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An extension of some standard likelihood and variable selection criteria based on procedures of linear regression models under
the skew-normal distribution or the skew-𝑡 distribution is developed.This novel class of models provides a useful generalization of
symmetrical linear regressionmodels, since the random term distributions cover both symmetric as well as asymmetric and heavy-
tailed distributions. A generalized expectation-maximization algorithm is developed for computing the ℓ

1
penalized estimator.

Efficacy of the proposed methodology and algorithm is demonstrated by simulated data.

1. Introduction

In recent years, nonnormal distributions have received sub-
stantial interest in the statistics literature. The growing need
for more flexible tools to analyze data that exhibit nonnormal
features, including asymmetry, multimodality, and heavy
tails, has led to intense development in nonnormal model-
based methods. Many such distributions have been success-
fully applied to numerous datasets from awide range of fields,
including medical sciences, bioinformatics, environmetrics,
engineering, economics, and financial sciences. Some recent
applications of skew-normal and skew-𝑡 models include [1–
5].

The rich literature and active discussion of skew distri-
butions as well as regression analysis of skew distributions
were initiated by the pioneering work of [6], in which the
univariate skew distribution was introduced. Following its
generalization to the multivariate skew-normal distribution
in [7], the number of contributions has grown rapidly. The
concept of introducing additional parameters to regulate
skewness in a distribution was subsequently extended to
other parametric families. For a comprehensive survey of
skew distributions, see, for example, the articles [4, 8–10].

Besides the skew-normal distribution, which plays a
central role in these developments, the skew-𝑡 distribution

has also receivedmuch attention. Being a natural extension of
the 𝑡 distribution, the skew-𝑡 distribution retains reasonable
tractability and is more robust against outliers than the skew-
normal distribution.

On the other hand, the Lasso is a popular method for
regression analysis that uses an ℓ

1
penalty to achieve a spares

solution. This idea has been broadly applied, for example,
to generalized linear models by [11] and Cox’s proportional
hazard models for survival data by [12]. Inspired by an
important work of [13], we will introduce a new approach
to regression analysis based on a class skew distribution by
taking advantage of sparse penalizationmethods.We propose
to fit an ℓ

1
penalized linearmodel with an ℓ

1
penalty imposed

on the location parameters of the skew distribution. Due
to the sparse shrinkage property of the ℓ

1
penalty, some

components of regression coefficients are estimated by exact
zero when the tuning parameter is properly chosen.

The rest of the paper is organized as follows. In Section 2,
we introduce the skew-normal and skew-𝑡 distribution and
present some of their properties. Section 3 outlines the
EM-type algorithm and a penalty estimate of the proposed
model of the skew distribution. In Section 4, a method of
choice of tuning parameter is developed. The methodology
proposed is illustrated in Section 5 by analyzing a simulated
study.
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2. The Skew-Normal Distribution and
the Skew-𝑡 Distribution

2.1. The Skew-Normal Distribution. As developed by [6], a
random variable 𝑌 follows a univariate skew-normal distri-
bution with location parameter 𝜇, scale parameter 𝜔, and
shape parameter 𝛼 ∈ R, denoted by 𝑌 ∼ SN(𝜇, 𝜔, 𝛼), if it
has the density

𝑓SN (𝑦 | 𝜇, 𝜔, 𝛼) =
2

𝜔
𝜙(

𝑦 − 𝜇

𝜔
)Φ(𝛼

𝑦 − 𝜇

𝜔
) , (1)

where 𝜙(⋅) and Φ(⋅) denote the standard normal density
function and cumulative function, respectively. Note that if
𝛼 = 0, the density of 𝑌 reduces to the𝑁(𝜇, 𝜔) density.

A stochastic representation of the SN(𝜇, 𝜔, 𝛼) distribution
can be given by

𝑌 = 𝜇 + 𝜔𝛿𝑧 + 𝜔√1 − 𝛿
2
𝜀, (2)

where 𝑧 ∼ TN
[0,∞)

(0, 1) and TN
[𝑎,𝑏]

(𝜇, 𝜎
2
) denotes the uni-

variate truncated normal distribution with mean 𝜇, variance
𝜎
2 in interval [𝑎, 𝑏]. 𝜀 ∼ 𝑁(0, 1), independent of 𝑧, and

𝛿 = 𝛼/√1 + 𝛼
2; hence 𝐸(𝑌) = 𝜇 + 𝜔𝛿√2/𝜋.

