7,019 research outputs found
Spin fluctuation induced Weyl semimetal state in the paramagnetic phase of EuCd2As2
Weyl fermions as emergent quasiparticles can arise in Weyl semimetals (WSMs) in which the energy bands are nondegenerate, resulting from inversion or time-reversal symmetry breaking. Nevertheless, experimental evidence for magnetically induced WSMs is scarce. Here, using photoemission spectroscopy, we observe that the degeneracy of Bloch bands is already lifted in the paramagnetic phase of EuCd2As2. We attribute this effect to the itinerant electrons experiencing quasi-static and quasi\u2013long-range ferromagnetic fluctuations. Moreover, the spin-nondegenerate band structure harbors a pair of ideal Weyl nodes near the Fermi level. Hence, we show that long-range magnetic order and the spontaneous breaking of time-reversal symmetry are not essential requirements for WSM states in centrosymmetric systems and that WSM states can emerge in a wider range of condensed matter systems than previously thought
Synthesis of Mesoporous Silica@Co–Al Layered Double Hydroxide Spheres: Layer-by-Layer Method and Their Effects on the Flame Retardancy of Epoxy Resins
Hierarchical mesoporous silica@Co–Al layered double hydroxide (m-SiO2@Co–Al LDH) spheres were prepared through a layer-by-layer assembly process, in order to integrate their excellent physical and chemical functionalities. TEM results depicted that, due to the electrostatic potential difference between m-SiO2 and Co–Al LDH, the synthetic m-SiO2@Co–Al LDH hybrids exhibited that m-SiO2 spheres were packaged by the Co–Al LDH nanosheets. Subsequently, the m-SiO2@Co–Al LDH spheres were incorporated into epoxy resin (EP) to prepare specimens for investigation of their flame-retardant performance. Cone results indicated that m-SiO2@Co–Al LDH incorporated obviously improved fire retardant of EP. A plausible mechanism of fire retardant was hypothesized based on the analyses of thermal conductivity, char residues, and pyrolysis fragments. Labyrinth effect of m-SiO2 and formation of graphitized carbon char catalyzed by Co–Al LDH play pivotal roles in the flame retardance enhancement
Phase Separation and Magnetic Order in K-doped Iron Selenide Superconductor
Alkali-doped iron selenide is the latest member of high Tc superconductor
family, and its peculiar characters have immediately attracted extensive
attention. We prepared high-quality potassium-doped iron selenide (KxFe2-ySe2)
thin films by molecular beam epitaxy and unambiguously demonstrated the
existence of phase separation, which is currently under debate, in this
material using scanning tunneling microscopy and spectroscopy. The
stoichiometric superconducting phase KFe2Se2 contains no iron vacancies, while
the insulating phase has a \surd5\times\surd5 vacancy order. The iron vacancies
are shown always destructive to superconductivity in KFe2Se2. Our study on the
subgap bound states induced by the iron vacancies further reveals a
magnetically-related bipartite order in the superconducting phase. These
findings not only solve the existing controversies in the atomic and electronic
structures in KxFe2-ySe2, but also provide valuable information on
understanding the superconductivity and its interplay with magnetism in
iron-based superconductors
Structural, Magnetic and Electronic Properties of the Iron-Chalcogenide AFeSe (A=K, Cs, Rb, Tl and etc.) Superconductors
The latest discovery of a new iron-chalcogenide superconductor
AFeSe(A=K, Cs, Rb, Tl and etc.) has attracted much attention
due to a number of its unique characteristics, such as the possible insulating
state of the parent compound, the existence of Fe-vacancy and its ordering, a
new form of magnetic structure and its interplay with superconductivity, and
the peculiar electronic structures that are distinct from other Fe-based
superconductors. In this paper, we present a brief review on the structural,
magnetic and electronic properties of this new superconductor, with an emphasis
on the electronic structure and superconducting gap. Issues and future
perspectives are discussed at the end of the paper.Comment: 45 pages, 19 figure
