not suffer, while the model is simplified by removing redundant attributes (Table 

4A, P1(CFS) ). 

A)
                            Before filtering 
HCG - IC LCG – IC

Attributes Up Dw Nr Average Up Dw Nr Average
P1 (with RNAPII) 0.8 0.79 0.74 0.78 0.82 0.87 0.78 0.83

P1 0.79 0.79 0.74 0.77 0.83 0.86 0.76 0.82
P1 (CFS) 0.8 0.79 0.74 0.78 0.82 0.86 0.76 0.81

P2 0.85 0.83 0.81 0.83 0.9 0.88 0.83 0.87
P2 (CFS-P1) 0.85 0.83 0.8 0.83 0.9 0.88 0.83 0.87

P1-on-P2 0.83 0.77 0.63 0.74 0.88 0.83 0.71 0.81
P1(CFS)-on-P2 0.83 0.8 0.57 0.73 0.88 0.84 0.74 0.82

B)
                               After filtering 
HCG - IC LCG – IC

Attributes Up Dw Nr Average Up Dw Nr Average
P1 (with RNAPII) 0.79 0.84 0.76 0.8 0.85 0.9 0.81 0.86

P1 0.79 0.82 0.75 0.79 0.86 0.89 0.76 0.84
P1 (CFS) 0.79 0.81 0.73 0.78 0.84 0.9 0.77 0.84

P2 0.89 0.88 0.85 0.87 0.92 0.91 0.85 0.89
P2 (CFS-P1) 0.87 0.87 0.84 0.86 0.92 0.92 0.86 0.9

P1-on-P2 0.89 0.87 0.7 0.82 0.92 0.89 0.79 0.87
P1(CFS)-on-P2 0.85 0.82 0.68 0.78 0.91 0.89 0.81 0.87



Figure  1: Pairwise  correlations  of  marks  and  expression  changes  in  gene  bodies.  Heatmaps  are  shown  for 
regulated genes from the filtered intron-containing (IC) sets for high (HCG) and low (LCG) CpG promoters. The color 
represents the value of the Pearson correlation coefficient between the z-scores for every pair of  attributes. For 
expression (RNA-Seq), the z-scores of the Up and Dw transcript loci were used to calculate the correlation.

With the aim of obtaining a generic epigenetic code of expression regulation, we decided to compare 

the attributes obtained from P1 with the attributes obtained for a second pair of cell lines (P2). Although 

CFS applied to both pairs, P1 and P2, yields a different set of optimal attributes, with only between 26% 

and  50% of  coincidences  between  them (Supplementary   Table  2),  a  model  built  on  P2  with  the 

attributes selected from P1 shows a high accuracy, which is comparable to the original model on P1 

(Table 4A P2(CFS-P1) ). That is, qualitatively, the attributes relevant for one pair of cell lines seem to be 

also relevant for the other one.

To test the generality of the model also in quantitative terms, i.e. in terms of the actual numerical model, 

we applied directly on P2 the model built from P1. However, this test across pairs did not achieve an 

accuracy  as high  as before  (Table  4A,  P1-on-P2 and P1(CFS)-on-P2 ).  We hypothesized  that  the 

reduction  of  accuracy  in  the  test  across  pairs  comparison  could  be  due  to  differences  in  the 

homogeneity of cell lines, which would produce a very variable pattern of signals. Alternatively, this lack 

of reproducibility could stem from the overlap of the gene body, promoters or tails from transcript loci 

from different genes, specially in the opposite strand, which would make ambiguous the association of 

the epigenetic signal change to a specific expression change. Accordingly, we removed from the training 

set  those  transcripts  loci  where  the  signal  in  one  region  could  not  be  unambiguously  assigned 

(Methods) (Supplementary  Figure 4), thereby generating filtered sets for training and testing (Table 1). 

Interestingly,  after  removing  these cases  we observe a  consistent  increase  in  the  accuracy  of  the 

prediction in all groups (Table 4B), with 60-78% of the instances correctly classified  (Table 5).

We  further  explored  whether  the  signals  in  one  single  region  would  be  sufficient  to  predict  the 

expression outcome. Accordingly, for each region we selected the common attributes from pairs P1 and 

P2 with CFS score ≥ 80% (Supplementary Table 3). Interestingly, the marks selected for a single region 

give  a  prediction  accuracy  that  is  comparable  to  that  obtained  with  attributes  from  all  regions 

(Supplementary Table 4). The highest accuracy was achieved using gene body +/-5kb, which is not 

surprising as it  overlaps all the other regions. Interestingly, the 2kb region downstream of the pA, a 

region that has not been considered before, turns out to have a high predictive power, achieving an AUC 



of 0.89 for up-regulated IC-LCG transcripts based only on the signals for H3K27me3 and H3K36me3. 

Remarkably, one single mark in the region pA +/-2kb is enough to predict up-regulated genes with high 

accuracy (AUC = 0.85 and 0.81 for Up in IC-LCG and IC-HCG transcripts, respectively). As before, the 

models achieve higher AUCs for LCGs than for HCGs.

Attributes
Transcript loci 

set
Instances in 

total
Correctly classified 

instances

P1(CSF)
LCG-IC 1767  1185 (67.06 %)

HCG-IC 1959  1182 (60.34 %)

P2(CSF-P1)
LCG-IC 585 454 (77.60 %)

HCG-IC 792 577 (72.85 %)

P1(CSF)-on-P2
LCG-IC 585 410 (70.09 %)

HCG-IC 792 445 (56.19 %)

Table 5: Correctly classified instances in each transcript subset. Sets are filtered to avoid overlapping gene bodies, 
promoters or  tails  from transcript  loci  from different  genes in the same or  opposite strands (Methods).  Attribute 
selection has been applied to each pair: P1(CFS) and P2(CFS), for each of the subsets of intron-containing loci, high 
(HCG) or  low (LCG) CG content  promoter.  The attribute  sets  correspond to  the  ones from Table  4B:  P1(CFS) 
denotes the model for P1, where the attributes used are those that have a score 80 or higher (maximum 100) using 
the CFS attribute selection method. P2 (CFS-P1) indicates that the model was trained using the data from P2 but the 
attributes selected using CFS on P1. P1(CFS)-on-P2 indicates that the model was trained with pair P1 with only 
selected attributes and tested on pair P2. 

The relative contribution of marks to the epigenetic code

With the aim to find the most relevant attributes that appear to determine the regulation of expression, 

we calculated the information gain (IG) [46] for all attributes in the subsets HCG-IC and LCG-IC on pair 

P1 for the unfiltered and the filtered sets (Table 1). The higher the IG value, the better the attribute can 

separate the three classes: Up, Dw and Nr. As a control,  we generated random  attributes for each 

region, obtained by random sampling z-score values from all  attributes in that region. In Figure 2 and 

Supplementary Figure 5 we show how attributes rank in terms of IG within each region. Although the 

ranking is very similar before and after filtering transcript loci, we found an overall increase in IG values, 

indicating that the filtering step improves the specificity of the regulatory code. We found that for all 

subsets, H3K36me3 is the most informative attribute around the pA site and in gene body associated 

regions, whereas H3K27ac and H3K9ac are most informative in the promoter region, which agrees with 

previous analyses [47]. These two acetylation marks are in fact among the most informative marks in 

the promoter, around the TSS and in 1st intron and 1st exon regions. Interestingly, H3K36me3 is more 

informative in the 1st intron than in the 1st exon, which agrees with recent results relating H3K36me3 with 

splicing of the first intron [24]. Although methylation data shows anti-correlation with expression change 

in the promoter of HCG loci (Supplementary figure 2), we observe a modest contribution in the gene 

body to expression regulation (Figure 1 and 2). 



Figure 2: Information gain values measured for attributes in the gene body of intron-containing (IC) transcript loci, 
comparing before and after filtering loci according to overlap with transcripts from different genes (Methods). Data is 
shown for high (HCG) and low (LCG) CpG promoters. Random attributes  generated by random sampling z-score 
values from all attributes in a given region are shown as a control.

Although IG values determine how well an attribute separates the three sets, Up, Dw and Nr, we would 

expect that attributes that most directly associate with expression changes should show no change for 

the Nr set. That is, we should expect that the enrichment z-scores for Nr should distribute around zero. 

Accordingly,  we defined an attribute to  be optimal  if  the absolute vallue of  the median for the  Nr 

distribution is smaller than 0.1 and the IG is greater than 0.05. If more than one attribute accomplish 

these thresholds, we considered the one with the highest IG value. Interestingly, this analysis shows that 

the  optimal  attributes  for  H3K36me3  and  H3K4me3  correspond  to  the  1st intron  and  1st exon, 

respectively  (Figure  3),  which  could  be  related  to  their  role  in  the  coupling  between  splicing  and 

transcription [24], [38]. Moreover, for H3K9ac and H3K27ac the optimal attributes are the TSS-5kb and 

Promoter-5kb regions, respectively (Figure 3). DNase-Seq also presented the optimal distribution in the 

1st exon, whereas CTCF and H3K4me2 were best in the GB-5kb region (Figure 3). 

We did not  find an optimal attribute for  RNAPII,  as the attribute for  the gene body, the region with 

minimal median for the Nr distribution and largest IG (Supplementary Figure 6A), shows an enrichment 

for Nr similar to the Up subset, which could be due to an excess of RNAPII reads in one of the cell lines 

(Supplementary Figure 6B). Even though we could not find an optimal attribute H3K27me3, the z-score 

distributions for the 1st exon results into a clear trend that agrees with the anti-correlation of H3K27me3 

and expression (Figure 3),  despite the low IG (0.03): Up genes show almost no change, whereas Dw 

genes show the greatest enrichment (Figure 3), possibly indicating that there is an asymmetry in the 



pattern of  this  histone mark for  silencing.  We also did not  find optimal  attributes for  Methyl-RRBS, 

H3K4me1 and H4K20me1.  For Methyl-RRBS this is probably due to a large proportion of sites with 

reads but no methylation evidence (data not shown). The most informative region with minimal median 

for Nr for H3K4me1 indicates an enrichment of Up in GB +/- 5kb but a distribution for Dw and Nr 

centered on zero, indicating an asymmetry in transcriptional activation. Although H4K20me1 has been 

related  to  silent  chromatin  [48] the  most  informative of  the  attributes  showed almost  no  difference 

between Up, Dw and Nr subsets. The absence of an optimal attribute for H3K4me1 in GB +/-5kb and for 

H4K20me1  in  the  1st exon  might  be  due  to  an  unequal  distribution  of   reads  in  K562 relative  to 

GM12878, which does not occur for H3K27me3.

Figure 3: Distribution of z-scores for up- (Up), down- (Dw) and non- (Nr) regulated genes for the optimal 
attributes  for  each  experiment,  calculated  by  maximizing  the  Information  Gain  and  minimizing  the 
absolute value of the median for the z-score distribution of the Nr subset. The y-axis shows the z-score 
corresponding to the enrichment of the attribute. These distributions correspond to the set of LCG-IC 
loci of Pair1.