There is an alternative definition as discussed by [2, 9],
which can be viewed as a new parameterization of above
parameters; that is, 𝜓 = 𝜔𝛿, 𝜎2 = 𝜔

2
(1 − 𝛿

2
); furthermore,

suppose 𝑢 ∼ 𝑁(0, 1) and 𝜂 ∼ 𝑁(0, 𝜎
2
), independently; then

(2) can be represented as

𝑌 = 𝜇 + 𝜓 |𝑢| + 𝜂, (3)

which defines a univariate skew-normal distribution
SN(𝜇, 𝜔, 𝛼), where 𝜔2 = 𝜓

2
+ 𝜎
2 and 𝛼 = 𝜓/𝜎, so (3) can be

viewed as a reparametrization of (2). So it follows that the
skew-normal distribution admits a convenient hierarchical
characterization given by

(i) 𝑢 ∼ 𝑁(0, 1);
(ii) 𝑌 | 𝑢 ∼ 𝑁(𝜇 + 𝜓|𝑢|, 𝜎

2
).

2.2. The Skew-𝑡 Distribution. To achieve a higher degree
of excess kurtosis and accommodate to data of a heavy
tail, skew-𝑡 distributions have been introduced by [14]. A
univariate random variable𝑌 follows the skew-𝑡 distribution,
𝑌 ∼ ST(𝜇, 𝜔, 𝛼, ]); the density function reads

𝑓ST (𝑦 | 𝜇, 𝜔, 𝛼, ]) =
2

𝜔
𝑡] (𝑑𝑦) 𝑇]+1(𝛼𝑑𝑦√

] + 1

] + 𝑑
2

𝑦

) , (4)

where 𝑑
𝑦

= (𝑦 − 𝜇)/𝜔 and 𝑡] and 𝑇] denote, respectively,
the density function and distribution function of a standard
Student’s 𝑡 distribution with ] degrees of freedom, and
parameters 𝜇, 𝜔, and 𝛼 are the same as above. Clearly, if 𝑌 ∼

ST(𝜇, 𝜔, 𝛼, ]), it has the following stochastic representation:

𝑌 = 𝜇 + 𝜔
𝑋

√𝑊

, (5)

where 𝑋 ∼ SN(0, 1, 𝛼) and 𝑊 ∼ Γ(]/2, ]/2), independently
and Γ(𝑎, 𝑏) denotes the Gamma distribution with parameters
𝑎 and 𝑏.

Similarly, the skew-𝑡 distribution has the convolution-
type representation as

𝑌 = 𝜇 + 𝜓 |𝑢| + 𝜂, (6)

where 𝑢 ∼ 𝑡
1
(0, 1, ]), 𝜂 ∼ 𝑡

1
(0, 𝜎
2
, ]), independently, and

𝜓 and 𝜎
2 are the same as above. Meanwhile, the skew-𝑡

distribution also has the hierarchical representation as

(i) 𝑤 ∼ Γ(]/2, ]/2);

(ii) 𝑢 | 𝑤 ∼ 𝑁(0, 1/𝑤);

(iii) 𝑌 | 𝑢, 𝑤 ∼ 𝑁(𝜇 + 𝜓|𝑢|, 𝜎
2
/𝑤).

3. Regression Model of Skew Distribution and
EM Algorithm

In this section, we consider the linear regressionmodel where
the observation follows skew-normal distributions or skew-𝑡
distributions. In general, a linear regression model is defined
as

𝑦
𝑖
= 𝑥
𝑖
𝛽 + 𝜔𝛿√

2

𝜋
+ 𝜀
𝑖
, 𝑖 = 1, . . . , 𝑛, (7)

or

𝑦
𝑖
= 𝑥
𝑖
𝛽 + 𝜔𝛿√

2

𝜋

Γ ((] − 1) /2)

Γ (]/2)
+ 𝜀
𝑖
, 𝑖 = 1, . . . , 𝑛, (8)

where 𝑦
𝑖
are responses, parameter vector 𝛽 = (𝛽

1
, . . . , 𝛽

𝑝
)
𝑇,

𝑥
𝑖
is a vector of explanatory variable values, and the random

error 𝜀
𝑖
follows SN(0, 𝜔, 𝛼) or ST(0, 𝜔, 𝛼, ]), respectively,

which corresponds to the regression model with an error
distribution of which the mean is zero.

