20 research outputs found

    Highly effective way in five-axis sculptured surfaces machining using flat-end cutter

    Get PDF
    This paper applied the concept of “contact” in Differential Geometry into the machining of the sculptured surface. I presented the contact principle of the machining of complicated surfaces, using the circumference circle of the cylindrical cutter to sweep the curved surface instead of ball-end mill. This is highly effective method. In this paper an theory for machining complicated surface is presented. By using a flat-end mill instead of ball-end mill, and adjusting the axis relate to the surface, the two surfaces, The swept surface and the required surface, has the same curvature, up to as high as 3th order

    Hydraulic motor with swinging planetary drive of bevel gears and its force & efficiency calculation

    Get PDF
    A new kind of hydraulic motor with offset swining planetary drive of bevel gears and the application in Capstan is presented; the researched of the calculation of the efficiency of the mechanism is made. Compared to the former structure, new kind of structure has many advantages over that of the old structure. The hydraulic driving system in the traditional derrick car is: hydraulic motor drives a reducer, and then the reducer in turn drives a capstan. Another hydraulic driving system is: an axial piston motor and an internal cycloid pinwheel drive are applied, so that the reducer and the capstan are combined into one so that simplified the transmission system. In the third version, a hydraulic motor is applied, which can be considered as the combination of hydraulic motor with axial piston and the planetary reducer and then drives the capstan, so that simplified the transmission system as well. The new kind of hydraulic motor with offset swing planetary drive of bevel gears, which combined the hydraulic motor, the internal planetary reducer with bevel gears, and the capstan together, is the most compact structure. It is of more advantage in the occasion when space is extremely limited. In the paper, two kind of construction of this mechanism is presented, and the analysis of the efficiency of this kind of transmission is made as well

    The second fundamental law of gearing and contact stress calculation of high order contact gearing

    Get PDF
    After an extensive research on the fundamental theory, the theoretical basis for the Logix gearing will be presented in this paper. This includes the theory for gear meshing with high degree of contact. In comparison to previous studies, the theory of this paper is more restricted going beyond third order parameters into the fourth order, the teeth profile had one order of contact higher than that of the Logix gearing. So that further improved the contact strength of tooth profile. A large category of gearings with high order of contact was presented, while the Logix gear is only one of them, or the special example in realization of my theory. In the Logix gearing, the zigzag curvature center curve of media rack does not always lay about the pitch line and does not extend along the pitch line continuously and steadily. It goes forward and returns. So that, in terms of properties of the transverse engagement, the Logix gearing has not much improvement over the traditional Novikov gearing (in which the transverse engagement is temporally). In my gearing the curvature center of basic rack extend along the pitch line continuously and steadily. The transverse engagement factor is larger than that of Logix gearing

    3D characterization of ultrasonic melt processing on the microstructural refinement of Al-Cu alloys by synchrotron X-ray tomography

    Get PDF
    The effect of ultrasonic melting processing on three-dimensional architecture of intermetallic phases and pores in two multicomponent cast Al-5.0Cu-0.6Mn-0.5 Fe alloys is characterized using conventional microscopy and synchrotron X-ray microtomography. The two alloys are found to contain intermetallic phases such as Al15(FeMn)3Cu2, Al7Cu2Fe, Al3(FeMn), Al6(FeMn), and Al2Cu that have complex networked morphology in 3D. The application of USP in alloys can obtained refined and equiaxed microstructures. The grain size of 0.5Fe and 1.0 Fe alloys is greatly decreased from 16.9 m, 15.8 m without USP to 13.3 m, 12.2 m with USP, respectively. The results show that USP significantly reduce the volume fraction, grain size, interconnectivity, and equivalent diameter of the intermetallic phases in both alloys. The volume fraction of pores in both alloys is reduced due to the USP degassing effect. The refinement mechanism of USP induced fragmentation of primary and secondary dendrites via acoustic bubbles and acoustic streaming flow were discussed.Comment: 28 pages, 16 figures

    Influence of Fe-rich phases and precipitates on the mechanical behaviour of Al-Cu-Mn-Fe-Sc-Zr alloys studied by synchrotron X-ray and neutron