The effect of introns in the epigenetic code

A number of specific histone modifications have been related to the co-transcriptional splicing of introns 

[24],  [38].  We  therefore  hypothesized  that  there  should  be  relevant  differences  in  the  histone 

modifications between IC and IL loci. We thus compared the most informative attributes between intron-

containing (IC) and intron-less (IL) loci (Figure 4 and Supplementary Figure 6). As there were many 

more IC than IL loci, we selected a subset of loci from IC of the same size as IL and compared the IG 

values for attributes related to fixed-length regions (Table 3). For HCG loci, although we found almost no 

differences when we ranked the attributes according to IG (Figure 4, Supplementary Figure 7), there is 

an overall reduction of the IG values in IL genes. Strikingly, we found that for LCG loci the IG becomes 

very small for most of the attributes. For instance, in the promoter region, most of the attributes that are 

informative for LCG-IC loci do not contribute at all in LCG-IL (Figure 4),  and  H3K36me3, which is 

considered most relevant downstream of the TSS, and H3K4me1, become the most informative attribute 

for LCG-IL loci (Figure 4). Similarly, in the tail regions most of the attributes that are informative for LCG-

IC loci do not contribute for LCG-IL loci (Supplementary Figure 7), where the IG values are very low. In 

contrast, the tail region behaves more similarly for HCG-IC and HCG-IL, in terms of ranking and IG. This 



indicates  that  LCG-IL  loci  may  be  regulated  through  changes  in  different  epigenetic  signals  not 

considered in this analysis.

Figure 4:  Information gain values measured for attributes in the 2kb promoter region, comparing intron-less (IL) 
genes with intron-containing (IC) genes  before filtering transcripts (Methods). The compared sets were taken to be of 
the same size (105 transcripts for HCGs and 84 transcripts for LCGs). 

CONCLUSIONS

A current challenge in epigenetics is how to extract biological knowledge from large volumes of data 

produced  with  new  high-throughput  technologies.  Integrative  tools  and  Machine  Learning  (ML) 

algorithms are crucial to this aim. In this article we have described a novel computational framework for 

the integration of high-throughput sequencing (HTS) epigenetic data that facilitates the generation and 

testing  of  quantitative  models  of  gene regulation.  Our  methodology  proposes  a new way  to  relate 

epigenetic  signals  to  expression  using  the comparison  of  the  same locus  between two conditions, 

instead of comparing loci to each other in a single condition, which can be affected by various biases. 

Three novel aspects of our methodology are that it 1) considers continuous values for the change in 

epigenetic signals,  2) it explores the enrichment of signals in multiple regions and 2) it can be applied to 

any HTS data type in two conditions.

We have shown the effectiveness of this methodology by building a predictive model of gene expression 

regulation  based on  epigenetic  information  for  a  pair  of  cell  lines  from the  ENCODE project.  The 



processed  data  used  to  build  the  models  in  this  paper  is  available  as  a  Biomart  database  at 

http://regulatorygenomics.upf.edu/software/. Our quantitative models can predict whether a gene shows 

expression differences (up or down) or no difference between two cell lines. The relevant attributes and 

the accuracy for each model vary according to whether transcript loci have high CpG-content promoters 

(HCG) or not (LCG) and whether they  contain introns (IC) or not (IL). These differences indicate that the 

histone signals are very heterogeneous and that regulation depends strongly on the actual structural 

properties of promoters and genes. Our analyses also indicate that there is high redundancy in the 

histone code, as different groups of attributes from different regions can explain a similar number of 

regulatory events.

Additionally, we have taken into account a fact largely overlooked in previous publications, which is that 

a considerable number of gene loci overlap with each other  [49] at promoter and tail regions, or over 

their  gene  bodies,  either  on  the  same  or  on  opposite  strands.  Accordingly,  previous  models  of 

expression based on histone marks have this confounding effect, since the strand-less ChIP-Seq signal 

cannot  be  unambiguously  associated  to  the  regulation  of  a  specific  gene.  Interestingly,  when  we 

removed these overlapping genes, the prediction accuracy improves considerably and the predictive 

model built from one pair of cell lines perform with high accuracy in a second pair of different cell lines. 

We conclude that removing these overlapping loci allow us to build a more general epigenetic code for 

expression regulation.  This is further confirmed by our analysis of  the Information Gain (IG),  which 

shows that  attributes can separate better the three regulatory classes after the overlapping loci are 

removed. Notably, this filtering does not change the ranking of IG values, hence although we improve 

the quantitative description of the histone code, the qualitative description does not change. The IG 

analysis confirms the role of some of the histone marks, like H3K9ac and H3K27ac, in the promoter and 

around the transcription start site in expression regulation as described before in the literature; and 

uncovers new regions, like the first intron for H3K36me3, the first exon for H3K4me3 and downstream of 

the  polyadenylation  site  for  H3K36me3,  where  changes  in  these  marks  associate  strongly  with 

expression regulation. The role of these marks in the first exon and intron indicates a general role in the 

coupling between splicing and transcription, as recently shown in the literature. In this direction, we also 

explored the patterns of epigenetic changes between intron-containing (IC) and intron-less (IL) loci and 

found that IC loci contain more epigenetic information and can therefore be better characterised. These 

differences are more remarkable between high (HCG) and low CpG promoters (LCG), which suggests 

that  the type of promoter might influence the epigenetic changes that take place in co-transcriptional 

splicing [24]. Alternatively, this could indicate that these loci have a distinct mode of regulation, possibly 

by other marks that have not been considered in this study. 

The  epigenetic  signals  analysed  in  this  study  provide  a  strong  prediction  power  for  expression 

regulation. However, the associations found do not necessarily  imply causality or  a direct functional 

effect, as the effect of a given histone mark may be context dependent and may occur through the 

action  of  other  factors.  Nevertheless,  the  models  described  reflect  the  complex  network  of  gene 

regulation and provide some of  the generic  features of  this network.  Our methodology provides an 

effective way to integrate the continuous changes in epigenetic signals between different conditions. 

Applying this approach to datasets with more histone modifications and transcription factors will help 

expanding and characterizing further this complex regulatory network. In particular, the application of 

our approach to different  developmental stages, disease states or treatments, will help uncovering the 

epigenetic mechanisms responsible for cellular differentiation and carcinogenesis.
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With the recent advent of High-Throughput Sequencing (HTS) methods, there
is clearly a need for tools to assist downstream analyzes. Due to the constantly
growing diversity of experiments based on HTS, tools to analyze the emerging
data are required to be flexible. The mechanisms of gene regulation represent a
complex network of many different factors. Thus we need to integrate data from
various sources to gain insight into these mechanisms. Chapter 3 (a published
article) and chapter 5 (a submitted article) address these issues, while chapter 4
shows an example of the efficiency of the tool Pyicos, described in chapter 3.
In this chapter we point out the aims we have been pursuing, discuss critically
the results of the articles and stress unsolved problems. Moreover, we describe
limitations of the involved methods and suggest possibilities for improvement.

6.1 Pyicos: A versatile toolkit for the analysis of
high-throughput sequencing data

With the aim of flexibly manipulating and analyzing HTS data from multiple
sources, we developed the modular toolkit Pyicos. The choice of the word toolkit
reflects the fact that one can use many basic operations of Pyicos separately,
which provides the possibility to manipulate HTS reads from different sources.
This gives a great advantage compared to other published methods, as it allows
to explore the signals emerging from a newly developed HTS method. With
the constant development of novel experiments that are based on HTS data, this
represents a highly useful feature. However, in this article we focused on the
typical applications, for which other methods have been available for comparison.

For protein-DNA binding site detection we developed a protocol called
callpeaks, as a reference to the comparable methods, known as peak-callers.
The compared methods and Pyicos perform similarly in terms of resulting
peak quality and peak definition. Unlike other authors, we proved that the
basic operations of Pyicos are useful, as they can improve the peak quality,
measured as the number of peaks that contain the expected motif. In particular
we showed how the peak calling can be improved when 1) duplicated reads
are removed, 2) a control is subtracted or 3) the peaks are split. Removing
duplicated reads is necessary to mitigate a bias from the amplification that is
required for current sequencing techniques. However, with the amplification-free
library preparation these artificial duplicates vanish. Another bias emerges from
the preferred fragmentation of open chromatin, which can be diminished by
subtracting a control. Finally, binding sites might be close to each other, and
their corresponding peaks can thus appear to be merged. In order to detect these
multiple binding sites, Pyicos provides an operation to split peaks. Unlike other
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methods, Pyicos is a user-friendly toolkit that allows customized analysis and can
thus improve the results. In particular we demonstrated an improvement of the
peak ranking on the progesterone receptor binding data when peak height instead
of read-count was chosen for scoring. Moreover, the detection of CTCF binding
sites was improved when peaks were split. ChIP-Seq data from different factors
seem to vary in the properties of the resulting peaks, thus we need to be able to
perform analysis in a flexible way.

Next, we applied the protocol for differential expression analysis on RNA-Seq
data on liver and kidney samples, and compared the results to those of other
methods, using the corresponding microarray data as a benchmarking set. While
maintaining a similar accuracy, Pyicos shows some advantages compared to the
methods DEGseq, DESeq and edgeR. With its accurate performance on simulated
replicas, Pyicos provides the possibility to analyze numerous data sets that have
been produced without replica. Moreover, Pyicos offers the choice to normalize
the data by the number of reads in a sample or apply TMM-normalization.
Additionally it provides a normalization by the length of the gene. However there
are other normalization methods, which are not included into Pyicos. The issue of
data normalization is not solved yet and we hope that further improvements in this
area will mitigate the biases that might obscure biological meaningful findings.

We have further demonstrated Pyicos flexibility by defining protein-RNA
binding sites from CLIP-Seq data and we have provided the corresponding
protocol to the public. It showed a similar accuracy to the only method that was
published at that time. Being aware of the constant growth of HTS data sets that
is outpacing improvements of microprocessors, we developed Pyicos to minimize
RAM usage, while it maintains reasonable running time.

6.2 Studying effects of progestin in breast cancer
cells

In chapter 3 we already showed on ChIP-Seq data from PR that Pyicos can detect
Progesterone Receptor binding sites (PRbs) with superior accuracy compared to
other methods. Thus we used it to identify PRbs in breast cancer cells after
different times of hormone induction. To evaluate Pyicos performance on this
data set, we calculated overlaps of the resulting peaks with regions validated by
ChIP-PCR.

We showed that the accuracy of Pyicos is similar or superior to those of other
methods. In particular, its accuracy is comparable to that of MACS, a popular
peak caller. The poor performance of MICSA on this data set might be explained
by the integrated motif search that weights the resulting p-values of the peaks.
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MICSA overvalues the importance of the motif occurrence and thus detects less
true positive binding sites.

With the aim of determining the targets of the PR, we measured the density of
predicted PRbs across the genome. When we analyzed the distribution of PRbs,
we found that the density is the highest around Transcription Start Sites (TSS).
Notably PRbs are more densely occupying the surrounding of the TSS of genes
that are up-regulated upon hormone treatment. This suggests a relation of PR
binding to the regulation of transcription.