It follows that the log-likelihood function for original
parameter 𝜃 = (𝛽, 𝜔, 𝛼) or 𝜃 = (𝛽, 𝜔, 𝛼, ]), given the observed
sample 𝑦 = (𝑦

1
, . . . , 𝑦

𝑛
)
𝑡 from SN or ST, respectively, is given

by

LL (𝜃) = 𝑛 log (2) − 𝑛

2
log (2𝜋) − 𝑛

2
log (𝜔2) +

𝑛

∑

𝑖=1

log (𝐾
𝑖
) ,

(9)

where 𝐾
𝑖
is the function of 𝜙(⋅)Φ(⋅) or 𝑡(⋅)𝑇(⋅) in (1) or (4),

according to the SN or ST distribution, respectively. Note
that the Newton-Raphson method can be directly applied
to get the ML estimate of the above log-likelihood, but in
order to obtain a more efficient approach of estimation and
variable selection of skewmodels, we discuss amore elaborate
technique to find theML estimate based on an EM algorithm.

Firstly, for skew-normal distributions, let 𝑢 =

(𝑢
1
, . . . , 𝑢

𝑛
)
𝑡; then under the hierarchical representation

of Section 2.1, it follows that the complete log-likelihood
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function of modified parameter 𝜑 = (𝛽, 𝜎, 𝜓) associated with
𝑦
𝑐
= (𝑦, 𝑢)

𝑡 is

ℓ
𝑐
(𝜑) = ℓ (𝜑 | 𝑦

𝑐
)

= 𝐶 −
𝑛

2
log (𝜎2) − 1

2𝜎
2

𝑛

∑

𝑖=1

[(𝑦
𝑖
− 𝑥
𝑖
𝛽 − 𝜓𝑢

𝑖
)
2

− 𝜎
2
𝑢
2

𝑖
] ,

(10)

where 𝐶 is a constant that is independent of 𝜑. Then consider
the penalized log-likelihood defined by

PLL (𝜑) = ℓ
𝑐
(𝜑) −

1

2

𝑝

∑

𝑗=1

𝑃
𝜆
(
󵄨󵄨󵄨󵄨󵄨
𝛽
𝑗

󵄨󵄨󵄨󵄨󵄨
)

= 𝐶 −
𝑛

2
log (𝜎2)

−
1

2𝜎
2

𝑛

∑

𝑖=1

[(𝑦
𝑖
− 𝑥
𝑖
𝛽 − 𝜓𝑢

𝑖
)
2

− 𝜎
2
𝑢
2

𝑖
]

−
1

2

𝑝

∑

𝑗=1

𝑃
𝜆
(
󵄨󵄨󵄨󵄨󵄨
𝛽
𝑗

󵄨󵄨󵄨󵄨󵄨
) ,

(11)

where 𝑃
𝜆
(⋅) is a nonnegative penalty function and we use

𝑃
𝜆
(|𝛽
𝑗
|) = 𝜆|𝛽

𝑗
|, which is the Lasso penalty, where 𝜆 is the

tuning parameter not included in 𝜑.
The Lasso estimator is then defined as argmaxPLL(𝜑);

that is,

𝜑 = argmin
{

{

{

𝑛

2
log (𝜎2)

−
1

2𝜎
2

𝑛

∑

𝑖=1

[(𝑦
𝑖
− 𝑥
𝑖
𝛽 − 𝜓𝑢

𝑖
)
2

− 𝜎
2
𝑢
2

𝑖
]

+
𝜆

2

𝑝

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝛽
𝑗

󵄨󵄨󵄨󵄨󵄨

}

}

}

.

(12)

Clearly, 𝑢 = (𝑢
1
, . . . , 𝑢

𝑛
) can be seen as “missing data”;

in the following, we will derive a generalized expectation-
maximization algorithm for computing the ℓ

1
penalized

estimator. It turns out that the penalized estimator can be
computed by iterative Lasso-penalized least square.

Set

𝑄(𝜑 | 𝜑
(𝑘)
) = 𝐸 [ℓ

𝑐
(𝜑) | 𝑦, 𝜑

(𝑘)
] = 𝐸
𝑢|𝑦

[ℓ (𝜑 | 𝑦
𝑐
) | 𝑦, 𝜑

(𝑘)
]

(13)

as the 𝑄-function over 𝜑 at iteration 𝑘 step and where 𝐸
𝑢|𝑦

denotes the conditional expectation of 𝑢 given 𝑦.

