58 research outputs found

    Effect of polyphenol extract from Zanthoxylum bungeanum Maxim. on endocrine hormones and monoamine oxidase activity in a mouse model of climacteric depression

    Get PDF
    Purpose: To investigate the effects of polyphenol extract from Zanthoxylum bungeanum Maxim. (ZPPC) on endocrine hormones, monoamine  oxidase activity and behavior in a mouse model of climacteric depression.Methods: Institute of Cancer Research (ICR) female albino mice (n = 50) weighing 24 – 26 g (mean wt = 25.0 ± 1.0 g) were randomly assigned to five groups of ten rats each: normal control group, negative control, and ZPPC (50 mg/kg), ZPPC (100 mg/kg) and ZPPC (200 mg/kg) groups. Depression was induced in the mice via oral administration of moclobemide at a dose of 20 mg/kg, and intraperitoneal injection of imipramine (20 mg/kg) 1 h and 30 min, before treatment. Tail suspension, forced swimming and voluntary activity tests were performed on the mice. The activity of monoamine oxidase (MAO) in mouse brain and the levels of endocrine hormones were also determined.Results: Treatment of depressed mice with ZPPC significantly and dose-dependently increased their tail suspension and immobility time (p < 0.05). The activity of monoamine oxidase in the brains of mice in the negative control group was significantly higher than that of normal control mice, but was significantly and dose-dependently reduced by ZPPC treatment (p < 0.05). Similarly, treatment of depressed mice with ZPPC significantly and dose-dependently reduced their serum adrenocorticotropin and corticosterone levels (p < 0.05).Conclusion: The results of this study indicate that ZPPC exerts antidepressant effect via suppression of brain MAO activity. Keywords: Climacteric depression, Endocrine hormones, Menopause, Monoamine oxidase, Polyphenol

    Quantitatively probing the magnetic behavior of individual nanoparticles by an AC field-modulated magnetic force microscopy

    Get PDF
    Despite decades of advances in magnetic imaging, obtaining direct, quantitative information with nanometer scale spatial resolution remains an outstanding challenge. Current approaches, for example, Hall micromagnetometer and nitrogen-vacancy magnetometer, are limited by highly complex experimental apparatus and a dedicated sample preparation process. Here we present a new AC field-modulated magnetic force microscopy (MFM) and report the local and quantitative measurements of the magnetic information of individual magnetic nanoparticles (MNPs), which is one of the most iconic objects of nanomagnetism. This technique provides simultaneously a direct visualization of the magnetization process of the individual MNPs, with spatial resolution and magnetic sensitivity of about 4.8 nm and 1.85 x 10(-20) A m(2), respectively, enabling us to separately estimate the distributions of the dipolar fields and the local switching fields of individual MNPs. Moreover, we demonstrate that quantitative magnetization moment of individual MNPs can be routinely obtained using MFM signals. Therefore, it underscores the power of the AC field-modulated MFM for biological and biomedical applications of MNPs and opens up the possibility for directly and quantitatively probing the weak magnetic stray fields from nanoscale magnetic systems with superior spatial resolution

    PSR J1926-0652: A Pulsar with Interesting Emission Properties Discovered at FAST

    Get PDF
    We describe PSR J1926-0652, a pulsar recently discovered with the Five-hundred-meter Aperture Spherical radio Telescope (FAST). Using sensitive single-pulse detections from FAST and long-term timing observations from the Parkes 64-m radio telescope, we probed phenomena on both long and short time scales. The FAST observations covered a wide frequency range from 270 to 800 MHz, enabling individual pulses to be studied in detail. The pulsar exhibits at least four profile components, short-term nulling lasting from 4 to 450 pulses, complex subpulse drifting behaviours and intermittency on scales of tens of minutes. While the average band spacing P3 is relatively constant across different bursts and components, significant variations in the separation of adjacent bands are seen, especially near the beginning and end of a burst. Band shapes and slopes are quite variable, especially for the trailing components and for the shorter bursts. We show that for each burst the last detectable pulse prior to emission ceasing has different properties compared to other pulses. These complexities pose challenges for the classic carousel-type models.Comment: 13pages with 12 figure

    Evaluation of the IP-10 mRNA release assay for diagnosis of TB in HIV-infected individuals

