651 research outputs found

    Bio-inspired vision mimetics towards next generation collision avoidance automation

    Get PDF
    The current “deep learning + large-scale data + strong supervised labeling” technology framework of collision avoidance for ground robots and aerial drones is becoming saturated. Its development gradually faces challenges from real open-scene applications, including small data, weak annotation, and cross-scene. Inspired by the neural structure and processes underlying human cognition (e.g., human visual, auditory, and tactile systems) and the knowledge learned from daily driving tasks, such as, a high-level cognitive system is developed for integrating collision sensing and collision avoidance. This bio-inspired cognitive approach takes the advantages of good robustness, high self-adaptability, and low computation consumption in practical driving scenes

    Effect of Three-body Interaction on Phase Transition of Hot Asymmetric Nuclear Matter

    Full text link
    The properties and the isospin dependence of the liquid-gas phase transition in hot asymmetric nuclear matter have been investigated within the framework of the finite temperature Brueckner-Hartree-Fock approach extended to include the contribution of a microscopic three-body force. A typical Van der Waals structure has been observed in the calculated isotherms (of pressure) for symmetric nuclear matter implying the presence of the liquid-gas phase transition. The critical temperature of the phase transition is calculated and its dependence on the proton-to-neutron ratio is discussed. It is shown that the three-body force gives a repulsive contribution to the nuclear equation of state and reduces appreciably the critical temperature and the mechanical instable region. At fixed temperature and density the pressure of asymmetric nuclear matter increases monotonically as a function of isospin asymmetry. In addition, it turns out that the domain of mechanical instability for hot asymmetric nuclear matter gradually shrinks with increasing asymmetry and temperature. We have compared our results with the predictions of other theoretical models especially the Dirac Brueckner approach. A possible explanation for the discrepancy between the values of the critical temperature predicted by the present non-relativistic Brueckner calculations including the three-body force and the relativistic Dirac-Brueckner method is given.Comment: 16 pages, 5 figure

    1S0 Proton and Neutron Superfluidity in beta-stable Neutron Star Matter

    Get PDF
    We investigate the effect of a microscopic three-body force on the proton and neutron superfluidity in the 1S0^1S_0 channel in ÎČ\beta-stable neutron star matter. It is found that the three-body force has only a small effect on the neutron 1S0^1S_0 pairing gap, but it suppresses strongly the proton 1S0^1S_0 superfluidity in ÎČ\beta-stable neutron star matter.Comment: 12 pages, 2 figure

    Novel D-hordein-like HMW glutenin sequences isolated from Psathyrostachys juncea by thermal asymmetric interlaced PCR

    Get PDF
    New high-molecular-weight glutenin (HMW glutenin) sequences isolated from six Psathyrostachys juncea accessions by thermal asymmetric interlaced PCR differ from previous sequences from this species. They showed novel modifications in all of the structural domains, with unique C-terminal residues, and their N-terminal lengths were the longest among the HMW glutenins reported to date. In their repetitive domains, there were three repeatable motif units: 13-residue [GYWH(/I/Y)YT(/Q)S(/T)VTSPQQ], hexapeptide (PGQGQQ), and tetrapeptide (ITVS). The 13-residue repeats were restricted to the current sequences, while the tetrapeptides were only shared by D-hordein and the current sequences. However, these sequences were not expressed as normal HMW glutenin proteins because an in-frame stop codon located in the C-termini interrupted the intact open reading frames. A phylogenetic analysis supported different origins of the P. juncea HMW glutenin sequences than that revealed by a previous study. The current sequences showed a close relationship with D-hordein but appeared to be more primitive

    Characterization of a novel 4.0-kb y-type HMW-GS from Eremopyrum distans

    Get PDF
    A novel 4.0-kb Fy was sequenced and bacterially expressed. This gene, the largest y-type HMW-GS currently reported, is 4,032-bp long and encodes a mature protein with 1,321 amino acid (AA) residues. The 4.0-kb Fy shows novel modifications in all domains. In the N-terminal, it contains only 67 AA residues, as three short peptides are absent. In the repetitive domain, the undecapeptide RYYPSVTSPQQ is completely lost and the dodecapeptide GSYYPGQTSPQQ is partially absent. A novel motif unit, PGQQ, is present in addition to the two standard motif units PGQGQQ and GYYPTSPQQ. Besides, an extra cysteine residue also occurs in the middle of this domain. The large molecular mass of the 4.0-kb Fy is mainly due to the presence of an extra-long repetitive domain with 1,279 AA residues. The novel 4.0-kb Fy gene is of interest in HMW-GS gene evolution as well as to wheat quality improvement with regard to its longest repetitive domain length and extra cysteines residues

    Evidence of Color Coherence Effects in W+jets Events from ppbar Collisions at sqrt(s) = 1.8 TeV

    Full text link
    We report the results of a study of color coherence effects in ppbar collisions based on data collected by the D0 detector during the 1994-1995 run of the Fermilab Tevatron Collider, at a center of mass energy sqrt(s) = 1.8 TeV. Initial-to-final state color interference effects are studied by examining particle distribution patterns in events with a W boson and at least one jet. The data are compared to Monte Carlo simulations with different color coherence implementations and to an analytic modified-leading-logarithm perturbative calculation based on the local parton-hadron duality hypothesis.Comment: 13 pages, 6 figures. Submitted to Physics Letters
    • 

    corecore