In order to quantify the recruitment of RNA-PolymeraseII (RNAPII) at PRbs,
we explored the corresponding ChIP-Seq data, on different incubation times of
progestin. After 5 minutes of induction we see an overall increase of RNAPII at
PRbs, surprisingly also at PRbs that are related to down-, and non-regulated genes.
A possible explanation could be that the RNAPII is binding, but not active. In
order to confirm this, one could do a ChIP-Seq experiment for the phosphorylation
of serine 2 within the RNAPII C-terminal domain, as it is known to be active
[B. Alberts and Raff, 2008]. Moreover, at 5 minutes we also observe the highest
peaks in regulated genes, compared to other time points. Up-regulation seems to
be taking effect already after 5 minutes, while down-regulation occurs later, as
RNAPII density increases after 5 minutes and decreases only later.

This study required the integration of data emerging from multiple
experiments, such as ChIP-Seq for PR and RNAPII, and gene expression
microarray. Thus it is a good example of how data integration can provide a
global view and elucidate regulatory mechanisms.

6.3 Predictive models of gene regulation from
high-throughput epigenomics data

The main aim in this project was to explore the relationship between epigenetic
changes and differential gene expression. Therefore we run enrichment analysis
on various epigenetic data sets and RNA-Seq data from ENCODE in multiple
regions related to a transcript loci. To do so, we embedded Pyicos into a pipeline
that automatically runs enrichment analysis for all combination of data sets and
regions . Providing results to other scientists is as important as producing them,
hence we loaded the processed data into a Biomart database that can be publicly
accessed. From there the data can be downloaded or directly uploaded to the
WEKA system for data mining and machine learning purposes. The ENCODE
HTS data sets are widely used, as they offer high quality and are openly available
for the community. Thus we aimed to facilitate further integration of the processed
data.
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With the aim of exploring which mark or factor is related most strongly to
expression change in each region, we calculated the corresponding information
gains. As the targets of modifications are not thoroughly described yet, we
tried to be as exhaustive as possible by taking into account multiple regions
related to a transcript loci. This gave us the possibility to describe for all those
different regions, the mark or factor with the strongest relation to changes in
gene expression. For instance, in regions related to the genebody or to the
polyadenylation site the tri-methylation of H3 Lysine 36 showed the highest
information gain.

In order to explore the power of epigenetic variations to predict the regulatory
outcomes of gene expression between two cell lines, we generated a predictive
model. We further tested this model for accuracy and generality. After having
shown a high accuracy of expression change predictions between the cell lines
K562 and Gm12878 (training set), we could prove that the model trained on this
data was generic enough to perform accurate predictions on Hsmm and Hmec (test
set), a different pair of cell lines. Hence, we have shown that the created model is
accurate and captures general features of the regulatory network.

In order to define a minimal code that is able to describe the complex network
of gene regulation, we removed redundant and confounding features. In order to
choose the most informative features, while minimizing redundancy, we applied
correlation feature selection on the training set. The generality of the selected
features was proven by applying the same selection on the features of the test set,
and performing predictions with reasonable accuracy.

In order to explore the heterogeneity of the epigenetic code across sets of loci
with different structural properties, we created models while we distinguished
between intron containing (IC) and intronless (IL) loci, as well as between loci
with high (HCG) and low CpG-content (LCG) promoters. The predictive models
came out to vary in the relevance of the attributes and the accuracies. These
differences suggest a heterogeneity of the epigenetic code that depends on the
actual structure of gene and promoter. In particular, we found higher prediction
accuracies for IC-LCG than for IC-HCG. As HCG loci are generally related
to housekeeping genes and LCG to tissue specific genes, we hypothesized that
there would be stronger variations in LCG loci, which makes it easier to predict
changes. However, the opposite behavior was found in IL genes: Accuracies
for HCG are higher than those for LCG loci. IL genes seem to be regulated in
a different manner. In spite of reasonable accuracies for LCG (0.71 or 0.72 on
average, depending on the selected features), we observed very low values or
0 for information gain of the features. We hypothesized that IL-LCG might be
regulated by other epigenetic signals that have not been captured by this study.

In order to adapt more accurately the behavior of the epigenetic changes, we
filtered the loci for overlaps before generating the predictive models. Overlapping
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loci imply that some of the signals cannot be assigned unambiguously and thus
obscure downstream analyzes, a fact that has been largely overlooked when
models of gene expression were generated. In fact, by excluding these loci, we
observe an over all increase in prediction accuracy. Especially for the test set
the accuracy rises considerably, which confirms that the overlapping loci were
confounding the models. With the filtered data the models achieved an accuracy
of up to 0.92 (for up-regulated LCG-IC) on the test set.

In summary, we demonstrated the strong predictive power of epigenetic
changes, however we cannot distinguish between causality and consequence in
the found associations.

6.4 Limitations and future directions
At present, limitations are represented by the state of the technology and the
methods. The current development of HTS instruments that produce longer reads,
promises less false positive read mappings and can thus improve downstream
analyzes, especially for repetitive parts of the genome.

Using our pipeline, we have associated epigenetic variations to expression
changes on ENCODE data sets and provided the processed data to the public. By
doing so, we greatly hope that it will be related to further genomic and epigenomic
information produced by other labs. Embedding improved normalization methods
into our pipeline, like the conditional quantile normalization [Hansen et al., 2012],
could further improve results by mitigating the GC-bias of RNA-Seq reads.

As we recently found evidence for a relation between nucleosome positioning
and exon recognition [Tilgner et al., 2009], we believe that a similar approach
could be used to associate epigenetic changes to exon inclusion or skipping.

Another challenge is to relate epigenetic variations to the expression of a
diseased state. Earlier, Altshuler and colleagues have successfully associated
variations in the genomic sequence with diseases [Altshuler et al., 2008]. To
complex association studies, the next step is to find epigenome-wide associations.
This is a rather complicated study, as there is at least one different epigenome for
each cell-type and condition. However several projects, e.g. the NIH Roadmap
Epigenomics Mapping Consortium [Bernstein et al., 2010], the ENCODE project
[ENCODE Project Consortium, 2007] and the International Cancer Genome
Consortium ([Consortium et al., 2010], already aim to provide data from human
epigenetic marks in a large scale. Finally the comparison of epigenetic
information from normal and diseased states gives us great hope to identify
disease mechanisms, which is the first step towards finding successful treatments.
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The work carried out during this PhD project can be summarized as follows:

1. The development of Pyicos, a powerful toolkit for the analysis of
high-throughput sequencing (HTS) data. Pyicos offers versatility, flexibility
and efficient memory usage. Its high accuracy was demonstrated by a
comparison to published methods that have been specifically developed
for certain analyzes. In particular, we showed that Pyicos calls peaks on
ChIP-Seq data with a similar or better accuracy than MACS, USeq and
FindPeaks. Moreover, it can be used to process CLIP-Seq data. We further
applied Pyicos for differential expression analysis on RNA-Seq data, where
it showed a comparable performance to those of DEGseq, DESeq and
edgeR.

2. Pyicos has been applied to ChIP-seq data of progesterone receptor in
breast cancer cells. We described the distribution of active progesterone
binding sites upon hormone induction and related them to the corresponding
microarray expression data and ChIP-Seq data from RNA Polymerase II, in
order to gain insight into the regulation of gene expression by hormones.
This work has further contributed to a manuscript that will be submitted for
publication (see chapter 7.2).

3. Embedding Pyicos into a pipeline that integrates HTS data emerging from
different experiments. In this context the enrichment analysis of Pyicos was
applied to determine the significance of signal changes from various HTS
experiments between two cell lines. For this analysis we used ENCODE
data sets from four cell lines, doing pairwise comparisons of signals in K562
vs Gm12878 and Hsmm vs Hmec. We provided the processed data in a
public Biomart database.

4. Generation of generic models that accurately predict changes in gene
expression based on epigenetic changes. We further selected a minimal
set of features to describe the epigenetic code. The predictive models
have been generated taking into account the structural differences of loci
and promoters, resulting into different models for intron containing and
intronless loci, or high CpG-content and low CpG-content promoters.
Finally, prediction accuracy was be improved by the elimination of
ambiguous signals.
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8.2 Nucleosome driven transcription factor binding
and gene regulation

Cecilia Ballaré , Laura Gaveglia, Giancarlo Castellano, Sonja Althammer, Juan
González-Vallinas, Eduardo Eyras, Francois LeDily, Roser Zaurin, Guillermo P. ,

Vicent, Miguel Beato1*

*Corresponding author: miguel.beato@crg.es (tel +34 933 161 119)

Abstract
Elucidating the global function of a transcription factor implies identification
of its genomic binding sites. The role of chromatin in this context
is unclear, but the dominant view is that factors bind preferentially to
nucleosome-depleted regions. In contrast, we find that the progesterone
receptor (PR) needs nucleosomes for optimal genome binding and function.
In breast cancer cells we identified 4,000 hormone regulated genes and
25,000 genomic PR binding sites (PRbs), the majority encompassing several
copies of the hexanucleotide TGTYCY (the progesterone responsive element,
PRE). Strong functional PRbs are enriched around the 5-end of up-regulated
genes, overlap with DNaseI hypersensitive sites, and exhibit high nucleosome
occupancy. Hormone treatment results in remodeling of these nucleosomes
and MNase cleavage. Conversely, weak PRbs and PREs that do not bind PR
are not enriched in nucleosomes, suggesting a crucial role of nucleosomes for
PR binding and hormonal gene regulation.
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Supplementary Figures

Supplementary Figure 1 Graphical illustration of region definition

We defined 13 regions based on the gene annotations from Gencode version 7 (Ensembl 62).

Supplementary Figure 2: DNA methylation measured in the promoter regions (2kb) of 

active and silent HCG transcript loci.  The analysis was done in replica 1 of K562. Silent 

transcript  loci  are  the  31,347  HCG  transcript  loci  with  an  RPKM  of  0  from  RNA-Seq. 

Accordingly we selected the 31,347 top scoring HCG transcript loci in terms of RPKM from 

RNA-Seq as  active  transcript  loci.  Silent  and  active  loci  show significantly  different  DNA 

methylation in the promoter.



Supplementary  Figure  3:  Pairwise  correlations  of  marks  and  expression  changes  at 

regulated loci











Supplementary Figure 4: Different configurations of transcripts that were overlapping 

in  a  way  that  made  the  epigenetic  signals  ambiguous.  Filtering  the  transcripts  by 

excluding these cases resulted into a cleaner predictive model and thus into an improved 

prediction accuracy.



Supplementary  Figure  5:  Information  Gain  before  and  after  removing  ambiguous 

signals (pair1).













Supplementary Figure 6: 

A) Distribution of z-scores for up- (Up), down- (Dw) and non- (Nr) regulated genes for 

the non-optimal attributes for each experiment, calculated by maximizing the Information Gain 

and minimizing the absolute value of the median for the z-score distribution of the Nr subset. 

The  y-axis  shows  the  z-score  corresponding  to  the  enrichment  of  the  attribute.  These 

distributions correspond to the set of LCG-IC loci of Pair1.



B) Overall distribution of signal from K562 and GM12878 in best regions.



