48 research outputs found

    Modern venomics – Current insights, novel methods and future perspectives in biological and applied animal venom research

    Get PDF
    Venoms have evolved >100 times in all major animal groups, and their components, known as toxins, have been fine-tuned over millions of years into highly effective biochemical weapons. There are many outstanding questions on the evolution of toxin arsenals, such as how venom genes originate, how venom contributes to the fitness of venomous species, and which modifications at the genomic, transcriptomic, and protein level drive their evolution. These questions have received particularly little attention outside of snakes, cone snails, spiders, and scorpions. Venom compounds have further become a source of inspiration for translational research using their diverse bioactivities for various applications. We highlight here recent advances and new strategies in modern venomics and discuss how recent technological innovations and multi-omic methods dramatically improve research on venomous animals. The study of genomes and their modifications through CRISPR and knockdown technologies will increase our understanding of how toxins evolve and which functions they have in the different ontogenetic stages during the development of venomous animals. Mass spectrometry imaging combined with spatial transcriptomics, in situ hybridization techniques, and modern computer tomography gives us further insights into the spatial distribution of toxins in the venom system and the function of the venom apparatus. All these evolutionary and biological insights contribute to more efficiently identify venom compounds, which can then be synthesized or produced in adapted expression systems to test their bioactivity. Finally, we critically discuss recent agrochemical, pharmaceutical, therapeutic, and diagnostic (so-called translational) aspects of venoms from which humans benefit

    Micro-computed tomography and histology to explore internal morphology in decapod larvae

    Get PDF
    Traditionally, the internal morphology of crustacean larvae has been studied using destructive techniques such as dissection and microscopy. The present study combines advances in microcomputed tomography (micro-CT) and histology to study the internal morphology of decapod larvae, using the common spider crab (Maja brachydactyla Balss, 1922) as a model and resolving the individual limitations of these techniques. The synergy of micro-CT and histology allows the organs to be easily identified, revealing simultaneously the gross morphology (shape, size, and location) and histological organization (tissue arrangement and cell identification). Micro-CT shows mainly the exoskeleton, musculature, digestive and nervous systems, and secondarily the circulatory and respiratory systems, while histology distinguishes several cell types and confirms the organ identity. Micro-CT resolves a discrepancy in the literature regarding the nervous system of crab larvae. The major changes occur in the metamorphosis to the megalopa stage, specifically the formation of the gastric mill, the shortening of the abdominal nerve cord, the curving of the abdomen beneath the cephalothorax, and the development of functional pereiopods, pleopods, and lamellate gills. The combination of micro-CT and histology provides better results than either one alone.Financial support was provided by the Spanish Ministry of Economy and Competitiveness through the INIA project (grant number RTA2011-00004-00-00) to G.G. and a pre-doctoral fellowship to D.C. (FPI-INIA)

    Anatomical study of the female reproductive system and bacteriome of Diaphorina citri Kuwayama, (Insecta: Hemiptera, Liviidae) using micro-computed tomography

    Get PDF
    Huanglongbing (HLB) (citrus greening disease) is one of the most serious bacterial diseases of citrus. It is caused by (1) Candidatus Liberibacter africanus, transmitted by Trioza erytreae and (2) C.L. asiaticus and C.L. americanus, transmitted by Diaphorina citri. As part of a multidisciplinary project on D. citri (www.citrusgreening.org), we made a detailed study, using micro-computed tomography, of the female abdominal terminalia, reproductive system (ovaries, accessory glands, spermatheca, colleterial (= cement) gland, connecting ducts, and ovipositor) and bacteriome, which we present here. New terms and structures are introduced and described, particularly concerning the spermatheca, ovipositor and bacteriome. The quality of images and bacteriome reconstructions are comparable, or clearer, than those previously published using a synchrotron or fuorescence in situ hybridisation (FISH). This study: reviews knowledge of the female reproductive system and bacteriome organ in D. citri; represents the frst detailed morphological study of D. citri to use micro-CT; and extensively revises existing morphological information relevant to psylloids, hemipterans and insects in general. High quality images and supplementary videos represent a signifcant advance in knowledge of psylloid anatomy and are useful tools for future research and as educational aids.Kansas State University (KSU) S15192.01University of Granada, USDA-NIFA S15192.01 2014-70016-2302

