7 research outputs found

    Implications of MDCK cell heterogeneity in cell-based influenza vaccine production

    Get PDF
    Influenza is a global public health issue that causes serious illness with high mortality rate. Currently, Madin-Darby canine kidney (MDCK) cell culture-based influenza vaccine production moving up to the front as an inexorable trend for the substitution of egg-based vaccine production, owing to its high degree of flexibility and scalability. However, MDCK cells are a continuous cell line and comprise a heterogeneous pool of non-clonal cells that differ in morphological as well as functional features in influenza virus production. The impurity of cell population may lead to fugacious tendency in virus production, and long-term culture may bring potential risk of unstable viral production or vaccine quality as cells in MDCK subclonal population may encounter unexpected manifestation of chromosomal rearrangement, loss of the virus susceptibility, or reduction of the virus partials packaging capability during the culture. Although many details of the influenza virus life cycle have already been unraveled, little is known about the ability of subclones in virus infection, intracellular replication, and virus release during viral vaccine production process. With the widely utilizing of omics-based approaches and progressively accumulating of omics database, transcriptome profile analysis will be a powerful strategy to explore the mechanism of cell heterogeneity, providing great significance for the development of robust virus producing cell line and robust virus production process. This work aims to explore a deeper understanding on the MDCK cell heterogeneity used in influenza virus production. For this purpose, a MDCK cell line that has been extensively used in industrial production was subcloned and examined for the influenza virus productivity. The virus productivity spread over a wide range of more than 300-fold among different clones, which revealed large variations in their ability to produce progeny viruses. The high and low producer as well as parent cell population were expanded to explore the intracellular virus propagation process, and the expression levels of all the annotated genes were quantified across the different subclones using RNA-seq. The RT-qPCR results showed that the influenza virus RNA synthesis and virus release differed dramatically among subclones during a synchronized single-cycle infection. Pathway analysis performed on the genes indicated that most of the genes are not differentially expressed, but a few key cellular metabolic pathways are differentially expressed among the subclones, especially the genes related to the virus infection, replication and release. These results spurs further hypothesis to improve our mechanistic understanding of cell line stability and virus propagation process, which will have significant impact on rationalizing cell line development of viral vaccine producing mammalian cells

    Effect of magnetic fields on simultaneous nitrification and denitrification microbial systems

    No full text
    Magnetic fields positively influence the nitrogen removal efficiency in activated sludge systems. However, the structural succession pattern of microorganisms by magnetic fields still remains further explored. In this paper, a magnetic simultaneous nitrification and denitrification (MSND) reactor was constructed, and the influence of optimized magnetic field intensity (0, 10, 20 and 30 mT) on the nitrogen removal efficiency was investigated at HRT 6 h, 28.0–30.0 °C, and pH 7.0–8.0. Molecular biology was used to investigate the succession process of the dominant microbial flora and the functional gene structure of MSND systems. The results showed that the denitrification effects of the MSND system were significantly enhanced, which contributed to the lower concentration of total nitrogen in the effluent of the magnetic reactor than that of the nonmagnetic group reactor. The magnetic fields induced the succession of microbial community structure and improved the stability of microbial communities, thereby the relative abundances of nitrifying and denitrifying bacteria, and the functional genes were improved. In particular, the abundance of functional genes related to gene proliferation and transmembrane transport was increased. Therefore, the efficient nitrogen removal was achieved, which gives inspiration in the enhanced wastewater treatment by magnetic fields. HIGHLIGHTS The influence of magnetic fields with different magnetic field strengths on SND systems was explored.; The succession process of microbial dominant flora and functional gene structure in the SND system was analyzed.; The biological mechanism of the better denitrification effect of SND under magnetic field conditions was clarified.

    Comparison of Gross Primary Productivity Derived from GIMMS NDVI3g, GIMMS, and MODIS in Southeast Asia

    Get PDF
    Gross primary production (GPP) plays an important role in the net ecosystem exchange of CO2 between the atmosphere and terrestrial ecosystems. It is particularly important to monitor GPP in Southeast Asia because of increasing rates of tropical forest degradation and deforestation in the region in recent decades. The newly available, improved, third generation Normalized Difference Vegetation Index (NDVI3g) from the Global Inventory Modelling and Mapping Studies (GIMMS) group provides a long temporal dataset, from July 1981 to December 2011, for terrestrial carbon cycle and climate response research. However, GIMMS NDVI3g-based GPP estimates are not yet available. We applied the GLOPEM-CEVSA model, which integrates an ecosystem process model and a production efficiency model, to estimate GPP in Southeast Asia based on three independent results of the fraction of photosynthetically active radiation absorbed by vegetation (FPAR) from GIMMS NDVI3g (GPPNDVI3g), GIMMS NDVI1g (GPPNDVI1g), and the Moderate Resolution Imaging Spectroradiometer (MODIS) MOD15A2 FPAR product (GPPMOD15). The GPP results were validated using ground data from eddy flux towers located in different forest biomes, and comparisons were made among the three GPPs as well as the MOD17A2 GPP products (GPPMOD17). Based on validation with flux tower derived GPP estimates the results show that GPPNDVI3g is more accurate than GPPNDVI1g and is comparable in accuracy with GPPMOD15. In addition, GPPNDVI3g and GPPMOD15 have good spatial-temporal consistency. Our results indicate that GIMMS NDVI3g is an effective dataset for regional GPP simulation in Southeast Asia, capable of accurately tracking the variation and trends in long-term terrestrial ecosystem GPP dynamics
    corecore