At the 𝐸-step, by using the properties of conditional
expectation of the truncated normal distribution, we obtain

𝑒
(𝑘)

1,𝑖
= 𝐸 [𝑢

𝑖
| 𝑦
𝑖
, 𝜑
(𝑘)
] = 𝜇
(𝑘)

1,𝑖
+ �̂�
(𝑘)

1

𝜙 (𝜇
(𝑘)

1,𝑖
/�̂�
(𝑘)

1
)

Φ (𝜇
(𝑘)

1,𝑖
/�̂�
(𝑘)

1
)

,

𝑒
(𝑘)

2,𝑖
= 𝐸 [𝑢

2

𝑖
| 𝑦
𝑖
, 𝜑
(𝑘)
]

= (𝜇
(𝑘)

1,𝑖
)
2

+ (�̂�
(𝑘)

1
)
2

+ 𝜇
(𝑘)

1,𝑖
�̂�
(𝑘)

1

𝜙 (𝜇
(𝑘)

1,𝑖
/�̂�
(𝑘)

1
)

Φ (𝜇
(𝑘)

1,𝑖
/�̂�
(𝑘)

1
)

,

(14)

where 𝜇(𝑘)
1,𝑖

= �̂�
(𝑘)
(𝑦
𝑖
− 𝑥
𝑖
𝛽
(𝑘)
)/[(�̂�
(𝑘)
)
2
+ (�̂�
(𝑘)
)
2
] and �̂�

(𝑘)

1
=

�̂�
(𝑘)
/√(�̂�
(𝑘)
)
2
+ (�̂�
(𝑘)
)
2.

Then, combining the 𝑄-function and the Lasso penalty,
we set

𝑄(𝜑 | 𝜑
(𝑘)
) = 𝑄 (𝜑 | 𝜑

(𝑘)
) −

𝜆

2

𝑝

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝛽
𝑗

󵄨󵄨󵄨󵄨󵄨
, (15)

as the modified 𝑄-function.
At the 𝑀-step update 𝜑 by maximizing 𝑄(𝜑 | 𝜑

(𝑘)
) over

𝜑 in a sequence of conditional maximization steps. Firstly, we
get the following expression:

𝛽
(𝑘+1)

= argmin{ 1

2(�̂�
(𝑘)
)
2

𝑛

∑

𝑖=1

[𝑦
𝑖
− 𝑥
𝑖
𝛽 − �̂�

(𝑘)
𝑒
(𝑘)

1,𝑖
]

+
𝜆

2

𝑝

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝛽
𝑗

󵄨󵄨󵄨󵄨󵄨

}

}

}

;

(16)

then,we can obtain the closed expression of other parameters,

�̂�
(𝑘+1)

=

∑
𝑛

𝑖=1
(𝑦
𝑖
− 𝑥
𝑖
𝛽
(𝑘+1)

) 𝑒
(𝑘)

1,𝑖

∑
𝑛

𝑖=1
𝑒
(𝑘)

2,𝑖

,

̂
𝜎
2
(𝑘+1)

=
1

𝑛

𝑛

∑

𝑖=1

[(𝑦
𝑖
− 𝑥
𝑖
𝛽
(𝑘+1)

)
2

+ (�̂�
(𝑘+1)

)
2

𝑒
(𝑘)

2,𝑖

−2 (𝑦
𝑖
− 𝑥
𝑖
𝛽
(𝑘+1)

) �̂�
(𝑘+1)

𝑒
(𝑘)

2,𝑖
] .

(17)

So, the above procedures can be summarized as follows.

Step 1: set initial values for 𝛽, 𝜓, 𝜎, and tuning parameter 𝜆.
Step 2: compute the value of 𝑒

1,𝑖
and 𝑒
2,𝑖

at current iteration
step as the “working observed value.”

Step 3: solve the penalized least squares problem about
parameter 𝛽 and obtain its new Lasso estimator.

Step 4: compute the new estimator of 𝜓 and 𝜎.
Step 5: repeat steps 2–4 till convergence.

