36 research outputs found

    Fractional Spin for Quantum Hall Effect Quasiparticles

    Full text link
    We investigate the issue of whether quasiparticles in the fractional quantum Hall effect possess a fractional intrinsic spin. The presence of such a spin SS is suggested by the spin-statistics relation S=θ/2πS=\theta/2\pi, with θ\theta being the statistical angle, and, on a sphere, is required for consistent quantization of one or more quasiparticles. By performing Berry-phase calculations for quasiparticles on a sphere we find that there are two terms, of different origin, that couple to the curvature and can be interpreted as parts of the quasiparticle spin. One, due to self-interaction, has the same value for both the quasihole and quasielectron, and fulfills the spin-statistics relation. The other is a kinematical effect and has opposite signs for the quasihole and quasielectron. The total spin thus agrees with a generalized spin-statistics theorem (Sqh+Sqe)/2=θ/2π(S_{qh} + S_{qe})/2 = \theta/2\pi. On the plane, we do not find any corresponding terms.Comment: 15 pages, RevTeX-3.

    Dynamics of the Compact, Ferromagnetic \nu=1 Edge

    Full text link
    We consider the edge dynamics of a compact, fully spin polarized state at filling factor ν=1\nu=1. We show that there are two sets of collective excitations localized near the edge: the much studied, gapless, edge magnetoplasmon but also an additional edge spin wave that splits off below the bulk spin wave continuum. We show that both of these excitations can soften at finite wave-vectors as the potential confining the system is softened, thereby leading to edge reconstruction by spin texture or charge density wave formation. We note that a commonly employed model of the edge confining potential is non-generic in that it systematically underestimates the texturing instability.Comment: 13 pages, 7 figures, Revte

    Noncommutative Geometry, Extended W(infty) Algebra and Grassmannian Solitons in Multicomponent Quantum Hall Systems

    Full text link
    Noncommutative geometry governs the physics of quantum Hall (QH) effects. We introduce the Weyl ordering of the second quantized density operator to explore the dynamics of electrons in the lowest Landau level. We analyze QH systems made of NN-component electrons at the integer filling factor ν=k≤N\nu=k\leq N. The basic algebra is the SU(N)-extended W∞_{\infty}. A specific feature is that noncommutative geometry leads to a spontaneous development of SU(N) quantum coherence by generating the exchange Coulomb interaction. The effective Hamiltonian is the Grassmannian GN,kG_{N,k} sigma model, and the dynamical field is the Grassmannian GN,kG_{N,k} field, describing k(N−k)k(N-k) complex Goldstone modes and one kind of topological solitons (Grassmannian solitons).Comment: 15 pages (no figures

    Quantum fluctuations of classical skyrmions in quantum Hall Ferromagnets

    Full text link
    In this article, we discuss the effect of the zero point quantum fluctuations to improve the results of the minimal field theory which has been applied to study %SMG the skyrmions in the quantum Hall systems. Our calculation which is based on the semiclassical treatment of the quantum fluctuations, shows that the one-loop quantum correction provides more accurate results for the minimal field theory.Comment: A few errors are corrected. Accepted for publication in Rapid Communication, Phys. Rev.

    Off-Diagonal Long Range Order and Scaling in a Disordered Quantum Hall System

    Full text link
    We have numerically studied the bosonic off-diagonal long range order, introduced by Read to describe the ordering in ideal quantum Hall states, for noninteracting electrons in random potentials confined to the lowest Landau level. We find that it also describes the ordering in disordered quantum Hall states: the proposed order parameter vanishes in the disordered (σxy=0\sigma_{xy}=0) phase and increases continuously from zero in the ordered (σxy=e2/h\sigma_{xy}=e^2/h) phase. We study the scaling of the order parameter and find that it is consistent with that of the one-electron Green's function.Comment: 10 pages and 4 figures, Revtex v3.0, UIUC preprint P-94-03-02

    Exotic Quantum Order in Low-Dimensional Systems

    Full text link
    Strongly correlated quantum systems in low dimensions often exhibit novel quantum ordering. This ordering is sometimes hidden and can be revealed only by examining new `dual' types of correlations. Such ordering leads to novel collective modes and fractional quantum numbers. Examples will be presented from quantum spin chains and the quantum Hall effect.Comment: To appear in Solid State Communications, Proceedings of Symposium on the Advancing Frontiers in Condensed Matter Science. 12pages +6 PS figure

    Anisotropic Transport of Quantum Hall Meron-Pair Excitations

    Full text link
    Double-layer quantum Hall systems at total filling factor νT=1\nu_T=1 can exhibit a commensurate-incommensurate phase transition driven by a magnetic field B∥B_{\parallel} oriented parallel to the layers. Within the commensurate phase, the lowest charge excitations are believed to be linearly-confined Meron pairs, which are energetically favored to align with B∥B_{\parallel}. In order to investigate this interesting object, we propose a gated double-layer Hall bar experiment in which B∥B_{\parallel} can be rotated with respect to the direction of a constriction. We demonstrate the strong angle-dependent transport due to the anisotropic nature of linearly-confined Meron pairs and discuss how it would be manifested in experiment.Comment: 4 pages, RevTex, 3 postscript figure

    Massive skyrmions in quantum Hall ferromagnets

    Full text link
    We apply the theory of elasticity to study the effects of skyrmion mass on lattice dynamics in quantum Hall systems. We find that massive Skyrme lattices behave like a Wigner crystal in the presence of a uniform perpendicular magnetic field. We make a comparison with the microscopic Hartree-Fock results to characterize the mass of quantum Hall skyrmions at ν=1\nu=1 and investigate how the low temperature phase of Skyrme lattices may be affected by the skyrmion mass.Comment: 6 pages and 2 figure

    Interlayer Exchange Interactions, SU(4) Soft Waves and Skyrmions in Bilayer Quantum Hall Ferromagnets

    Full text link
    The Coulomb exchange interaction is the driving force for quantum coherence in quantum Hall systems. We construct a microscopic Landau-site Hamiltonian for the exchange interaction in bilayer quantum Hall ferromagnets, which is characterized by the SU(4) isospin structure. By taking a continuous limit, the Hamiltonian gives rise to the SU(4) nonlinear sigma model in the von-Neumann-lattice formulation. The ground-state energy is evaluated at filling factors ν=1,2,3,4\nu =1,2,3,4. It is shown at ν=1\nu =1 that there are 3 independent soft waves, where only one soft wave is responsible for the coherent tunneling of electrons between the two layers. It is also shown at ν=1\nu =1 that there are 3 independent skyrmion states apart from the translational degree of freedom. They are CP3^{3} skyrmions enjoying the spin-charge entanglement confined within the \LLL.Comment: 12 pages, 2 figure

    Electromagnetic characteristics of bilayer quantum Hall systems in the presence of interlayer coherence and tunneling

    Full text link
    The electromagnetic characteristics of bilayer quantum Hall systems in the presence of interlayer coherence and tunneling are studied by means of a pseudospin-texture effective theory and an algebraic framework of the single-mode approximation, with emphasis on clarifying the nature of the low-lying neutral collective mode responsible for interlayer tunneling phenomena. A long-wavelength effective theory, consisting of the collective mode as well as the cyclotron modes, is constructed. It is seen explicitly from the electromagnetic response that gauge invariance is kept exact, this implying, in particular, the absence of the Meissner effect in bilayer systems. Special emphasis is placed on exploring the advantage of looking into quantum Hall systems through their response; in particular, subtleties inherent to the standard Chern-Simons theories are critically examined.Comment: 9 pages, Revtex, to appear in Phys. Rev.
    corecore