Supplementary Figure 7: Information Gain in intron-containing and intron-less genes 

(pair1).  For this analysis we did not remove confounding effects as this would lead to very 

small groups. Sets from Pair1 and Pair2 have comparable sized and regions (avoiding length-

bias.)







Supplementary tables: 

Supplementary table 1: Accuracy in terms of the area under the ROC curve (AUC) for 

the 10-fold cross validation for the IL transcript sets for various training conditions. P1 (with 

RNAPII) corresponds to pair P1 with the additional RNAPII feature, i.e. the same features as 

P2 plus RNAPII. P1 and P2 denote the models for each cell line pairs with all the features. 

P1(CFS) and P2(CFS) denote the models for P1 and P2, respectively, where the features 

used are those that  have a score of  80 or  higher (maximum 100) using the CFS feature 

selection method independently for P1 and P2. P2 (CFS-P1) indicates that the model was 

trained using the data from P2 but the features selected using CFS on P1. 

HCG – IL LCG – IL
Up Nr Average Up Nr Average

P1 (with RNAPII) 0.88 0.91 0.87 0.88 0.72 0.7 0.71 0.71
P1 0.87 0.87 0.82 0.85 0.78 0.76 0.62 0.72

P1 (CFS) 0.87 0.91 0.84 0.87 0.81 0.7 0.65 0.72

Dw Dw



Supplementary Table2: Features selected by Correlation Feature Selection (appearing 

in at least 80% of validations)

A) 29 features from P1 HCG-IC before filtering ambiguous signal (bold ones also for P2)

           9( 90 %)   first exon Dnase
           9( 90 %)     first exon H3k4me2
          10(100 %)   first exon H3k9ac
           8( 80 %)     GB3ss H3k27ac
          10(100 %)   GB3ss H3k36me3
           8( 80 %)     GB +/-1kb H3k27me3
          10(100 %)   GB +/-1kb H3k36me3
          10(100 %)   GB +/-5kb H3k27ac
           9( 90 %)     GB +/-5kb H3k36me3
           9( 90 %)     GB +/-5kb H3k4me2
           9( 90 %)    GB +5kb H3k4me3
           9( 90 %)     GB H3k27ac
          10(100 %)   GB H3k36me3
          10(100 %)   GB H3k9ac
           9( 90 %)     first intron Methyl
           9( 90 %)     first intron Ctcf
           8( 80 %)     first intron H3k36me3
           8( 80 %)     first intron H3k4me3
           8( 80 %)     first intron H3k9ac
           9( 90 %)     Promoter 2kb H3k4me2
           9( 90 %)    tail H3k36me3
           8( 80 %)    TSS +/-2kb H3k4me2
           9( 90 %)    TSS +/-2kb H3k9ac
          10(100 %)   TSS +/-5kb H3k27ac
           8( 80 %)    TSS +/-5kb H3k36me3
           8( 80 %)   TSS +/-5kb H3k9ac
           9( 90 %)    TSS +/-5kb H4K20me1
           9( 90 %)    pA +/-2kb H3k27me3
          10(100 %)   pA +/-2kb H3k36me3

B) 33 features from P2 HCG-IC before filtering ambiguous signal (bold ones also for P1):

           9( 90 %)  first exon H3k4me3
           9( 90 %)     GB3ss H3k36me3
           8( 80 %)    GB +/-1kb H3k27ac
          10(100 %)   GB +/-1kb H3k36me3
           8( 80 %)  GB +/-1kb H3k4me3
           8( 80 %)  GB +/-5kb Dnase
          10(100 %) GB +/-5kb H3k27ac
          10(100 %) GB +/-5kb H3k36me3
           8( 80 %)    GB +/-5kb H4K20me1
           8( 80 %)   GB +5kb Ctcf
           8( 80 %)    GB +5kb H3k36me3
           9( 90 %)   GB +5kb H3k4me3
           9( 90 %)  GB +5kb H4K20me1
           8( 80 %)  GB H3k27ac
          10(100 % GB H3k36me3
          10(100 %)   GB H3k4me3
           8( 80 %)   first intron Methyl
           8( 80 %)   first intron H3k4me2
          10(100 %) first intron H3k4me3
           9( 90 %)  Promoter 2kb Ctcf
           9( 90 %)    Promoter 5kb Dnase
           8( 80 %)   Promoter 5kb H3k27ac
           9( 90 %)   tail H3k36me3
          10(100 %) TSS +/-2kb _H3k27ac



          10(100 %)  TSS +/-2kb H3k4me3
           9( 90 %)   TSS +/-2kb H3k9ac
           9( 90 %)   TSS +/-5kb H3k27ac
          10(100 %) TSS +/-5kb H3k27me3
           9( 90 %)   TSS +/-5kb H3k36me3
          10(100 %)   TSS +/-5kb H3k4me2
          10(100 %) TSS +/-5kb H3k4me3
           9( 90 %)   pA +/-2kb H3k27me3
          10(100 %) pA +/-2kb H3k36me3

C) 25 features from P1 LCG-IC before filtering ambiguous signal (bold ones also for P2)
           9( 90 %)   first exon Dnase
           8( 80 %)  first exon H3k4me2
           8( 80 %) first exon H3k9ac
          10(100 %) GB3ss H3k36me3
           8( 80 %)   GB +/-1kb H3k27ac
           8( 80 %) GB +/-1kb H3k27me3
          10(100 %)  GB +/-1kb H3k36me3
          10(100 %)  GB +/-5kb H3k36me3
           8( 80 %)  GB +5kb H3k9ac
          10(100 %) GB Methyl
          10(100 %)  GB H3k36me3
           8( 80 %)  GB H3k9ac
           8( 80 %)  first intron Methyl
           8( 80 %)    first intron H3k36me3
           9( 90 %)  first intron H4K20me1
           9( 90 %)  Promoter 2kb H3k27me3
           8( 80 %) Promoter 2kb H3k36me3
           8( 80 %)   Promoter 5kb Ctcf
           9( 90 %) Promoter 5kb H3k36me3
           8( 80 %)  tail H3k27me3
           9( 90 %)   tail H3k36me3
           8( 80 %)  TSS +/-2kb  H3k36me3
           9( 90 %) TSS +/-2kb H3k9ac
          10(100 %)   TSS +/-5kb H3k36me3
          10(100 %)    pA +/-5kb H3k36me3

D) 20 features from P2 LCG-IC before filtering ambiguous signal (bold ones also for P1):

         8( 80 %)  first exon H3k36me3
           8( 80 %)   first exon H3k4me2
           8( 80 %)    first exon H3k4me3
          10(100 %)   GB3ss H3k36me3
          10(100 %)  GB +/-1kb H3k36me3
           8( 80 %)   GB +/-5kb H3k36me3
           8( 80 %)  GB H3k27ac
          10(100 %)  GB H3k36me3
          10(100 %) first intron H3k36me3
           8( 80 %)   first intron H3k4me2
           8( 80 %) Promoter 2kb Ctcf
           8( 80 %)  Promoter 5kb H3k27ac
          10(100 %)  tail H3k36me3
           8( 80 %)    tail H3k9ac
          10(100 %)   TSS +/-2kb H3k36me3
          10(100 %)  TSS +/-2kb H3k4me3
           9( 90 %)  TSS +/- 5kb H3k36me3
           8( 80 %)  TSS +/-5kb H3k4me2
           9( 90 %)  pA +/-2kb H3k27me3
          10(100 %) pA +/-2kb H3k36me3



E) 16 features from P1 HCG-IC after filtering ambiguous signal (bold ones also appear for P2)
          10(100 %) first exon H3k4me2
           8( 80 %)  first exon H3k9ac
           8( 80 %)   GB3ss H3k36me3
           8( 80 %)  GB +/-1kb H3k36me3
           9( 90 %)   GB +/-5kb H3k36me3
           8( 80 %)   GB +/-5kb_onlyTTS H3k4me1
           8( 80 %)  first intron Methyl
           8( 80 %)  first intron H3k27ac
          10(100 %) Promoter 2kb H3k4me3
           9( 90 %) tail   H3k36me3
           8( 80 %)   TSS +/- 2kb Methyl
           8( 80 %)  TSS +/- 2kb H3k36me3
           9( 90 %)   TSS +/- 5kb H3k27ac
          10(100 %)  TSS +/- 5kb H3k36me3
           8( 80 %)    TSS +/- 5kb H3k4me3
           9( 90 %)   pA +/- 2kb H3k36me3

F) 16 features from P2 HCG-IC after filtering ambiguous signal (bold ones also appear for P1)
           8( 80 %)   GB3ss H3k36me3
           8( 80 %)  GB +/-1kb H3k27a
           9( 90 %)  GB +/-1kb H3k36me3
           9( 90 %)    GB +/-1kb H3k4me3
           8( 80 %)  GB +/-5kb H3k27ac
           9( 90 %)  GB +/-5kb H3k36me3
           8( 80 %)  GB +/-5kb_onlyTTS H3k36me3
           8( 80 %)  genebody H3k36me3
           9( 90 %)   genebody H3k9ac
           8( 80 %)    first intron H3k27ac
          10(100 %) first intron H3k4me3
           8( 80 %)    first intron H3k9ac
           9( 90 %)    Promoter 5kb H3k27ac
          10(100 %)   TSS +/- 2kb H3k4me3
           8( 80 %)    TSS +/- 5kb H3k27ac
          10(100 %)  TSS +/- 5kb H3k4me3

G) 23 features from P1 LCG-IC after filtering ambiguous signal (bold ones also appear for P2)
          10(100 %) first exon Dnase
          10(100 %)   first exon H3k4me2
          10(100 %)  first exon H3k4me3
           9( 90 %)   first exon H3k9ac
          10(100 %) GB3ss H3k36me3
           8( 80 %) GB3ss H3k4me3
           8( 80 %)   GB +/-1kb Methyl
           8( 80 %)   GB +/-1kb Dnase
           8( 80 %) GB +/-1kb H3k27me3
           9( 90 %)  GB +/-1kb H3k36me3
           8( 80 %)    GB +/-1kb H3k4me2
           8( 80 %)    GB +/-5kb Ctcf
          10(100 %) GB +/-5kb H3k36me3
           8( 80 %)  GB +/-5kb_onlyTTS  Methyl
           8( 80 %)  GB +/-5kb_onlyTTS Dnase
          10(100 %)  GB +/-5kb_onlyTTS H3k36me3
           9( 90 %)    genebody  Methyl
           9( 90 %)   first intron H3k27ac
           8( 80 %)    Promoter 2kb Ctcf
           8( 80 %)  Promoter 5kb H3k36me3
           8( 80 %)   tail H3k36me3
           9( 90 %)   TSS +/- 5kb H3k36me3



          10(100 %)  pA +/- 2kb H3k36me3

H) 13 features from P2 LCG-IC after filtering ambiguous signal (bold ones also appear for P1)
          10(100 %) GB3ss H3k36me3
           9( 90 %)  GB +/-1kb H3k36me3
           9( 90 %)  GB +/-5kb H3k36me3
           9( 90 %)   GB +/-5kb_onlyTTS H3k36me3
           8( 80 %)   genebody Ctcf
           9( 90 %)   Promoter 2kb H3k27me3
          10(100 %)   Promoter 2kb H3k4me3
           8( 80 %)  tail H3k36me3
           9( 90 %)    TSS +/- 5kb H3k36me3

Supplementary Table 3:  Selected features (>=80%) pair1 and pair2 and both.

