58 research outputs found

    LTalpha and LTbeta gene expression in organs of sheep showing different lymphoproliferative changes induced by maedi-visna virus

    Get PDF
    In lung and mammary gland of sheep, Maedi-Visna virus (MVV) causes lymphoproliferative inflammation often with follicular structures (lymphofollicular inflammation). The aim of this work was to define whether Limphotoxin α and β (LTα, LTβ) play a role in the formation of these peculiar lesions in sheep experimentally infected with MVV

    Virtual Screening of acyclovir derivatives as potential antiviral agents: design, synthesis, and biological evaluation of new acyclic nucleoside ProTides

    Get PDF
    Following our findings on the anti-human immunodeficiency virus (HIV) activity of acyclovir (ACV) phosphate prodrugs, we herein report the ProTide approach applied to a series of acyclic nucleosides aimed at the identification of novel and selective antiviral, in particular anti-HIV agents. Acyclic nucleoside analogues used in this study were identified through a virtual screening using HIV-reverse transcriptase (RT), adenylate/guanylate kinase, and human DNA polymerase Îł. A total of 39 new phosphate prodrugs were synthesized and evaluated against HIV-1 (in vitro and ex vivo human tonsillar tissue system) and human herpes viruses. Several ProTide compounds showed substantial potency against HIV-1 at low micromolar range while the parent nucleosides were not effective. Also, pronounced inhibition of herpesvirus replication was observed. A carboxypeptidase-mediated hydrolysis study was performed for a selection of compounds to assess the formation of putative metabolites and support the biological activity observed

    Additional polymorphisms of the <i>PRNP</i> gene significantly decrease the susceptibility to scrapie of ARQ/ARQ sheep

    Get PDF
    The aim of this work was to investigate the risk of scrapie of the ARQ/ARQ genotype carrying at least one point mutation at codons 112, 137, 141, 142, 154 and 176 in comparison with the ARQ/ARQ without any point mutations

    PPAR-Alpha Agonists as Novel Antiepileptic Drugs: Preclinical Findings

    Get PDF
    Nicotinic acetylcholine receptors (nAChRs) are involved in seizure mechanisms. Hence, nocturnal frontal lobe epilepsy was the first idiopathic epilepsy linked with specific mutations in a4 or b2 nAChR subunit genes. These mutations confer gain of function to nAChRs by increasing sensitivity toward acetylcholine. Consistently, nicotine elicits seizures through nAChRs and mimics the excessive nAChR activation observed in animal models of the disease. Treatments aimed at reducing nicotinic inputs are sought as therapies for epilepsies where these receptors contribute to neuronal excitation and synchronization. Previous studies demonstrated that peroxisome proliferator-activated receptors-a (PPARa), nuclear receptor transcription factors, suppress nicotine-induced behavioral and electrophysiological effects by modulating nAChRs containing b2 subunits. On these bases, we tested whether PPARa agonists were protective against nicotine-induced seizures. To this aim we utilized behavioral and electroencephalographic (EEG) experiments in C57BL/J6 mice and in vitro patch clamp recordings from mice and rats. Convulsive doses of nicotine evoked severe seizures and bursts of spike-waves discharges in ,100% of mice. A single dose of the synthetic PPARa agonist WY14643 (WY, 80 mg/kg, i.p.) or chronic administration of fenofibrate, clinically available for lipid metabolism disorders, in the diet (0.2%) for 14 days significantly reduced or abolished behavioral and EEG expressions of nicotine-induced seizures. Acute WY effects were reverted by the PPARa antagonist MK886 (3 mg/kg, i.p.). Since neocortical networks are crucial in the generation of ictal activity and synchrony, we performed patch clamp recordings of spontaneous inhibitory postsynaptic currents (sIPSCs) from frontal cortex layer II/III pyramidal neurons. We found that both acute and chronic treatment with PPARa agonists abolished nicotine-induced sIPSC increases. PPARa within the CNS are key regulators of neuronal activity through modulation of nAChRs. These effects might be therapeutically exploited for idiopathic or genetically determined forms of epilepsy where nAChRs play a major role

    Differential induction of nuclear factor-like 2 signature genes with toll-like receptors stimulation