Secondly, for skew-𝑡 distributions, let 𝑌 = (𝑦
1
, . . . , 𝑦

𝑛
),

𝑢 = (𝑢
1
, . . . , 𝑢

𝑛
), 𝑤 = (𝑤

1
, . . . , 𝑤

𝑛
); then, based on

the hierarchical representation of Section 2.2, we can get
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the complete log-likelihood function associated with 𝑦
𝑐
=

(𝑦, 𝑢, 𝑤) as

ℓST
𝑐

(𝜑) = ℓST (𝜑 | 𝑦
𝑐
)

= 𝐶 −
𝑛

2
log (𝜎2) − 1

2𝜎
2

𝑛

∑

𝑖=1

𝑤
𝑖
(𝑦
𝑖
− 𝑥
𝑖
𝛽 − 𝜓𝑢

𝑖
)
2

−
1

2

𝑛

∑

𝑖=1

𝑤
𝑖
𝑢
2

𝑖
+
𝑛]
2

log(]
2
) − 𝑛 log Γ (]

2
)

+
]
2

𝑛

∑

𝑖=1

log (𝑤
𝑖
) −

]
2

𝑛

∑

𝑖=1

𝑤
𝑖
.

(18)

Similarly, setting

PLLST (𝜑) = ℓST
𝑐

(𝜑) −
1

2

𝑝

∑

𝑗=1

𝑃
𝜆
(
󵄨󵄨󵄨󵄨󵄨
𝛽
𝑗

󵄨󵄨󵄨󵄨󵄨
) ,

𝑄 (𝜑 | 𝜑
(𝑘)
) = 𝐸 [ℓST

𝑐

(𝜑) | 𝑦, 𝜑
(𝑘)
] ,

(19)

then we can combine the 𝐸-step, 𝑀-step, and the Lasso
estimator together as

𝛽
(𝑘+1)

= argmin
{

{

{

1

2(�̂�
(𝑘)
)
2

𝑛

∑

𝑖=1

𝑠
(𝑘)

1,𝑖
[𝑦
𝑖
− 𝑥
𝑖
𝛽 − �̂�

(𝑘)
𝑠𝑒
(𝑘)

1
]

+
𝜆

2

𝑝

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝛽
𝑗

󵄨󵄨󵄨󵄨󵄨

}

}

}

,

�̂�
(𝑘+1)

=

∑
𝑛

𝑖=1
(𝑦
𝑖
− 𝑥
𝑖
𝛽
(𝑘+1)

) 𝑠𝑒
(𝑘)

1,𝑖

∑
𝑛

𝑖=1
𝑠𝑒
(𝑘)

2,𝑖

,

̂
𝜎
2
(𝑘+1)

=
1

𝑛

𝑛

∑

𝑖=1

[𝑠
(𝑘)

1,𝑖
(𝑦
𝑖
− 𝑥
𝑖
𝛽
(𝑘+1)

)
2

+ (�̂�
(𝑘+1)

)
2

𝑠𝑒
(𝑘)

2,𝑖

−2 (𝑦
𝑖
− 𝑥
𝑖
𝛽
(𝑘+1)

) �̂�
(𝑘+1)

𝑒
(𝑘)

2,𝑖
] ,

(20)

and parameter ](𝑘+1) can be obtained via estimating equation
as follows:

𝑛 [log(]
2
) − digamma(]

2
) + 1] +

𝑛

∑

𝑖=1

(𝑠
(𝑘)

2,𝑖
− 𝑠
(𝑘)

1,𝑖
) = 0,

(21)

where

𝑠
(𝑘)

1,𝑖
= 𝐸
𝜑
[𝑤
𝑖
| 𝑦
𝑖
, 𝜑
(𝑘)
] = (

] + 1

] + 𝑑𝑦
𝑖

)

𝑇]+3 (𝑦2,𝑖/𝛼)

𝑇]+1 (𝑦2,𝑖/𝛼)
,

𝑠
(𝑘)

2,𝑖
= 𝐸
𝜑
[log (𝑤

𝑖
) | 𝑦
𝑖
, 𝜑
(𝑘)
]

= 𝑠
(𝑘)

1,𝑖
− log(

] + 𝑑𝑦
𝑖

2
) − digamma(] + 1

2
) − 1,

𝑠𝑒
(𝑘)

1,𝑖
= 𝐸
𝜑
[𝑤
𝑖
𝑢
𝑖
| 𝑦
𝑖
, 𝜑
(𝑘)
] = 𝛼√

] + 1

] + 𝑑𝑦
𝑖

𝑡]+1 (𝑦2,𝑖/𝛼)

𝑇]+1 (𝑦2,𝑖/𝛼)
+ 𝑠
2,𝑖
𝑞
𝑖
,

𝑠𝑒
(𝑘)