Feature selection is done on intron containing genes for each region separately.

Supplementary Table 4: AUC for prediction on selected features that overlap from pair 

1 and pair 2.

Predictions  are  done  on  pair  2  in  intron  containing  genes  for  each  region  separately. 

Beforehand features have been selected that have a CFS score >=80% (black and bold in 

Supplementary Table 2).

LCG-IC -using only int ersect ing at t ribut es (black)
exon1 GB3ss GB+/-1kb GB+/-5kb GB+5kb GB int ron1 Prom 2kb Prom 5kb Tail TSS+/-2kb TSS+/-5kb all

UP 0.84 0.88 0.92 0.92 0.91 0.91 0.89 0.88 0.91 0.89 0.93 0.92 0.85 0.86
DW 0.82 0.79 0.91 0.91 0.88 0.88 0.86 0.86 0.89 0.82 0.92 0.89 0.78 0.89

0.73 0.73 0.86 0.86 0.84 0.82 0.81 0.76 0.81 0.74 0.83 0.84 0.69 0.76
average 0.8 0.8 0.9 0.9 0.88 0.87 0.85 0.83 0.87 0.82 0.89 0.88 0.78 0.84

HCG-IC -using only int ersect ing at t ribut es (black)
exon1 GB3ss GB+/-1kb GB+/-5kb GB+5kb GB int ron1 Prom 2kb Prom 5kb Tail TSS+/-2kb TSS+/-5kb all

UP 0.79 0.82 0.87 0.88 0.88 0.86 0.85 0.77 0.78 0.76 0.86 0.88 0.81 0.79
DW 0.79 0.76 0.85 0.86 0.86 0.86 0.82 0.77 0.77 0.75 0.86 0.88 0.72 0.82

0.76 0.7 0.81 0.8 0.82 0.81 0.79 0.67 0.7 0.66 0.82 0.83 0.69 0.75
average 0.78 0.76 0.84 0.85 0.85 0.84 0.82 0.73 0.75 0.72 0.85 0.86 0.74 0.79

pA+/-2kb

nonReg

pA+/-2kb

nonReg

LCG – IC
exon1 GB3ss GB+/-1 kb GB+/-5kb GB+ 5kb GB int ron1 Prom 2 kb Prom 5kb T ail T SS+ /-2 kb T SS+ /-5kb

Methyl Methyl Methyl Methyl Methyl Methyl Methyl

CTCF

H3K27ac H3K2 7 ac H3K27ac H3K2 7 ac H3K2 7 ac H3K2 7 ac H3K27ac H3K2 7 ac H3K2 7 ac H3K2 7 ac H3K27ac H3K2 7 ac H3K2 7 ac H3K27ac

H3K27me3 H3K27me3 H3K27me3 H3K2 7 me3 H3K2 7 me3 H3K2 7 me3 H3K27me3 H3K2 7 me3 H3K2 7 me3 H3K2 7 me3 H3K2 7 me3 H3K2 7 me3 H3K2 7 me3 H3K27me3

H3K36me3 H3K36me3 H3K36me3 H3K36me3 H3K36me3 H3K36me3 H3K36me3 H3K36me3 H3K36me3 H3K36me3 H3K36me3 H3K36me3 H3K36me3 H3K36me3

H3K4 me1 H3K4me1 H3K4me1 H3K4me1

H3K4me2 H3K4 me2 H3K4 me2 H3K4 me2 H3K4 me2 H3K4 me2 H3K4 me2 H3K4 me2 H3K4 me2

H3K4me3 H3K4 me3 H3K4me3 H3K4 me3 H3K4 me3 H3K4me3 H3K4 me3 H3K4 me3 H3K4 me3 H3K4 me3 H3K4 me3

H3K9ac H3K9ac H3K9ac H3K9ac H3K9ac H3K9ac H3K9ac H3K9ac H3K9ac H3K9ac H3K9ac H3K9ac
H4 K2 0me1

HCG - IC
Methyl exon1 GB3ss GB+/-1 kb GB+/-5kb GB+ 5kb GB int ron1 Prom 2 kb Prom 5kb T ail T SS+ /-2 kb T SS+ /-5kb

H3K27ac H3K2 7 ac H3K27ac H3K2 7 ac H3K2 7 ac H3K2 7 ac H3K2 7 ac H3K2 7 ac H3K2 7 ac H3K2 7 ac H3K27ac H3K2 7 ac H3K2 7 ac

H3K27me3 H3K27me3 H3K2 7 me3 H3K27me3 H3K27me3 H3K27me3 H3K2 7 me3 H3K27me3 H3K2 7 me3

H3K36me3 H3K36me3 H3K36me3 H3K36me3 H3K36me3 H3K36me3 H3K36me3 H3K36me3 H3K36me3 H3K36me3 H3K36me3 H3K36me3

H3K4me1 H3K4me1 H3K4me1 H3K4me1 H3K4 me1

H3K4me2 H3K4me2 H3K4me2 H3K4 me2 H3K4 me2 H3K4me2 H3K4me2 H3K4me2 H3K4me2 H3K4me2 H3K4me2

H3K4me3 H3K4 me3 H3K4me3 H3K4 me3 H3K4 me3 H3K4 me3 H3K4 me3 H3K4 me3 H3K4 me3 H3K4 me3 H3K4 me3 H3K4 me3

H3K9ac H3K9ac H3K9ac H3K9ac H3K9ac H3K9ac H3K9ac H3K9ac H3K9ac H3K9ac H3K9ac H3K9ac
H4 K2 0me1

pA+ /-2 kb

Ct cf

Dnase Dnase Dnase Dnase Dnase Dnase Dnase Dnase Dnase Dnase

pA+ /-2 kb

Ct cf

Dnase Dnase Dnase Dnase Dnase Dnase Dnase Dnase Dnase Dnase Dnase



Supplementary methods:

Command lines to run pipeline based on XML-files: 

First download files from: http://regulatorygenomics.upf.edu/XML_ENCODE/

# run enrichment analysis

sh rgmartutils/enrichment -c config_K562_Gm12878.xml

sh rgmartutils/enrichment -c config_Hsmm_Hmec.xml

(in stdout you will see the name of result_folder1 and result_folder2)

# recover files:

sh rgmartutils/recover config_K562_Gm12878.xml result_folder1

sh rgmartutils/recover config_Hsmm_Hmec.xml result_folder2

# to upload in biomart:

sh rgmartutils/dbimport -c config_K562_Gm12878.xml

sh rgmartutils/dbimport -c config_Hsmm_Hmec.xml

Command lines for Pyicos (version 1.0.3) enrichment analysis:

For ChIP-Seq and Dnase-Seq:

pyicos enrichment wgEncodeBroadHistoneK562H3k9acStdAlnRep1.filtered.sam 

wgEncodeBroadHistoneGm12878H3k9acStdAlnRep1.filtered.sam RESULT_pA +/- 

2kb__k562_Gm12878__H3k9ac.enrichment -o -f sam --replica-a 

wgEncodeBroadHistoneK562H3k9acStdAlnRep2.filtered.sam -o --region pA +/- 2kb.bed 

--region-format bed --n-norm --len-norm --binstep 1000 --pseudocount

For Methylation data (mean methylation with 0.1 as pseudocount):

pyicos enrichcount K562_Gm_meth_genebody.mean.pc RESULT_K562_Gm_meth_genebody.mean.enr 

--total-reads-a 10000000 --total-reads-b 10000000 # total reads are made up and do not 

matter in this case as we do not normalize

For RNA-Seq (RPKMs from ENCODE with 3.5e-5 as pseudocount (half of minimum in 

K562_1)):

pyicos enrichcount RPKM.K562_Gm12878 RESULT_RPKM_K562_Gm12878.enr --total-reads-a 

10000000 --total-reads-b 10000000 # total reads are made up and do not matter in this case as 

we do not normalize



Biomart-powered database 

We used Biomart [1] as the platform for deploying a set of databases with enrichment data 

between  different  cell  lines  for  several  chromatin  marks,  DNA-interacting  proteins  and 

chromatin-interacting proteins, over a wide range of annotated regions in the human genome. 

Each database may include a number of datasets, one per each pair of cell lines compared in 

terms of enrichment. We populated the Biomart database with enrichment z-scores for the 

datasets from Table 2. These are stored as a set of feature tables, where each feature is a 

pair  (signal,region),  .e.g.  RNAPII-genebody  or  H3K27me3-TSS  +/-  2kb,  built  from  the 

datasets  from Table 2  and the regions  described  in Table  3.  Together  with  this  Biomart 

database, we installed a local mirror of Ensembl Biomart (Release 54) [2] and modified the 

Biomart platform in order to make crossed queries possible between our set of databases and 

the  Ensembl  Release  54  Mart  Database.  Data  contained  in  this  Biomart-powered  set  of 

databases can also be accessed independently of our ML framework  through the website 

http://regulatorygenomics.upf.edu/group/pages/software .

Bibliography

[1]  A.  Kasprzyk,  “BioMart:  driving  a  paradigm  change  in  biological  data 
management,”  Database:  The Journal  of  Biological  Databases and Curation,  vol. 
2011, p. bar049, 2011.
[2] P. Flicek et al., “Ensembl 2012,”  Nucleic Acids Research, vol. 40, no. Database 
issue, pp. D84-90, Jan. 2012.





Bibliography

[1000 Genomes Project Consortium, 2010] 1000 Genomes Project Consortium,
e. (2010). A map of human genome variation from population-scale
sequencing. Nature, 467(7319):1061–1073.

[Altshuler et al., 2008] Altshuler, D., Daly, M. J., and Lander, E. S. (2008).
Genetic mapping in human disease. Science, 322(5903):881–888.

[Anders and Huber, 2010] Anders, S. and Huber, W. (2010). Differential
expression analysis for sequence count data. Genome Biol, 11(10):R106.

[B. Alberts and Raff, 2008] B. Alberts, A.Johnson, J. L. and Raff, M. (2008).
Molecular biology of the cell. Garland Science, 5:341.

[Barski et al., 2007] Barski, A., Cuddapah, S., Cui, K., Roh, T.-Y., Schones,
D. E., Wang, Z., Wei, G., Chepelev, I., and Zhao, K. (2007). High-resolution
profiling of histone methylations in the human genome. Cell, 129(4):823–837.

[Barski and Zhao, 2009] Barski, A. and Zhao, K. (2009). Genomic location
analysis by chip-seq. J Cell Biochem, 107(1):11–18.

[Bentley, 2005] Bentley, D. L. (2005). Rules of engagement: co-transcriptional
recruitment of pre-mrna processing factors. Curr Opin Cell Biol,
17(3):251–256.

