160 research outputs found
A Search For Supernova Remnants in The Nearby Spiral Galaxy M74 (NGC 628)
We have identified nine new SNR candidates in M74 with [S II]/H
0.4 as the basic criterion. We obtain [S II]/H ratio in the
range from 0.40 to 0.91 and H intensities from 2.8
erg cm s to 1.7 erg cm s. We
also present spectral follow-up observations of the SNR candidates and can
confirm only three of them (SNR2, SNR3, and SNR5). The lack of confirmation for
the rest might be due to the contamination by the nearby H II emission regions
as well as due to the inaccurate positioning of the long slit on these objects.
In addition, we search the Observatory archival data for the X-ray
counterparts to the optically identified candidates. We find positional
coincidence with only three SNR candidates, SNR1, SNR2, and SNR8. The spectrum
of SNR2 yields a shock temperature of 10.8 keV with an ionization timescale of
1.6 10 s cm indicating a relatively young remnant in an
early Sedov phase which is not supported by our optical wavelength analysis.
Given the high luminosity of 10 erg s and the characteristics of
the X-ray spectrum, we favor an Ultra Luminous X-ray Source interpretation for
this source associated with an SNR. We calculate an X-ray flux upper limit of
9.0 erg cm s for the rest of the SNRs
including spectroscopically identified SNR3 and SNR5.Comment: 10 pages, 8 figures, accepted to be published in A&
A New Correlation Between GRB X-Ray Flares And The Prompt Emission
From a sample of GRBs detected by the and missions, we have
extracted the minimum variability time scales for temporal structures in the
light curves associated with the prompt emission and X-ray flares. A comparison
of this variability time scale with pulse parameters such as rise
times,determined via pulse-fitting procedures, and spectral lags, extracted via
the cross-correlation function (CCF), indicate a tight correlation between
these temporal features for both the X-ray flares and the prompt emission.
These correlations suggests a common origin for the production of X-ray flares
and the prompt emission in GRBs.Comment: 5 pages, 3 figures, Accepted for publication in ApJ
Gamma-Ray Bursts: Temporal Scales and the Bulk Lorentz Factor
For a sample of Swift and Fermi GRBs, we show that the minimum variability
timescale and the spectral lag of the prompt emission is related to the bulk
Lorentz factor in a complex manner: For small 's, the variability
timescale exhibits a shallow (plateau) region. For large 's, the
variability timescale declines steeply as a function of (). Evidence is also presented for an intriguing
correlation between the peak times, t, of the afterglow emission and the
prompt emission variability timescale.Comment: Accepted for publication in Ap
X - Ray Flares and Their Connection With Prompt Emission in GRBs
We use a wavelet technique to investigate the time variations in the light
curves from a sample of GRBs detected by Fermi and Swift. We focus primarily on
the behavior of the flaring region of Swift-XRT light curves in order to
explore connections between variability time scales and pulse parameters (such
as rise and decay times, widths, strengths, and separation distributions) and
spectral lags. Tight correlations between some of these temporal features
suggest a common origin for the production of X-ray flares and the prompt
emission.Comment: 7th Huntsville Gamma-Ray Burst Symposium, GRB 2013: paper 15 in eConf
Proceedings C130414
Study of Envelope Velocity Evolution of Type Ib-c Core-Collapse Supernovae from Observations of XRF 080109 / SN 2008D and GRB 060218 / SN 2006aj with BTA
Results of modeling the spectra of two supernovae SN 2008D and SN 2006aj
related to the X-ray flash XRF 080109 and gamma-ray burst GRB / XRF 060218,
respectively, are studied. The spectra were obtained with the 6-meter BTA
telescope of the Special Astrophysical Observatory of the Russian Academy of
Sciences in 6.48 and 27.61 days after the explosion of SN 2008D, and in 2.55
and 3.55 days after the explosion of SN 2006aj. The spectra were interpreted in
the Sobolev approximation with the SYNOW code. An assumption about the presence
of envelopes around the progenitor stars is confirmed by an agreement between
the velocities of lines interpreted as hydrogen and helium, and the empiric
power-law velocity drop with time for the envelopes of classic core-collapse
supernovae. Detection of a P Cyg profile of the H-beta line in the spectra of
optical afterglows of GRBs can be a determinative argument in favor of this
hypothesis.Comment: 12 pages, 6 figures, accepted for publication in Astrophysical
Bulletin
The Hurst Exponent of Fermi GRBs
Using a wavelet decomposition technique, we have extracted the Hurst exponent
for a sample of 46 long and 22 short Gamma-ray bursts (GRBs) detected by the
Gamma-ray Burst Monitor (GBM) aboard the Fermi satellite. This exponent is a
scaling parameter that provides a measure of long-range behavior in a time
series. The mean Hurst exponent for the short GRBs is significantly smaller
than that for the long GRBs. The separation may serve as an unbiased criterion
for distinguishing short and long GRBs.Comment: Accepted for publication in Monthly Notices of the Royal Astronomical
Societ
A Proposal to Localize Fermi GBM GRBs Through Coordinated Scanning of the GBM Error Circle via Optical Telescopes
We investigate the feasibility of implementing a system that will coordinate
ground-based optical telescopes to cover the Fermi GBM Error Circle (EC). The
aim of the system is to localize GBM detected GRBs and facilitate
multi-wavelength follow-up from space and ground. This system will optimize the
observing locations in the GBM EC based on individual telescope location, Field
of View (FoV) and sensitivity. The proposed system will coordinate GBM EC
scanning by professional as well as amateur astronomers around the world. The
results of a Monte Carlo simulation to investigate the feasibility of the
project are presented.Comment: 2011 Fermi Symposium proceedings - eConf C11050
Constraining the High-Energy Emission from Gamma-Ray Bursts with Fermi
We examine 288 GRBs detected by the Fermi Gamma-ray Space Telescope's Gamma-ray Burst Monitor (GBM) that fell within the field-of-view of Fermi's Large Area Telescope (LAT) during the first 2.5 years of observations, which showed no evidence for emission above 100 MeV. We report the photon flux upper limits in the 0.1-10 GeV range during the prompt emission phase as well as for fixed 30 s and 100 s integrations starting from the trigger time for each burst. We compare these limits with the fluxes that would be expected from extrapolations of spectral fits presented in the first GBM spectral catalog and infer that roughly half of the GBM-detected bursts either require spectral breaks between the GBM and LAT energy bands or have intrinsically steeper spectra above the peak of the nuF(sub v) spectra (E(sub pk)). In order to distinguish between these two scenarios, we perform joint GBM and LAT spectral fits to the 30 brightest GBM-detected bursts and find that a majority of these bursts are indeed softer above E(sub pk) than would be inferred from fitting the GBM data alone. Approximately 20% of this spectroscopic subsample show statistically significant evidence for a cut-off in their high-energy spectra, which if assumed to be due to gamma gamma attenuation, places limits on the maximum Lorentz factor associated with the relativistic outflow producing this emission. All of these latter bursts have maximum Lorentz factor estimates that are well below the minimum Lorentz factors calculated for LAT-detected GRBs, revealing a wide distribution in the bulk Lorentz factor of GRB outflows and indicating that LAT-detected bursts may represent the high end of this distribution
- …