Low Q^2 measurements of the proton form factor ratio
We present an updated extraction of the proton electromagnetic form factor
ratio, mu_p G_E/G_M, at low Q^2. The form factors are sensitive to the spatial
distribution of the proton, and precise measurements can be used to constrain
models of the proton. An improved selection of the elastic events and reduced
background contributions yielded a small systematic reduction in the ratio mu_p
G_E/G_M compared to the original analysis.Comment: 12 pages, 5 figures, archival paper for proton form factor extraction
from Jefferson Lab "LEDEX" experimen
The Proton Elastic Form Factor Ratio at Low Momentum Transfer
High precision measurements of the proton elastic form factor ratio have been
made at four-momentum transfers, Q^2, between 0.2 and 0.5 GeV^2. The new data,
while consistent with previous results, clearly show a ratio less than unity
and significant differences from the central values of several recent
phenomenological fits. By combining the new form-factor ratio data with an
existing cross-section measurement, one finds that in this Q^2 range the
deviation from unity is primarily due to GEp being smaller than the dipole
parameterization.Comment: 5 pages, 2 figure
Measurement of Semileptonic Branching Fractions of B Mesons to Narrow D** States
Using the data accumulated in 2002-2004 with the DO detector in
proton-antiproton collisions at the Fermilab Tevatron collider with
centre-of-mass energy 1.96 TeV, the branching fractions of the decays B ->
\bar{D}_1^0(2420) \mu^+ \nu_\mu X and B -> \bar{D}_2^{*0}(2460) \mu^+ \nu_\mu X
and their ratio have been measured: BR(\bar{b}->B) \cdot BR(B-> \bar{D}_1^0
\mu^+ \nu_\mu X) \cdot BR(\bar{D}_1^0 -> D*- pi+) =
(0.087+-0.007(stat)+-0.014(syst))%; BR(\bar{b}->B)\cdot BR(B->D_2^{*0} \mu^+
\nu_\mu X) \cdot BR(\bar{D}_2^{*0} -> D*- \pi^+) =
(0.035+-0.007(stat)+-0.008(syst))%; and (BR(B -> \bar{D}_2^{*0} \mu^+ \nu_\mu
X)BR(D2*0->D*- pi+)) / (BR(B -> \bar{D}_1^{0} \mu^+ \nu_\mu X)\cdot
BR(\bar{D}_1^{0}->D*- \pi^+)) = 0.39+-0.09(stat)+-0.12(syst), where the charge
conjugated states are always implied.Comment: submitted to Phys. Rev. Let
A search for W bb and W Higgs production in ppbar collisions at sqrt(s)=1.96 TeV
We present a search for W b \bar{b} production in p \bar{p} collisions at
sqrt{s}=1.96 TeV in events containing one electron, an imbalance in transverse
momentum, and two b-tagged jets. Using 174 pb-1 of integrated luminosity
accumulated by the D0 experiment at the Fermilab Tevatron collider, and the
standard-model description of such events, we set a 95% C.L. upper limit on W b
\bar{b}WH--$135
GeV.Comment: 7 pages, 4 figures, 1 table, submitted to Physical Review Letter
Measurement of the Lifetime Difference in the B_s^0 System
We present a study of the decay B_s^0 -> J/psi phi We obtain the CP-odd
fraction in the final state at time zero, R_perp = 0.16 +/- 0.10 (stat) +/-
0.02 (syst), the average lifetime of the (B_s, B_sbar) system, tau (B_s^0)
=1.39^{+0.13}_{-0.16} (stat) ^{+0.01}_{-0.02} (syst) ps, and the relative width
difference between the heavy and light mass eigenstates, Delta Gamma/Gamma =
(Gamma_L - Gamma_H)/Gamma =0.24^{+0.28}_{-0.38} (stat) ^{+0.03}_{-0.04} (syst).
With the additional constraint from the world average of the B_s^0$lifetime
measurements using semileptonic decays, we find tau (B_s^0)= 1.39 +/- 0.06 ~ps
and Delta Gamma/\Gamma = 0.25^{+0.14}_{-0.15}. For the ratio of the B_s^0 and
B^0 lifetimes we obtain tau(B_s^0)/tau(B^0)} = 0.91 +/- 0.09 (stat) +/- 0.003
(syst).Comment: submitted to Phys. Rev. Lett. FERMILAB-PUB-05-324-
Search for the decay
We search for radiative decays into a weakly interacting neutral
particle, namely an invisible particle, using the produced through the
process in a data sample of
decays collected by the BESIII detector
at BEPCII. No significant signal is observed. Using a modified frequentist
method, upper limits on the branching fractions are set under different
assumptions of invisible particle masses up to 1.2 . The upper limit corresponding to an invisible particle with zero mass
is 7.0 at the 90\% confidence level
- …