2,𝑖
= 𝐸
𝜑
[𝑤
𝑖
𝑢
2

𝑖
| 𝑦
𝑖
, 𝜑
(𝑘)
]

= (𝛼)
2
+ 𝛼𝑞
𝑖

𝑡]+1 (𝑦2,𝑖/𝛼)

𝑇]+1 (𝑦2,𝑖/𝛼)
+ 𝑠
2,𝑖
(𝑞
𝑖
)
2

,

(22)

and 𝑑𝑦
𝑖
= (𝑦
𝑖
− 𝑥
𝑖
𝛽)
2
/(𝜎
2
+ 𝜓
2
), 𝑞
𝑖
= 𝜓(𝑦

𝑖
− 𝑥
𝑖
𝛽)/(𝜎

2
+ 𝜓
2
),

𝛼 = 𝜓/√𝜎
2
+ 𝜓
2, 𝑦
1,𝑖

= 𝑞
𝑖
√(] + 1)/(] + 𝑑𝑦

𝑖
), and 𝑦

2,𝑖
=

𝑞
𝑖
√(] + 3)/(] + 𝑑𝑦

𝑖
).

Similarly, we can also summarize the above procedures as
follows.
Step 1: set initial values for 𝛽, 𝜓, 𝜎, ], and tuning parameter

𝜆.
Step 2: compute the value of 𝑠

1,𝑖
, 𝑠
2,𝑖

and 𝑠𝑒
1,𝑖
, 𝑠𝑒
2,𝑖

at current
iteration step as the “working observed value.”

Step 3: solve the penalized least squares problem about
parameter 𝛽 and obtain its new Lasso estimator.

Step 4: compute the new estimates of 𝜓 and 𝜎 directive and
then get the new estimates of ].

Step 5: get the tuning parameters 𝜆 by GCV.
Step 6: repeat steps 2–5 till convergence.

4. Choice of Tuning Parameters

We now consider the choice of tuning parameters. In
application, the cross-validation (CV), or generalized cross-
validation (GCV), is often used for choosing tuning param-
eters. Following the examples of [11, 15], we develop a com-
ponentwise deviance-based GCV criterion for the proposed
models.

Let 𝜑 be the EM estimates of parameters 𝜑 without
penalty functions. For a given value of tuning parameter of
𝜆, let 𝛽 be the maximum penalized likelihood estimates of
the parameters of the model by fixing the rest of components
of 𝜑 at 𝜑. Denote the deviance function as

𝐷(𝛽) = 𝐸 [ℓ
𝑐
(𝜑) | 𝛽] − 𝐸 [ℓ

𝑐
(𝜑) | 𝜑] . (23)

Further, let ℓ
󸀠󸀠
(𝛽) be the second derivative of the log-

likelihood function with respect to 𝛽 evaluated at 𝛽. We
define a GCV criterion of the model as

GCV (𝜆) =

𝐷 (𝛽)

𝑛(1 − 𝑒 (𝜆) /𝑛)
2
, (24)



Mathematical Problems in Engineering 5

0 2 4 6 8 10 12 14 16 18 20

0

1

2

3
C
oe
ffi
ci
en
ts

𝜆

−4

−3

−2

−1

(a)

0 2 4 6 8 10 12 14 16 18 20

1.5

1

0

0.5

2

2.5

3

C
oe
ffi
ci
en
ts

𝜆

−1.5

−0.5

−1

(b)

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 2 4 6 8 10 12 14 16 18 20

C
oe
ffi
ci
en
ts

𝜆

(c)

0.88

0.9

2 3 4 5 6 7 8 9 10

0.92

0.94

0.96

0.98

1

𝜆

Pr
ofi

le
s

(d)

Figure 1: (a)–(c) Trace plot of regression coefficients and profile of tuning parameter.

where 𝑒(𝜆) is the effective number of regression coefficients.
It is given by

𝑒 (𝜆) = trace {[ℓ󸀠󸀠 (𝛽) − Σ (𝛽)]
−1

ℓ
󸀠󸀠
(𝛽)} , (25)

where Σ(𝛽) = diag{1/|𝛽
1
|, . . . , 1/|𝛽

𝑝
|}. The tuning parameter

𝜆 is chosen by minimizing GCV(𝜆).