    Get PDF
    HIV-infected individuals are susceptible to Mycobacterium tuberculosis (M.tb) infection and are at high risk of developing active tuberculosis (TB). Interferon-gamma release assays (IGRAs) are auxiliary tools in the diagnosis of TB. However, the performance of IGRAs in HIV-infected individuals is suboptimal, which limits clinical application. Interferon-inducible protein 10 (IP-10) is an alternative biomarker for identifying M.tb infection due to its high expression after stimulation with M.tb antigens. However, whether IP-10 mRNA constitutes a target for the diagnosis of TB in HIV-infected individuals is unknown. Thus, we prospectively enrolled HIV-infected patients with suspected active TB from five hospitals between May 2021 and May 2022, and performed the IGRA test (QFT-GIT) alongside the IP-10 mRNA release assay on peripheral blood. Of the 216 participants, 152 TB patients and 48 non-TB patients with a conclusive diagnosis were included in the final analysis. The number of indeterminate results of IP-10 mRNA release assay (13/200, 6.5%) was significantly lower than that of the QFT-GIT test (42/200, 21.0%) (P = 0.000026). IP-10 mRNA release assay had a sensitivity of 65.3% (95%CI 55.9% – 73.8%) and a specificity of 74.2% (95%CI 55.4% – 88.1%), respectively; while the QFT-GIT test had a sensitivity of 43.2% (95%CI 34.1% – 52.7%) and a specificity of 87.1% (95%CI 70.2% – 96.4%), respectively. The sensitivity of the IP-10 mRNA release assay was significantly higher than that of QFT-GIT test (P = 0.00062), while no significant difference was detected between the specificities of these two tests (P = 0.198). The IP-10 mRNA release assay showed a lower dependence on CD4+ T cells than that of QFT-GIT test. This was evidenced by the fact that the QFT-GIT test had a higher number of indeterminate results and a lower sensitivity when the CD4+ T cells counts were decreased (P < 0.05), while no significant difference in the number of indeterminate results and sensitivity were observed for the IP-10 mRNA release assay among HIV-infected individuals with varied CD4+T cells counts (P > 0.05). Therefore, our study suggested that M.tb specific IP-10 mRNA is a better biomarker for diagnosis of TB in HIV-infected individuals

    Catalytic wet oxidation of aqueous methylamine: comparative study on the catalytic performance of platinum–ruthenium, platinum, and ruthenium catalysts supported on titania

    No full text
    <div><p>Promotion of the dispersion of Ru species supported on TiO<sub>2</sub> was achieved by introduction of Pt component and the role of Pt in enhancing the catalytic performances of Pt–Ru was investigated with catalytic wet air oxidation of methylamine used as a probing reaction. It was found that Pt–Ru/TiO<sub>2</sub> displayed a much better catalytic performance compared with Pt/TiO<sub>2</sub> and Ru/TiO<sub>2</sub> catalysts due to having the highest dispersion of active species. Both high total organic carbon conversion and nitrogen selectivity (∼100%) over Pt–Ru/TiO<sub>2</sub> catalyst were achieved at low temperature (200 °C). X-ray photoelectron spectroscopy characterization indicated that there were strong interactions between metal particles and the support, which may increase the catalytic performance of catalysts.</p></div

    Fusion of Visible Light Indoor Positioning and Inertial Navigation Based on Particle Filter

    No full text

    Table1_Network pharmacology and computer-aided drug design to explored potential targets of Lianhua Qingwen and Qingfei Paidu decoction for COVID-19.XLS

    No full text
    Coronavirus disease 2019 (COVID-19) caused by SARS-CoV-2, has spread globally, affecting people’s lives worldwide and hindering global development. Traditional Chinese Medicine (TCM) plays a unique role in preventing and treating COVID-19. Representative prescriptions for the COVID-19 treatment, Lianhua Qingwen (LHQW) and Qingfei Paidu Decoction (QFPD), effectively alleviate COVID-19 symptoms, delaying its progression and preventing its occurrence. Despite the extensive similarity in their therapeutic effects, the mechanisms and advantages of LHQW and QFPD in in treating mild-to-moderate COVID-19 remain elusive. To characterize the mechanisms of LHQW and QFPD in treating COVID-19, we used integrated network pharmacology and system biology to compare the LHQW and QFPD components, active compounds and their targets in Homo sapiens. LHQW and QFPD comprise 196 and 310 active compounds, some of which have identical targets. These targets are enriched in pathways associated with inflammation, immunity, apoptosis, oxidative stress, etc. However, the two TCM formulas also have specific active compounds and targets. In LHQW, arctiin, corymbosin, and aloe-emodin target neurological disease-related genes (GRM1 and GRM5), whereas in QFPD, isofucosterol, baicalein, nobiletin, oroxylin A, epiberberine, and piperlonguminine target immunity- and inflammation-related genes (mTOR and PLA2G4A). Our findings indicate that LHQW may be suitable for treating mild-to-moderate COVID-19 with nervous system symptoms. Moreover, QFPD may effectively regulate oxidative stress damage and inflammatory symptoms induced by SARS-CoV-2. These findings may provide references for the clinical application of LHQW and QFPD.</p

    Response of phytoplankton assemblages to nitrogen reduction in the Laizhou Bay, China

    No full text
    The response of phytoplankton assemblages to decreases in nitrogen loading is an essential index to assess the recovery of aquatic ecosystems from eutrophic status. However, a positive signal is hard to observe from short-term operations considering ecosystem complexity. Here, we used decadal data from the Laizhou Bay, China to track the seasonal and annual variations in phytoplankton assemblages after ammonia reduction in the Xiaoqing and Yellow Rivers. Annual trends show reduced phytoplankton abundance and a decline in harmful algal blooms, indicating the positive recovery of phytoplankton assemblages. Phytoplankton assemblage in the sea region adjacent to the Xiaoqing River shows a lower H' index, higher cell abundance, and higher seasonal variability than the sea region neighbouring the Yellow River. The spatial variability might result from the differences of nitrogen species, runoff and sediment contents between the two rivers; this finding indicates a demand for more aggressive decreases in nitrogen loads
    corecore