    Get PDF
    A multiscale methodology using scanning and transmission electron microscope, synchrotron X-ray nano-tomography and micro-tomography, small angle neutron scattering, and in situ synchrotron X-ray diffraction has been used, to reveal the effect of Fe-rich phases and precipitates on the mechanical behaviour of an Al-Cu-Mn-Fe-Sc-Zr alloy. The α-Al grains size is reduced from 185.1 μm (0 MPa) and 114.3 μm (75 MPa) by applied pressure. Moreover, it has been demonstrated that suitable heat treatments modify the 3D morphology of Fe-rich phases from interconnected to a disaggregated structure that improves the mechanical properties of the alloy. The size and morphology evolution of fine precipitates under different ageing temperature and time are revealed. At ageing temperature of 160 °C, the precipitates change from GP zones to θ' (around 75 nm in length) with ageing time increasing from 1 h to 24 h; the Vickers hardness increases from 72.0 HV to 110.7HV. The high ductility of the Sc, Zr modified Al-Cu alloy is related to the complex shape and the loss of interconnectivity of the Fe-rich particles due to the heat treatment. The evolution of the crystal lattice strains in α-Al, and β-Fe calculated during tensile test using in-situ synchrotron X-ray diffraction corroborates the influence of the microstructure in the ductility of the modified alloy.This work was financially supported by the Natural Science Foundation of China (Nos. 52104373 and 51901042), the Basic and Applied Basic Foundation of Guangdong Province, China (Nos. 2020B1515120065 and 2021B1515140028); the Guangdong Province Office of Education, China (No. 2018KQNCX256). We also would like to thank the WL13HB beamline and WL14B1 beamline of Shanghai Synchrotron Radiation Facility, SSRF, China; 4W1A beamline of Beijing Synchrotron Radiation Facility, BSRF, China for provision of synchrotron radiation beamtime; and Small Angle Neutron Scattering (SANS) Beamline in China Spallation Neutron Source (CSNS, Dongguan, China) for providing neutron beamtime

    Effect of Initial Fe Content on Microstructure and Mechanical Properties of Recycled Al-7.0Si-Fe-Mn Alloys with Constant Mn/Fe Ratio

    No full text
    The effect of initial Fe content on the iron removal efficiency, morphology evolution of the Fe-rich phase and the mechanical properties of the recycled Al-7Si-xFe-1.2xMn alloy during melt holding was studied using an optical microscope (OM), scanning electron microscope (SEM) and tensile testing. The results show that with the increase of the initial Fe content, the residual Fe concentration of the alloys gradually increased, and the corresponding removal efficiency of Fe gradually was increased to 77.67%. The type of Fe-rich phase in the alloys changes from α-Al15(FeMn)3Si2 to a mixture of α-Al15(FeMn)3Si2 and β-Al5FeSi, and its morphological evolution is as follows: coarse Chinese-script + polygon → dense Chinese-script + polygon → polygonal + dense Chinese-script + plate-like. Furthermore, the morphology of the Fe-rich phase in the slag changes from a polygonal shape to an irregular shape with a two-layer structure. The formation and increase of the inner layer with high Mn-content in the irregular-shape phase is the main reason for the increasing residual Fe content. The plasticity of the alloy increases obviously with the increase of the initial Fe content, but the formation of the β-Al5FeSi with plate-like morphology in higher Fe-containing alloy may hinder further improvement of the plasticity

    Influence of Forging Pressure on Microstructural and Mechanical Properties Development in Linear Friction Welded Al-Cu Dissimilar Joint

    No full text
    Abstract Dissimilar AA5083 and C101 pure copper linear friction welds were prepared using different forging pressures (60 MPa, 80 MPa, and 110 MPa) to investigate the influence of the forging pressure on the microstructural and mechanical properties development using optical microscopy (OM), scanning electron microscopy (SEM), hardness measurements, and tensile testing. The in-situ generated intermetallic particles in the vicinity of the weld line were characterised using electron probe micro-analyser (EPMA), to rationalise their impact on the mechanical properties. The results showed that the process led to the formation of various intermetallic phases as well as the entrainment of base material fragments in the vicinity of the weld interface. In general, high forging pressure corresponding to high welding heat input resulted in the formation of a layered intermetallic phase (identified as Al2CuMg), which was the most detrimental to the mechanical properties, compared with a scattered distribution of fragmented Cu and intermetallic particles across the joint interface

    Design, synthesis, and anticonvulsant effects evaluation of nonimidazole histamine H3 receptor antagonists/inverse agonists containing triazole moiety

    No full text
    Histamine H3 receptors (H3R) antagonists/inverse agonists are becoming a promising therapeutic approach for epilepsy. In this article, novel nonimidazole H3R antagonists/inverse agonists have been designed and synthesised via hybriding the H3R pharmacophore (aliphatic amine with propyloxy chain) with the 1,2,4-triazole moiety as anticonvulsant drugs. The majority of antagonists/inverse agonists prepared here exerted moderate to robust activities in cAMP-response element (CRE) luciferase screening assay. 1-(3-(4-(3-Phenyl-4H-1,2,4-triazol-4-yl)phenoxy)propyl)piperidine (3l) and 1-(3-(4-(3-(4-chlorophenyl)-4H-1,2,4-triazol-4-yl)phenoxy)propyl)piperidine (3m) displayed the highest H3R antagonistic activities, with IC50 values of 7.81 and 5.92 nM, respectively. Meanwhile, the compounds with higher H3R antagonistic activities exhibited protection for mice in maximal electroshock seizure (MES)-induced convulsant model. Moreover, the protection of 3m against the MES induced seizures was fully abrogated when mice were co-treated with RAMH, a CNS-penetrant H3R agonist, which suggested that the potential therapeutic effect of 3m was through H3R. These results indicate that the attempt to find new anticonvulsant among H3R antagonists/inverse agonists is practicable
    corecore