[Bernstein et al., 2010] Bernstein, B. E., Stamatoyannopoulos, J. A., Costello,
J. F., Ren, B., Milosavljevic, A., Meissner, A., Kellis, M., Marra, M. A.,
Beaudet, A. L., Ecker, J. R., Farnham, P. J., Hirst, M., Lander, E. S., Mikkelsen,
T. S., and Thomson, J. A. (2010). The nih roadmap epigenomics mapping
consortium. Nat Biotechnol, 28(10):1045–1048.

[Bird, 2002] Bird, A. (2002). Dna methylation patterns and epigenetic memory.
Genes Dev, 16(1):6–21.

139



[Boeva et al., 2010] Boeva, V., Surdez, D., Guillon, N., Tirode, F., Fejes, A. P.,
Delattre, O., and Barillot, E. (2010). De novo motif identification improves
the accuracy of predicting transcription factor binding sites in chip-seq data
analysis. Nucleic Acids Res, 38(11):e126.

[Boyle et al., 2008] Boyle, A. P., Davis, S., Shulha, H. P., Meltzer, P., Margulies,
E. H., Weng, Z., Furey, T. S., and Crawford, G. E. (2008). High-resolution
mapping and characterization of open chromatin across the genome. Cell,
132(2):311–322.

[Collins and Barker, 2007] Collins, F. S. and Barker, A. D. (2007). Mapping
the cancer genome. pinpointing the genes involved in cancer will help chart
a new course across the complex landscape of human malignancies. Sci Am,
296(3):50–57.

[Consortium et al., 2010] Consortium, I. C. G., Hudson, T. J., Anderson, W.,
Artez, A., Barker, A. D., Bell, C., Bernab, R. R., Bhan, M. K., Calvo, F., Eerola,
I., Gerhard, D. S., Guttmacher, A., Guyer, M., Hemsley, F. M., Jennings, J. L.,
Kerr, D., Klatt, P., Kolar, P., Kusada, J., Lane, D. P., Laplace, F., Youyong,
L., Nettekoven, G., Ozenberger, B., Peterson, J., Rao, T. S., Remacle, J.,
Schafer, A. J., Shibata, T., Stratton, M. R., Vockley, J. G., Watanabe, K., Yang,
H., Yuen, M. M. F., Knoppers, B. M., Bobrow, M., Cambon-Thomsen, A.,
Dressler, L. G., Dyke, S. O. M., Joly, Y., Kato, K., Kennedy, K. L., Nicols,
P., Parker, M. J., Rial-Sebbag, E., Romeo-Casabona, C. M., Shaw, K. M.,
Wallace, S., Wiesner, G. L., Zeps, N., Lichter, P., Biankin, A. V., Chabannon,
C., Chin, L., Clment, B., de Alava, E., Degos, F., Ferguson, M. L., Geary,
P., Hayes, D. N., Hudson, T. J., Johns, A. L., Kasprzyk, A., Nakagawa, H.,
Penny, R., Piris, M. A., Sarin, R., Scarpa, A., Shibata, T., van de Vijver, M.,
Futreal, P. A., Aburatani, H., Bays, M., Botwell, D. D. L., Campbell, P. J.,
Estivill, X., Gerhard, D. S., Grimmond, S. M., Gut, I., Hirst, M., Lpez-Otn, C.,
Majumder, P., Marra, M., McPherson, J. D., Nakagawa, H., Ning, Z., Puente,
X. S., Ruan, Y., Shibata, T., Stratton, M. R., Stunnenberg, H. G., Swerdlow,
H., Velculescu, V. E., Wilson, R. K., Xue, H. H., Yang, L., Spellman, P. T.,
Bader, G. D., Boutros, P. C., Campbell, P. J., Flicek, P., Getz, G., Guig, R.,
Guo, G., Haussler, D., Heath, S., Hubbard, T. J., Jiang, T., Jones, S. M., Li,
Q., Lpez-Bigas, N., Luo, R., Muthuswamy, L., Ouellette, B. F. F., Pearson,
J. V., Puente, X. S., Quesada, V., Raphael, B. J., Sander, C., Shibata, T.,
Speed, T. P., Stein, L. D., Stuart, J. M., Teague, J. W., Totoki, Y., Tsunoda,
T., Valencia, A., Wheeler, D. A., Wu, H., Zhao, S., Zhou, G., Stein, L. D.,
Guig, R., Hubbard, T. J., Joly, Y., Jones, S. M., Kasprzyk, A., Lathrop, M.,
Lpez-Bigas, N., Ouellette, B. F. F., Spellman, P. T., Teague, J. W., Thomas,
G., Valencia, A., Yoshida, T., Kennedy, K. L., Axton, M., Dyke, S. O. M.,

140



Futreal, P. A., Gerhard, D. S., Gunter, C., Guyer, M., Hudson, T. J., McPherson,
J. D., Miller, L. J., Ozenberger, B., Shaw, K. M., Kasprzyk, A., Stein, L. D.,
Zhang, J., Haider, S. A., Wang, J., Yung, C. K., Cros, A., Cross, A., Liang,
Y., Gnaneshan, S., Guberman, J., Hsu, J., Bobrow, M., Chalmers, D. R. C.,
Hasel, K. W., Joly, Y., Kaan, T. S. H., Kennedy, K. L., Knoppers, B. M.,
Lowrance, W. W., Masui, T., Nicols, P., Rial-Sebbag, E., Rodriguez, L. L.,
Vergely, C., Yoshida, T., Grimmond, S. M., Biankin, A. V., Bowtell, D. D. L.,
Cloonan, N., deFazio, A., Eshleman, J. R., Etemadmoghadam, D., Gardiner,
B. B., Gardiner, B. A., Kench, J. G., Scarpa, A., Sutherland, R. L., Tempero,
M. A., Waddell, N. J., Wilson, P. J., McPherson, J. D., Gallinger, S., Tsao,
M.-S., Shaw, P. A., Petersen, G. M., Mukhopadhyay, D., Chin, L., DePinho,
R. A., Thayer, S., Muthuswamy, L., Shazand, K., Beck, T., Sam, M., Timms,
L., Ballin, V., Lu, Y., Ji, J., Zhang, X., Chen, F., Hu, X., Zhou, G., Yang, Q.,
Tian, G., Zhang, L., Xing, X., Li, X., Zhu, Z., Yu, Y., Yu, J., Yang, H., Lathrop,
M., Tost, J., Brennan, P., Holcatova, I., Zaridze, D., Brazma, A., Egevard, L.,
Prokhortchouk, E., Banks, R. E., Uhln, M., Cambon-Thomsen, A., Viksna,
J., Ponten, F., Skryabin, K., Stratton, M. R., Futreal, P. A., Birney, E., Borg,
A., Brresen-Dale, A.-L., Caldas, C., Foekens, J. A., Martin, S., Reis-Filho,
J. S., Richardson, A. L., Sotiriou, C., Stunnenberg, H. G., Thoms, G., van de
Vijver, M., van’t Veer, L., Calvo, F., Birnbaum, D., Blanche, H., Boucher, P.,
Boyault, S., Chabannon, C., Gut, I., Masson-Jacquemier, J. D., Lathrop, M.,
Pauport, I., Pivot, X., Vincent-Salomon, A., Tabone, E., Theillet, C., Thomas,
G., Tost, J., Treilleux, I., Calvo, F., Bioulac-Sage, P., Clment, B., Decaens,
T., Degos, F., Franco, D., Gut, I., Gut, M., Heath, S., Lathrop, M., Samuel,
D., Thomas, G., Zucman-Rossi, J., Lichter, P., Eils, R., Brors, B., Korbel,
J. O., Korshunov, A., Landgraf, P., Lehrach, H., Pfister, S., Radlwimmer, B.,
Reifenberger, G., Taylor, M. D., von Kalle, C., Majumder, P. P., Sarin, R.,
Rao, T. S., Bhan, M. K., Scarpa, A., Pederzoli, P., Lawlor, R. A., Delledonne,
M., Bardelli, A., Biankin, A. V., Grimmond, S. M., Gress, T., Klimstra, D.,
Zamboni, G., Shibata, T., Nakamura, Y., Nakagawa, H., Kusada, J., Tsunoda,
T., Miyano, S., Aburatani, H., Kato, K., Fujimoto, A., Yoshida, T., Campo, E.,
Lpez-Otn, C., Estivill, X., Guig, R., de Sanjos, S., Piris, M. A., Montserrat,
E., Gonzlez-Daz, M., Puente, X. S., Jares, P., Valencia, A., Himmelbauer,
H., Himmelbaue, H., Quesada, V., Bea, S., Stratton, M. R., Futreal, P. A.,
Campbell, P. J., Vincent-Salomon, A., Richardson, A. L., Reis-Filho, J. S.,
van de Vijver, M., Thomas, G., Masson-Jacquemier, J. D., Aparicio, S., Borg,
A., Brresen-Dale, A.-L., Caldas, C., Foekens, J. A., Stunnenberg, H. G., van’t
Veer, L., Easton, D. F., Spellm (2010). International network of cancer genome
projects. Nature, 464(7291):993–998.

[ENCODE Project Consortium, 2007] ENCODE Project Consortium, e. (2007).

141



Identification and analysis of functional elements in 1genome by the encode
pilot project. Nature, 447(7146):799–816.

[ENCODE Project Consortium, 2011] ENCODE Project Consortium, e. (2011).
A user’s guide to the encyclopedia of dna elements (encode). PLoS Biol,
9(4):e1001046.

[Ernst and Kellis, 2010] Ernst, J. and Kellis, M. (2010). Discovery and
characterization of chromatin states for systematic annotation of the human
genome. Nat Biotechnol, 28(8):817–825.

[Fejes et al., 2008] Fejes, A. P., Robertson, G., Bilenky, M., Varhol, R.,
Bainbridge, M., and Jones, S. J. M. (2008). Findpeaks 3.1: a tool for identifying
areas of enrichment from massively parallel short-read sequencing technology.
Bioinformatics, 24(15):1729–1730.

[Felsenfeld and Groudine, 2003] Felsenfeld, G. and Groudine, M. (2003).
Controlling the double helix. Nature, 421(6921):448–453.

[Guttman et al., 2010] Guttman, M., Garber, M., Levin, J. Z., Donaghey, J.,
Robinson, J., Adiconis, X., Fan, L., Koziol, M. J., Gnirke, A., Nusbaum, C.,
Rinn, J. L., Lander, E. S., and Regev, A. (2010). Ab initio reconstruction of
cell type-specific transcriptomes in mouse reveals the conserved multi-exonic
structure of lincrnas. Nat Biotechnol, 28(5):503–510.

[Hansen et al., 2012] Hansen, K. D., Irizarry, R. A., and Wu, Z. (2012).
Removing technical variability in rna-seq data using conditional quantile
normalization. Biostatistics.

[Hawkins et al., 2010] Hawkins, R. D., Hon, G. C., and Ren, B. (2010).
Next-generation genomics: an integrative approach. Nat Rev Genet,
11(7):476–486.

[Hon et al., 2008] Hon, G., Ren, B., and Wang, W. (2008). Chromasig: a
probabilistic approach to finding common chromatin signatures in the human
genome. PLoS Comput Biol, 4(10):e1000201.

[Jenuwein and Allis, 2001] Jenuwein, T. and Allis, C. D. (2001). Translating the
histone code. Science, 293(5532):1074–1080.