5. Simulation Study

In order to investigate the experimental performance of our
methodology, we undertake a simulation study to investigate
the effect of estimation and variable selection. The dataset
is generated as follows: let 𝑥

𝑖
= (𝑥
1𝑖
, . . . , 𝑥

𝑝𝑖
)
𝑇 be covariate,

where 𝑝 = 30 and 𝑥
1𝑖,...,𝑝1

are independent and distributed as
uniform distribution𝑈(−1, 1). Moreover, assume response 𝑦

𝑖

is formulated as

𝑦
𝑖
= 𝑥
𝑇

𝑖
𝛽 + 𝜀
𝑖
, (26)

where 𝜀
𝑖
is distributed as the following five cases.

Case (1): 𝜀
𝑖
∼ 𝑁(0, 𝜎

2
); Case (2): 𝜀

𝑖
∼ SN(0, 𝜎2

1
, 𝛼
1
); Case

(3): 𝜀
𝑖
∼ SN(0, 𝜎

2

1
, 𝛼
2
); Case (4): 𝜀

𝑖
∼ ST(0, 𝜎2

2
, 𝛼
1
, ]); and Case

(5): 𝜀
𝑖
∼ ST(0, 𝜎2

2
, 𝛼
2
, ]).

We take the sample size 𝑛 to be 100. The true values for 𝛽
are𝛽
1
= 𝛽
2
= 𝛽
3
= 1 and the other components of 𝛽 are equal

to zero. Further, let 𝜎
1
= 2.5, 𝜎

2
= 1.0, 𝛼

1
= 1.5, 𝛼

2
= −0.8,

and ] = 3.
Under above settings, we use three linear regressionmod-

els based on normal, skew-normal, and skew-𝑡 distribution to
fit each dataset, respectively.

Table 1 shows the results of the simulation study, where
No. denotes the number of nonzero components of 𝛽, which
can determine the effect of variable selection, and where AE
denotes the average of absolute error; that is, (1/𝑝)∑𝑝

𝑗=1
|𝛽
0

𝑗
−

𝛽
𝑗
|, which can show the accuracy of the estimates, and the 𝜆

is the tuning parameter.
Examination of Table 1 reveals that (i) when the true

distribution is normal, the difference of the three models is
very small and the coefficient 𝛽 can be found correctly; (ii)
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Table 1: Results of the simulation study.

Case N SN ST
No. AE 𝜆 No. AE 𝜆 No. AE 𝜆

1 3 0.6238 9.45 3 0.7323 7.46 3 0.7431 6.91
2 7 2.3536 12.20 3 1.0913 6.38 3 1.0396 6.22
3 11 3.3893 14.80 3 1.0488 6.37 3 1.1158 6.12
4 8 2.8939 18.92 3 1.1261 6.12 3 1.0135 6.25
5 10 3.8273 16.82 3 1.1542 5.12 3 1.0363 5.05

when the true distribution is nonnormal, the models based
on normal fit the data badly; not only does the proportion
of nonzero increase but also the average error becomes
significant; (iii) for the cases of the true distribution being
nonnormal, the models based on the skew distribution can
improve the fitting effect better than the ones of the normal
distribution.

Figures 1(a)–1(c) present the trace plots of coefficients
versus tuning parameters: (a) Case (5) fitted by normal
distribution (N) model; (b) Case (5) fitted by skew-normal
distributions (SN) model; (c) Case (5) fitted by skew-𝑡
distributions (ST) model. Moreover, (d) shows profiles of the
tuning parameter of (c).

From Figure 1(c), it is clear that the ST model is most
appropriate for fitting this dataset.

6. Conclusion

In this paper, we have proposed a class of linear regression
models based on the asymmetric distribution. An EM-type
algorithm and the Lasso penalty estimates are developed
by exploring the statistical properties of the model that
can be implemented efficiently in types of software such as
SAS, R, and Matlab. Meanwhile, we have shown that the ℓ

1

penalized maximum likelihood estimation can be done via
a generalized EM algorithm that is equivalent to iterative
ℓ
1
penalized least square for some parameters. We have

observed that if the data are generated from a true model
of the skew distribution, the ℓ

1
penalized models based on

EM algorithm not only identify zero coefficient but also are
significantly more accurate than the general MLE models.

On the other hand, due to recent advances in compu-
tational technology, it is worthwhile to carry out Bayesian
treatments viaMarkov chainMonteCarlo (MCMC) sampling
methods in the context of this paper.
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