    Get PDF
    Inflammation is associated with production of reactive oxygen species (ROS) and results in the induction of thioredoxin (TXN) and peroxiredoxins (PRDXs) and activation of nuclear factor-like 2 (Nrf2). In this study we have used the mouse RAW 264.7 macrophage and the human THP-1 monocyte cell line to investigate the pattern of expression of three Nrf2 target genes, PRDX1, TXN reductase (TXNRD1) and heme oxygenase (HMOX1), by activation of different Toll-like receptors (TLR). We found that, while the TLR4 agonist lipopolysaccharide (LPS) induces all three genes, the pattern of induction with agonists for TLR1/2, TLR3, TLR2/6 and TLR7/8 differs depending on the gene and the cell line. In all cases, the extent of induction was HMOX1>TXNRD1>PRDX1. Since LPS was a good inducer of all genes in both cell lines, we studied the mechanisms mediating LPS induction of the three genes using mouse RAW 264.7 cells. To assess the role of ROS we used the antioxidant N-acetylcysteine (NAC). Only LPS induction of HMOX1 was inhibited by NAC while that of TXNRD1 and PRDX1 was unaffected. These three genes were also induced by phorbol myristate acetate (PMA), a ROS-inducer acting by activation of protein kinase C (PKC). The protein kinase inhibitor staurosporine inhibited the induction of all three genes by PMA but only that of HMOX1 by LPS. This indicates that activation of these genes by inflammatory agents is regulated by different mechanisms involving either ROS or protein kinases, or both

    Modulation of airway epithelial cell functions by Pidotimod: NF-kB cytoplasmatic expression and its nuclear translocation are associated with an increased TLR-2 expression

    Get PDF
    BACKGROUND: Recurrent respiratory infections are one of the most important causes of morbidity in childhood. When immune functions are still largely immature, the airway epithelium plays a primary defensive role since, besides providing a physical barrier, it is also involved in the innate and the adaptive immune responses. A study was therefore designed to evaluate in vitro whether pidotimod, a synthetic dipeptide able to stimulate the inflammatory and immune effector cells, could activate bronchial epithelial cell functions involved in response to infections. METHODS: BEAS-2B cell line (human bronchial epithelial cells infected with a replication-defective Adenovirus 12-SV40 virus hybrid) were cultured in the presence of pidotimod, with or without tumor necrosis factor (TNF)-α or zymosan to assess: a) intercellular adhesion molecule (ICAM)-1 expression, by flow cytometry; b) toll-like receptor (TLR)-2 expression and production, by immunofluorescence flow cytometry and western blotting; d) interleukin (IL)-8 release, by enzyme-linked immunosorbent assay (ELISA); e) activated extracellular-signal-regulated kinase (ERK1/2) phosphorylation and nuclear factor-kappa B (NF-kB) activation, by western blotting. RESULTS: The constitutive expression of ICAM-1 and IL-8 release were significant up-regulated by TNF-α (ICAM-1) and by TNF-α and zymosan (IL-8), but not by pidotimod. In contrast, an increased TLR-2 expression was found after exposure to pidotimod 10 and 100 μg/ml (p < 0.05) and to the association pidotimod 100 μg/ml + TNF-α (p < 0.05). Western blot analysis substantiated that the constitutive TLR-2 expression was significantly increased after exposure to all the stimuli. Finally, while a remarkable inhibition of TNF-α -induced ERK1/2 phosphorylation was observed in the presence of pidotimod, both TNF-α and pidotimod were effective in inducing NF-kB protein expression in the cytoplasm and its nuclear translocation. CONCLUSION: Through different effects on ERK1/2 and NF-kB, pidotimod was able to increase the expression of TLR-2 proteins, surface molecules involved in the initiation of the innate response to infectious stimuli. The lack of effect on ICAM-1 expression, the receptor for rhinovirus, and on IL-8 release, the potent chemotactic factor for neutrophils (that are already present in sites of infection), may represent protective functions. If confirmed in vivo, these activities may, at least in part, clarify the mechanism of action of this molecule at airway level

    Profound Modification of Fatty Acid Profile and Endocannabinoid-Related Mediators in PPARα Agonist Fenofibrate-Treated Mice

    No full text
    Fenofibrate (FBR), an oral medication used to treat dyslipidemia, is a ligand of the peroxisome proliferator-activated receptor α (PPARα), a nuclear receptor that regulates the expression of metabolic genes able to control lipid metabolism and food intake. PPARα natural ligands include fatty acids (FA) and FA derivatives such as palmitoylethanolamide (PEA) and oleoylethanolamide (OEA), known to have anti-inflammatory and anorexigenic activities, respectively. We investigated changes in the FA profile and FA derivatives by HPLC and LC-MS in male C57BL/6J mice fed a standard diet with or without 0.2% fenofibrate (0.2% FBR) for 21 days. Induction of PPARα by 0.2% FBR reduced weight gain, food intake, feed efficiency, and liver lipids and induced a profound change in FA metabolism mediated by parallel enhanced mitochondrial and peroxisomal β-oxidation. The former effects led to a steep reduction of essential FA, particularly 18:3n3, with a consequent decrease of the n3-highly unsaturated fatty acids (HUFA) score; the latter effect led to an increase of 16:1n7 and 18:1n9, suggesting enhanced hepatic de novo lipogenesis with increased levels of hepatic PEA and OEA, which may activate a positive feedback and further sustain reductions of body weight, hepatic lipids and feed efficiency
    • …
    corecore