[Jiang and Pugh, 2009] Jiang, C. and Pugh, B. F. (2009). Nucleosome
positioning and gene regulation: advances through genomics. Nat Rev Genet,
10(3):161–172.

142



[Johnson et al., 2007] Johnson, D. S., Mortazavi, A., Myers, R. M., and Wold, B.
(2007). Genome-wide mapping of in vivo protein-dna interactions. Science,
316(5830):1497–1502.

[Kahn, 2011] Kahn, S. D. (2011). On the future of genomic data. Science,
331(6018):728–729.

[Khalil et al., 2009] Khalil, A. M., Guttman, M., Huarte, M., Garber, M., Raj,
A., Rivea Morales, D., Thomas, K., Presser, A., Bernstein, B. E., van
Oudenaarden, A., Regev, A., Lander, E. S., and Rinn, J. L. (2009). Many
human large intergenic noncoding rnas associate with chromatin-modifying
complexes and affect gene expression. Proc Natl Acad Sci U S A,
106(28):11667–11672.

[Kornberg and Thomas, 1974] Kornberg, R. D. and Thomas, J. O. (1974).
Chromatin structure; oligomers of the histones. Science, 184(139):865–868.

[Kornblihtt et al., 2004] Kornblihtt, A. R., de la Mata, M., Fededa, J. P., Munoz,
M. J., and Nogues, G. (2004). Multiple links between transcription and
splicing. RNA, 10(10):1489–1498.

[Kozarewa et al., 2009] Kozarewa, I., Ning, Z., Quail, M. A., Sanders, M. J.,
Berriman, M., and Turner, D. J. (2009). Amplification-free illumina
sequencing-library preparation facilitates improved mapping and assembly of
(g+c)-biased genomes. Nat Methods, 6(4):291–295.

[Lander et al., 2001] Lander, E. S., Linton, L. M., Birren, B., Nusbaum, C., Zody,
M. C., Baldwin, J., Devon, K., Dewar, K., Doyle, M., FitzHugh, W., Funke,
R., Gage, D., Harris, K., Heaford, A., Howland, J., Kann, L., Lehoczky, J.,
LeVine, R., McEwan, P., McKernan, K., Meldrim, J., Mesirov, J. P., Miranda,
C., Morris, W., Naylor, J., Raymond, C., Rosetti, M., Santos, R., Sheridan, A.,
Sougnez, C., Stange-Thomann, N., Stojanovic, N., Subramanian, A., Wyman,
D., Rogers, J., Sulston, J., Ainscough, R., Beck, S., Bentley, D., Burton, J.,
Clee, C., Carter, N., Coulson, A., Deadman, R., Deloukas, P., Dunham, A.,
Dunham, I., Durbin, R., French, L., Grafham, D., Gregory, S., Hubbard, T.,
Humphray, S., Hunt, A., Jones, M., Lloyd, C., McMurray, A., Matthews, L.,
Mercer, S., Milne, S., Mullikin, J. C., Mungall, A., Plumb, R., Ross, M.,
Shownkeen, R., Sims, S., Waterston, R. H., Wilson, R. K., Hillier, L. W.,
McPherson, J. D., Marra, M. A., Mardis, E. R., Fulton, L. A., Chinwalla,
A. T., Pepin, K. H., Gish, W. R., Chissoe, S. L., Wendl, M. C., Delehaunty,
K. D., Miner, T. L., Delehaunty, A., Kramer, J. B., Cook, L. L., Fulton, R. S.,
Johnson, D. L., Minx, P. J., Clifton, S. W., Hawkins, T., Branscomb, E., Predki,
P., Richardson, P., Wenning, S., Slezak, T., Doggett, N., Cheng, J. F., Olsen, A.,

143



Lucas, S., Elkin, C., Uberbacher, E., Frazier, M., Gibbs, R. A., Muzny, D. M.,
Scherer, S. E., Bouck, J. B., Sodergren, E. J., Worley, K. C., Rives, C. M.,
Gorrell, J. H., Metzker, M. L., Naylor, S. L., Kucherlapati, R. S., Nelson, D. L.,
Weinstock, G. M., Sakaki, Y., Fujiyama, A., Hattori, M., Yada, T., Toyoda, A.,
Itoh, T., Kawagoe, C., Watanabe, H., Totoki, Y., Taylor, T., Weissenbach, J.,
Heilig, R., Saurin, W., Artiguenave, F., Brottier, P., Bruls, T., Pelletier, E.,
Robert, C., Wincker, P., Smith, D. R., Doucette-Stamm, L., Rubenfield, M.,
Weinstock, K., Lee, H. M., Dubois, J., Rosenthal, A., Platzer, M., Nyakatura,
G., Taudien, S., Rump, A., Yang, H., Yu, J., Wang, J., Huang, G., Gu, J., Hood,
L., Rowen, L., Madan, A., Qin, S., Davis, R. W., Federspiel, N. A., Abola,
A. P., Proctor, M. J., Myers, R. M., Schmutz, J., Dickson, M., Grimwood, J.,
Cox, D. R., Olson, M. V., Kaul, R., Raymond, C., Shimizu, N., Kawasaki, K.,
Minoshima, S., Evans, G. A., Athanasiou, M., Schultz, R., Roe, B. A., Chen,
F., Pan, H., Ramser, J., Lehrach, H., Reinhardt, R., McCombie, W. R., de la
Bastide, M., Dedhia, N., Blcker, H., Hornischer, K., Nordsiek, G., Agarwala,
R., Aravind, L., Bailey, J. A., Bateman, A., Batzoglou, S., Birney, E., Bork, P.,
Brown, D. G., Burge, C. B., Cerutti, L., Chen, H. C., Church, D., Clamp, M.,
Copley, R. R., Doerks, T., Eddy, S. R., Eichler, E. E., Furey, T. S., Galagan,
J., Gilbert, J. G., Harmon, C., Hayashizaki, Y., Haussler, D., Hermjakob, H.,
Hokamp, K., Jang, W., Johnson, L. S., Jones, T. A., Kasif, S., Kaspryzk, A.,
Kennedy, S., Kent, W. J., Kitts, P., Koonin, E. V., Korf, I., Kulp, D., Lancet,
D., Lowe, T. M., McLysaght, A., Mikkelsen, T., Moran, J. V., Mulder, N.,
Pollara, V. J., Ponting, C. P., Schuler, G., Schultz, J., Slater, G., Smit, A. F.,
Stupka, E., Szustakowski, J., Thierry-Mieg, D., Thierry-Mieg, J., Wagner, L.,
Wallis, J., Wheeler, R., Williams, A., Wolf, Y. I., Wolfe, K. H., Yang, S. P., Yeh,
R. F., Collins, F., Guyer, M. S., Peterson, J., Felsenfeld, A., Wetterstrand, K. A.,
Patrinos, A., Morgan, M. J., de Jong, P., Catanese, J. J., Osoegawa, K., Shizuya,
H., Choi, S., Chen, Y. J., Szustakowki, J., and , I. H. G. S. C. (2001). Initial
sequencing and analysis of the human genome. Nature, 409(6822):860–921.

[Langmead et al., 2009] Langmead, B., Trapnell, C., Pop, M., and Salzberg, S. L.
(2009). Ultrafast and memory-efficient alignment of short dna sequences to the
human genome. Genome Biol, 10(3):R25.

[Li and Durbin, 2009] Li, H. and Durbin, R. (2009). Fast and accurate
short read alignment with burrows-wheeler transform. Bioinformatics,
25(14):1754–1760.

[Li et al., 2008] Li, H., Ruan, J., and Durbin, R. (2008). Mapping short dna
sequencing reads and calling variants using mapping quality scores. Genome
Res, 18(11):1851–1858.

144



[Licatalosi et al., 2008] Licatalosi, D. D., Mele, A., Fak, J. J., Ule, J., Kayikci,
M., Chi, S. W., Clark, T. A., Schweitzer, A. C., Blume, J. E., Wang, X., Darnell,
J. C., and Darnell, R. B. (2008). Hits-clip yields genome-wide insights into
brain alternative rna processing. Nature, 456(7221):464–469.

[Meissner et al., 2005] Meissner, A., Gnirke, A., Bell, G. W., Ramsahoye, B.,
Lander, E. S., and Jaenisch, R. (2005). Reduced representation bisulfite
sequencing for comparative high-resolution dna methylation analysis. Nucleic
Acids Res, 33(18):5868–5877.

[Metzker, 2010] Metzker, M. L. (2010). Sequencing technologies - the next
generation. Nat Rev Genet, 11(1):31–46.

[Mortazavi et al., 2008] Mortazavi, A., Williams, B. A., McCue, K., Schaeffer,
L., and Wold, B. (2008). Mapping and quantifying mammalian transcriptomes
by rna-seq. Nat Methods, 5(7):621–628.

[Nagalakshmi et al., 2008] Nagalakshmi, U., Wang, Z., Waern, K., Shou, C.,
Raha, D., Gerstein, M., and Snyder, M. (2008). The transcriptional
landscape of the yeast genome defined by rna sequencing. Science,
320(5881):1344–1349.

[Nikolaou et al., 2010] Nikolaou, C., Althammer, S., Beato, M., and Guig, R.
(2010). Structural constraints revealed in consistent nucleosome positions in
the genome of s. cerevisiae. Epigenetics Chromatin, 3(1):20.

[Nix et al., 2008] Nix, D. A., Courdy, S. J., and Boucher, K. M. (2008). Empirical
methods for controlling false positives and estimating confidence in chip-seq
peaks. BMC Bioinformatics, 9:523.

[Pan et al., 2008] Pan, Q., Shai, O., Lee, L. J., Frey, B. J., and Blencowe, B. J.
(2008). Deep surveying of alternative splicing complexity in the human
transcriptome by high-throughput sequencing. Nat Genet, 40(12):1413–1415.

[Pareek et al., 2011] Pareek, C. S., Smoczynski, R., and Tretyn, A. (2011).
Sequencing technologies and genome sequencing. J Appl Genet,
52(4):413–435.

[Park, 2009] Park, P. J. (2009). Chip-seq: advantages and challenges of a
maturing technology. Nat Rev Genet, 10(10):669–680.

[Pepke et al., 2009] Pepke, S., Wold, B., and Mortazavi, A. (2009). Computation
for chip-seq and rna-seq studies. Nat Methods, 6(11 Suppl):S22–S32.

145



[Quail et al., 2008] Quail, M. A., Kozarewa, I., Smith, F., Scally, A., Stephens,
P. J., Durbin, R., Swerdlow, H., and Turner, D. J. (2008). A large genome
center’s improvements to the illumina sequencing system. Nat Methods,
5(12):1005–1010.

[Ren et al., 2000] Ren, B., Robert, F., Wyrick, J. J., Aparicio, O., Jennings, E. G.,
Simon, I., Zeitlinger, J., Schreiber, J., Hannett, N., Kanin, E., Volkert, T. L.,
Wilson, C. J., Bell, S. P., and Young, R. A. (2000). Genome-wide location and
function of dna binding proteins. Science, 290(5500):2306–2309.

