90 research outputs found

    Penalized Maximum Likelihood Method to a Class of Skewness Data Analysis

    Get PDF
    An extension of some standard likelihood and variable selection criteria based on procedures of linear regression models under the skew-normal distribution or the skew-t distribution is developed. This novel class of models provides a useful generalization of symmetrical linear regression models, since the random term distributions cover both symmetric as well as asymmetric and heavy-tailed distributions. A generalized expectation-maximization algorithm is developed for computing the l1 penalized estimator. Efficacy of the proposed methodology and algorithm is demonstrated by simulated data

    A Rotation Meanout Network with Invariance for Dermoscopy Image Classification and Retrieval

    Full text link
    The computer-aided diagnosis (CAD) system can provide a reference basis for the clinical diagnosis of skin diseases. Convolutional neural networks (CNNs) can not only extract visual elements such as colors and shapes but also semantic features. As such they have made great improvements in many tasks of dermoscopy images. The imaging of dermoscopy has no principal orientation, indicating that there are a large number of skin lesion rotations in the datasets. However, CNNs lack rotation invariance, which is bound to affect the robustness of CNNs against rotations. To tackle this issue, we propose a rotation meanout (RM) network to extract rotation-invariant features from dermoscopy images. In RM, each set of rotated feature maps corresponds to a set of outputs of the weight-sharing convolutions and they are fused using meanout strategy to obtain the final feature maps. Through theoretical derivation, the proposed RM network is rotation-equivariant and can extract rotation-invariant features when followed by the global average pooling (GAP) operation. The extracted rotation-invariant features can better represent the original data in classification and retrieval tasks for dermoscopy images. The RM is a general operation, which does not change the network structure or increase any parameter, and can be flexibly embedded in any part of CNNs. Extensive experiments are conducted on a dermoscopy image dataset. The results show our method outperforms other anti-rotation methods and achieves great improvements in dermoscopy image classification and retrieval tasks, indicating the potential of rotation invariance in the field of dermoscopy images

    PSR J1926-0652: A Pulsar with Interesting Emission Properties Discovered at FAST

    Get PDF
    We describe PSR J1926-0652, a pulsar recently discovered with the Five-hundred-meter Aperture Spherical radio Telescope (FAST). Using sensitive single-pulse detections from FAST and long-term timing observations from the Parkes 64-m radio telescope, we probed phenomena on both long and short time scales. The FAST observations covered a wide frequency range from 270 to 800 MHz, enabling individual pulses to be studied in detail. The pulsar exhibits at least four profile components, short-term nulling lasting from 4 to 450 pulses, complex subpulse drifting behaviours and intermittency on scales of tens of minutes. While the average band spacing P3 is relatively constant across different bursts and components, significant variations in the separation of adjacent bands are seen, especially near the beginning and end of a burst. Band shapes and slopes are quite variable, especially for the trailing components and for the shorter bursts. We show that for each burst the last detectable pulse prior to emission ceasing has different properties compared to other pulses. These complexities pose challenges for the classic carousel-type models.Comment: 13pages with 12 figure

    A Method for Formulizing Disaster Evacuation Demand Curves Based on SI Model

    No full text
    The prediction of evacuation demand curves is a crucial step in the disaster evacuation plan making, which directly affects the performance of the disaster evacuation. In this paper, we discuss the factors influencing individual evacuation decision making (whether and when to leave) and summarize them into four kinds: individual characteristics, social influence, geographic location, and warning degree. In the view of social contagion of decision making, a method based on Susceptible-Infective (SI) model is proposed to formulize the disaster evacuation demand curves to address both social influence and other factors’ effects. The disaster event of the “Tianjin Explosions” is used as a case study to illustrate the modeling results influenced by the four factors and perform the sensitivity analyses of the key parameters of the model. Some interesting phenomena are found and discussed, which is meaningful for authorities to make specific evacuation plans. For example, due to the lower social influence in isolated communities, extra actions might be taken to accelerate evacuation process in those communities

    Optimizing evacuation efficiency under emergency with consideration of social fairness based on a cell transmission model.

    No full text
    Traffic assignment and management objectives are considered as two significant parts in developing the emergency evacuation plan, which can directly influence the evacuation performance and efficiency. From the perspective of disaster response operators, the evacuation objective frequently is to minimize the total evacuation time to reduce losses, which may lead to an unreasonable and unfair phenomenon where people in highest risk areas may be forced to sacrifice their priorities of evacuation to improve the system evacuation efficiency. In this paper, considering both efficiency and social fairness in emergency evacuation, a weight function consisting of risk evaluation index as variable and the emphasis degree of managers on social fairness principle as coefficient was initially proposed and embedded in system optimal (SO) objective function. Combining the weight function and other constraints based on an extended cell transmission model (CTM), the linear program (LP) model was established to realize the simulation of dynamic traffic assignment in emergency evacuation. Employing this model, the impact of the management strategy of balancing both efficiency and social fairness on evacuation results was studied in the "Tianjin Explosions" case. In the end, the conclusion of "balancing social fairness is valuable during evacuation" was obtained

    Likelihood Inference of Nonlinear Models Based on a Class of Flexible Skewed Distributions

    No full text
    This paper deals with the issue of the likelihood inference for nonlinear models with a flexible skew-t-normal (FSTN) distribution, which is proposed within a general framework of flexible skew-symmetric (FSS) distributions by combining with skew-t-normal (STN) distribution. In comparison with the common skewed distributions such as skew normal (SN), and skew-t (ST) as well as scale mixtures of skew normal (SMSN), the FSTN distribution can accommodate more flexibility and robustness in the presence of skewed, heavy-tailed, especially multimodal outcomes. However, for this distribution, a usual approach of maximum likelihood estimates based on EM algorithm becomes unavailable and an alternative way is to return to the original Newton-Raphson type method. In order to improve the estimation as well as the way for confidence estimation and hypothesis test for the parameters of interest, a modified Newton-Raphson iterative algorithm is presented in this paper, based on profile likelihood for nonlinear regression models with FSTN distribution, and, then, the confidence interval and hypothesis test are also developed. Furthermore, a real example and simulation are conducted to demonstrate the usefulness and the superiority of our approach
    • …
    corecore