40 research outputs found

    Changes in Imja Tsho in the Mount Everest Region of Nepal

    Get PDF
    Imja Tsho, located in the Sagarmatha ( Everest) National Park of Nepal, is one of the most studied and rapidly growing lakes in the Himalayan range. Compared with previous studies, the results of our sonar bathymetric survey conducted in September of 2012 suggest that its maximum depth has increased from 90.5 to 116.3 +/- 5.2 m since 2002, and that its estimated volume has grown from 35.8 +/- 0.7 to 61.7 +/- 3.7 million m(3). Most of the expansion of the lake in recent years has taken place in the glacier terminus-lake interface on the eastern end of the lake, with the glacier receding at about 52 m yr(-1) and the lake expanding in area by 0.04 km(2) yr(-1). A ground penetrating radar survey of the Imja-Lhotse Shar glacier just behind the glacier terminus shows that the ice is over 200 m thick in the center of the glacier. The volume of water that could be released from the lake in the event of a breach in the damming moraine on the western end of the lake has increased to 34.1 +/- 1.08 million m(3) from the 21 million m(3) estimated in 2002.USAID Climate Change Resilient Development (CCRD) projectFulbright FoundationNational Geographic SocietyCenter for Research in Water Resource

    Response time to flood events using a social vulnerability index (ReTSVI)

    Get PDF
    Current methods to estimate evacuation time during a natural disaster do not consider the socioeconomic and demographic characteristics of the population. This article develops the Response Time by Social Vulnerability Index (ReTSVI). ReTSVI combines a series of modules that are pieces of information that interact during an evacuation, such as evacuation rate curves, mobilization, inundation models, and social vulnerability indexes, to create an integrated map of the evacuation rate in a given location. We provide an example of the application of ReTSVI in a potential case of a severe flood event in Huaraz, Peru. The results show that during the first 5&thinsp;min of the evacuation, the population that lives in neighborhoods with a high social vulnerability evacuates 15&thinsp;% and 22&thinsp;% fewer people than the blocks with medium and low social vulnerability. These differences gradually decrease over time after the evacuation warning, and social vulnerability becomes less relevant after 30&thinsp;min. The results of the application example have no statistical significance, which should be considered in a real case of application. Using a methodology such as ReTSVI could make it possible to combine social and physical vulnerability in a qualitative framework for evacuation, although more research is needed to understand the socioeconomic variables that explain the differences in evacuation rate.</p

    Contrasting geometric and dynamic evolution of lake and land-terminating glaciers in the central Himalaya

    Get PDF
    The impact of glacial lake development on the evolution of glaciers in the Himalaya is poorly quantified, despite the increasing prevalence of supraglacial and proglacial water bodies throughout the region. In this study we examine changes in the geometry, velocity and surface elevation of nine lake-terminating and nine land-terminating glaciers in the Everest region of the central Himalaya over the time period 2000 to 2015. The land-terminating glaciers we examined all decelerated (mean velocity change of −0.16 to −5.60 m a‾¹ for different glaciers), thinned most in their middle reaches, and developed a more gently sloping surface (−0.02 to −0.37° change) down-glacier over the period 2000–2015. The lake-terminating glaciers we examined all retreated (0.46 to 1.42 km), became steeper (0.04 to 8.68° change), and showed maximum thinning towards their termini, but differed in terms of their dynamics, with one group of glaciers accelerating (mean speed-up of 0.18 to 8.04 m a‾¹) and the other decelerating (mean slow-down of −0.36 m a−1 to −8.68 m a‾¹). We suggest that these two scenarios of glacier evolution each represent a different phase of glacial lake expansion; one that is accompanied by increasingly dynamic glacier behaviour and retreat, and a phase where glacial lakes have little impact on glacier behaviour that may precede or follow the phase of active retreat. Our observations are important because they quantify the interaction of glacial lake expansion with glacier ice mass loss, and show that increased glacier recession should be expected where a glacial lake has begun to develop

    Evaluating Multiple WRF Configurations and Forcing over the Northern Patagonian Icecap (NPI) and Baker River Basin

    No full text
    The use of numerical weather prediction (NWP) model to dynamically downscale coarse climate reanalysis data allows for the capture of processes that are influenced by land cover and topographic features. Climate reanalysis downscaling is useful for hydrology modeling, where catchment processes happen on a spatial scale that is not represented in reanalysis models. Selecting proper parameterization in the NWP for downscaling is crucial to downscale the climate variables of interest. In this work, we are interested in identifying at least one combination of physics in the Weather Research Forecast (WRF) model that performs well in our area of study that covers the Baker River Basin and the Northern Patagonian Icecap (NPI) in the south of Chile. We used ERA-Interim reanalysis data to run WRF in twenty-four different combinations of physics for three years in a nested domain of 22.5 and 4.5 km with 34 vertical levels. From more to less confident, we found that, for the planetary boundary layer (PBL), the best option is to use YSU; for the land surface model (LSM), the best option is the five-Layer Thermal, RRTM for longwave, Dudhia for short wave radiation, and Thompson for the microphysics. In general, the model did well for temperature (average, minimum, maximum) for most of the observation points and configurations. Precipitation was good, but just a few configurations stood out (i.e., conf-9 and conf-10). Surface pressure and Relative Humidity results were not good or bad, and it depends on the statistics with which we evaluate the time series (i.e., KGE or NSE). The results for wind speed were inferior; there was a warm bias in all of the stations. Once we identify the best configuration in our experiment, we run WRF for one year using ERA5 and FNL0832 climate reanalysis. Our results indicate that Era-interim provided better results for precipitation. In the case of temperature, FNL0832 gave better results; however, all of the models&rsquo; performances were good. Therefore, working with ERA-Interim seems the best option in this region with the physics selected. We did not experiment with changes in resolution, which may have improved results with ERA5 that has a better spatial and temporal resolution

    Chile’s glacier protection law needs grounding in sound science

    No full text
    Glaciers have long been thought of as static, picturesque totems or as changeless coverings over permanently frozen landscapes, particularly among societies distant from mountains and the poles. However, as traditional mountain cultures with firsthand experience have long known and treasured—and as glaciologists, hydrologists, and climate scientists have deciphered and communicated—glaciers are by no means static. Rather, they are dynamic landscape agents and unmistakable indicators of rapid environmental transformation [Gagné et al., 2014]. With widespread media coverage of anthropogenic climate change and the realization that glaciers are endangered species [Carey, 2007], popular perceptions are gradually changing, and scientists, grassroots movements, and policymakers are increasingly committing to developing legal protections for glaciers
    corecore