[Richmond and Davey, 2003] Richmond, T. J. and Davey, C. A. (2003). The
structure of dna in the nucleosome core. Nature, 423(6936):145–150.

[Robertson et al., 2007] Robertson, G., Hirst, M., Bainbridge, M., Bilenky, M.,
Zhao, Y., Zeng, T., Euskirchen, G., Bernier, B., Varhol, R., Delaney, A.,
Thiessen, N., Griffith, O. L., He, A., Marra, M., Snyder, M., and Jones,
S. (2007). Genome-wide profiles of stat1 dna association using chromatin
immunoprecipitation and massively parallel sequencing. Nat Methods,
4(8):651–657.

[Robertson, 2005] Robertson, K. D. (2005). Dna methylation and human disease.
Nat Rev Genet, 6(8):597–610.

[Robinson et al., 2010] Robinson, M. D., McCarthy, D. J., and Smyth, G. K.
(2010). edger: a bioconductor package for differential expression analysis of
digital gene expression data. Bioinformatics, 26(1):139–140.

[Robinson and Oshlack, 2010] Robinson, M. D. and Oshlack, A. (2010). A
scaling normalization method for differential expression analysis of rna-seq
data. Genome Biol, 11(3):R25.

[Roy et al., 2011] Roy, N. C., Altermann, E., Park, Z. A., and McNabb, W. C.
(2011). A comparison of analog and next-generation transcriptomic tools for
mammalian studies. Brief Funct Genomics, 10(3):135–150.

[Schena et al., 1995] Schena, M., Shalon, D., Davis, R. W., and Brown,
P. O. (1995). Quantitative monitoring of gene expression patterns with a
complementary dna microarray. Science, 270(5235):467–470.

[Segal et al., 2006] Segal, E., Fondufe-Mittendorf, Y., Chen, L., Thstrm, A.,
Field, Y., Moore, I. K., Wang, J.-P. Z., and Widom, J. (2006). A genomic
code for nucleosome positioning. Nature, 442(7104):772–778.

146



[Song and Crawford, 2010] Song, L. and Crawford, G. E. (2010). Dnase-seq:
a high-resolution technique for mapping active gene regulatory elements
across the genome from mammalian cells. Cold Spring Harb Protoc,
2010(2):pdb.prot5384.

[Tilgner et al., 2009] Tilgner, H., Nikolaou, C., Althammer, S., Sammeth, M.,
Beato, M., Valcrcel, J., and Guig, R. (2009). Nucleosome positioning as a
determinant of exon recognition. Nat Struct Mol Biol, 16(9):996–1001.

[Trapnell et al., 2010] Trapnell, C., Williams, B. A., Pertea, G., Mortazavi, A.,
Kwan, G., van Baren, M. J., Salzberg, S. L., Wold, B. J., and Pachter, L.
(2010). Transcript assembly and quantification by rna-seq reveals unannotated
transcripts and isoform switching during cell differentiation. Nat Biotechnol,
28(5):511–515.

[Ule et al., 2005] Ule, J., Jensen, K., Mele, A., and Darnell, R. B. (2005). Clip:
a method for identifying protein-rna interaction sites in living cells. Methods,
37(4):376–386.

[Venter et al., 2001] Venter, J. C., Adams, M. D., Myers, E. W., Li, P. W., Mural,
R. J., Sutton, G. G., Smith, H. O., Yandell, M., Evans, C. A., Holt, R. A.,
Gocayne, J. D., Amanatides, P., Ballew, R. M., Huson, D. H., Wortman,
J. R., Zhang, Q., Kodira, C. D., Zheng, X. H., Chen, L., Skupski, M.,
Subramanian, G., Thomas, P. D., Zhang, J., Gabor Miklos, G. L., Nelson, C.,
Broder, S., Clark, A. G., Nadeau, J., McKusick, V. A., Zinder, N., Levine,
A. J., Roberts, R. J., Simon, M., Slayman, C., Hunkapiller, M., Bolanos,
R., Delcher, A., Dew, I., Fasulo, D., Flanigan, M., Florea, L., Halpern, A.,
Hannenhalli, S., Kravitz, S., Levy, S., Mobarry, C., Reinert, K., Remington,
K., Abu-Threideh, J., Beasley, E., Biddick, K., Bonazzi, V., Brandon, R.,
Cargill, M., Chandramouliswaran, I., Charlab, R., Chaturvedi, K., Deng, Z.,
Di Francesco, V., Dunn, P., Eilbeck, K., Evangelista, C., Gabrielian, A. E.,
Gan, W., Ge, W., Gong, F., Gu, Z., Guan, P., Heiman, T. J., Higgins, M. E., Ji,
R. R., Ke, Z., Ketchum, K. A., Lai, Z., Lei, Y., Li, Z., Li, J., Liang, Y., Lin,
X., Lu, F., Merkulov, G. V., Milshina, N., Moore, H. M., Naik, A. K., Narayan,
V. A., Neelam, B., Nusskern, D., Rusch, D. B., Salzberg, S., Shao, W., Shue,
B., Sun, J., Wang, Z., Wang, A., Wang, X., Wang, J., Wei, M., Wides, R., Xiao,
C., Yan, C., Yao, A., Ye, J., Zhan, M., Zhang, W., Zhang, H., Zhao, Q., Zheng,
L., Zhong, F., Zhong, W., Zhu, S., Zhao, S., Gilbert, D., Baumhueter, S., Spier,
G., Carter, C., Cravchik, A., Woodage, T., Ali, F., An, H., Awe, A., Baldwin,
D., Baden, H., Barnstead, M., Barrow, I., Beeson, K., Busam, D., Carver, A.,
Center, A., Cheng, M. L., Curry, L., Danaher, S., Davenport, L., Desilets, R.,
Dietz, S., Dodson, K., Doup, L., Ferriera, S., Garg, N., Gluecksmann, A.,

147



Hart, B., Haynes, J., Haynes, C., Heiner, C., Hladun, S., Hostin, D., Houck, J.,
Howland, T., Ibegwam, C., Johnson, J., Kalush, F., Kline, L., Koduru, S., Love,
A., Mann, F., May, D., McCawley, S., McIntosh, T., McMullen, I., Moy, M.,
Moy, L., Murphy, B., Nelson, K., Pfannkoch, C., Pratts, E., Puri, V., Qureshi,
H., Reardon, M., Rodriguez, R., Rogers, Y. H., Romblad, D., Ruhfel, B., Scott,
R., Sitter, C., Smallwood, M., Stewart, E., Strong, R., Suh, E., Thomas, R.,
Tint, N. N., Tse, S., Vech, C., Wang, G., Wetter, J., Williams, S., Williams,
M., Windsor, S., Winn-Deen, E., Wolfe, K., Zaveri, J., Zaveri, K., Abril, J. F.,
Guig, R., Campbell, M. J., Sjolander, K. V., Karlak, B., Kejariwal, A., Mi,
H., Lazareva, B., Hatton, T., Narechania, A., Diemer, K., Muruganujan, A.,
Guo, N., Sato, S., Bafna, V., Istrail, S., Lippert, R., Schwartz, R., Walenz,
B., Yooseph, S., Allen, D., Basu, A., Baxendale, J., Blick, L., Caminha, M.,
Carnes-Stine, J., Caulk, P., Chiang, Y. H., Coyne, M., Dahlke, C., Mays, A.,
Dombroski, M., Donnelly, M., Ely, D., Esparham, S., Fosler, C., Gire, H.,
Glanowski, S., Glasser, K., Glodek, A., Gorokhov, M., Graham, K., Gropman,
B., Harris, M., Heil, J., Henderson, S., Hoover, J., Jennings, D., Jordan, C.,
Jordan, J., Kasha, J., Kagan, L., Kraft, C., Levitsky, A., Lewis, M., Liu, X.,
Lopez, J., Ma, D., Majoros, W., McDaniel, J., Murphy, S., Newman, M.,
Nguyen, T., Nguyen, N., Nodell, M., Pan, S., Peck, J., Peterson, M., Rowe,
W., Sanders, R., Scott, J., Simpson, M., Smith, T., Sprague, A., Stockwell,
T., Turner, R., Venter, E., Wang, M., Wen, M., Wu, D., Wu, M., Xia, A.,
Zandieh, A., and Zhu, X. (2001). The sequence of the human genome. Science,
291(5507):1304–1351.

[Vicent et al., 2011] Vicent, G. P., Nacht, A. S., Font-Mateu, J., Castellano, G.,
Gaveglia, L., Ballar, C., and Beato, M. (2011). Four enzymes cooperate to
displace histone h1 during the first minute of hormonal gene activation. Genes
Dev, 25(8):845–862.

[Waalwijk and Flavell, 1978] Waalwijk, C. and Flavell, R. A. (1978). Mspi, an
isoschizomer of hpaii which cleaves both unmethylated and methylated hpaii
sites. Nucleic Acids Res, 5(9):3231–3236.

[Waddington, 1953] Waddington, C. H. (1953). Principles of embryology. Sym.
Soc. Exp. Biol., 7:186.

[Wang et al., 2010] Wang, L., Feng, Z., Wang, X., Wang, X., and Zhang, X.
(2010). Degseq: an r package for identifying differentially expressed genes
from rna-seq data. Bioinformatics, 26(1):136–138.

[Wang et al., 2008] Wang, X., Sun, Q., McGrath, S. D., Mardis, E. R., Soloway,
P. D., and Clark, A. G. (2008). Transcriptome-wide identification of novel
imprinted genes in neonatal mouse brain. PLoS One, 3(12):e3839.

148



[Wang et al., 2009] Wang, Z., Gerstein, M., and Snyder, M. (2009). Rna-seq: a
revolutionary tool for transcriptomics. Nat Rev Genet, 10(1):57–63.

[Xue et al., 2009] Xue, Y., Zhou, Y., Wu, T., Zhu, T., Ji, X., Kwon, Y.-S.,
Zhang, C., Yeo, G., Black, D. L., Sun, H., Fu, X.-D., and Zhang, Y. (2009).
Genome-wide analysis of ptb-rna interactions reveals a strategy used by the
general splicing repressor to modulate exon inclusion or skipping. Mol Cell,
36(6):996–1006.

[Yeo et al., 2009] Yeo, G. W., Coufal, N. G., Liang, T. Y., Peng, G. E., Fu,
X.-D., and Gage, F. H. (2009). An rna code for the fox2 splicing regulator
revealed by mapping rna-protein interactions in stem cells. Nat Struct Mol
Biol, 16(2):130–137.

[Yu et al., 2008] Yu, H., Zhu, S., Zhou, B., Xue, H., and Han, J.-D. J. (2008).
Inferring causal relationships among different histone modifications and gene
expression. Genome Res, 18(8):1314–1324.

[Zhang et al., 2008] Zhang, Y., Liu, T., Meyer, C. A., Eeckhoute, J., Johnson,
D. S., Bernstein, B. E., Nusbaum, C., Myers, R. M., Brown, M., Li, W., and
Liu, X. S. (2008). Model-based analysis of chip-seq (macs). Genome Biol,
9(9):R137.

149