    Evolution des zentralen olfaktorischen Pfades der Insekten: morphologische und immunohistochemische Untersuchungen

    No full text
    Im Gegensatz zu den Hexapoda und Crustacea (Tetraconata) liegen nur wenige Daten zur Architektur des Nervensystems der Chilopoda vor. Ein besonderer Fokus in neuroanatomischen Studien der Arthropoda liegt auf der internen Organisation des Deutocerebrum. Das Deutocerebrum ist ein primärer Verschaltungsort antennaler Sinnesmodalitäten. Es wurde von Schachtner et al. (2005) gezeigt, dass bei Vertretern der Hexapoda und Crustacea spezifische Synapomorphien in Bezug auf die olfaktorischen Glomeruli festzustellen sind. Durch den Einsatz verschiedenster histologischer Techniken, immunhistochemischer sowie histochemischer Methoden, anterograder Backfill-Anfärbungen und der dreidimensionalen Rekonstruktion wurde das Deutocerebrum der Chilopoda in dieser Dissertation untersucht um zu verifizieren, ob das Deutocerebrum ähnlich zu dem der Tetraconata ausgeprägt und ob diese innerhalb der Mandibulata homologisierbar sind. Zudem wurden die gewonnen Daten mit neuroanatomischen Studien zu den Chelicerata verglichen. Das Deutocerebrum der Chilopoda ist durch mehrere Merkmale charakterisiert: (1) Innervierung durch antennale sensorische Neuriten, (2) ein anterior gelegener olfaktorischer Lobus, (3) der posterior gelegene Corpus lamellosum, (4) afferente Projektionen aus der Antenne die in das Unterschlundganglion projizieren sowie (5) Projektionstrakte zwischen dem Protocerebrum und dem olfaktorischen Lobus. Neuroanatomische Daten zeigen, dass ein Schwestergruppenverhältnis zwischen Myriapoda und Chelicerata höchst unwahrscheinlich ist, da das durch sensorische Anhänge innervierte Neuromer bei den Chelicerata nicht durch ein mechanosensorisches Neuropil charakterisiert ist. Basierend auf den Befunden der untersuchten Chilopoda ergibt sich als Apomorphie der Mandibulata, dass der sensorische Eingang durch die homologe deutocerebrale Antenne zwei distinkte Neuropilbereiche innerviert. Sensorische Informationen werden hauptsächlich von antennalen Sensillen wahrgenommen. Mit Ausnahme der Scutigeromorpha, lagen für alle höheren Taxa der Chilopoda Daten zur Struktur und Diversität antennaler Sensillen vor. In der vorliegenden Arbeit konnte diese Lücke geschlossen werden und ein Vergleich der antennalen Sensillen innerhalb der Chilopoda durchgeführt werden. Innerhalb der Chilopoda lassen sich für die Scutigeromorpha drei einzigartige antennale Strukturen feststellen: (1) der Besitz von langen Antennen mit Noden, die „sensory cones“ tragen, (2) der Besitz eines zweigliedrigen Schaftes, der das Schaftorgan trägt und (3) der Besitz des Beak-like Sensillums. Ein dritter Aspekt dieser Arbeit behandelt verhaltensbiologische Untersuchungen bei Vertretern der Chilopoda. Zusammenfassend zeigen die durchgeführten Experimente, dass die Chilopoda (im Speziellen Scutigera coleoptrata) Sinnesreize über die Antenne wahrnehmen kann, spezifische neuronale Strukturen für die Verarbeitung besitzen und auf olfaktorische Reize reagieren.Contrary to hexapods and crustaceans (Tetraconata), only few data on the architecture of the nervous system of chilopods are present. A focus in neuroanatomical studies of arthropods is the deutocerebrum which is a primary processing area of sensory input from the first antennae. Schachter et al. (2005) compiled several synapomorphic characters of the olfactory glomeruli of hexapods and crustaceans. To test whether the architecture of the deutocerebrum of chilopods is homologue to that of the Tetraconata, different techniques such as histology, immunhistochemistry and histochemistry, anterograde backfills and threedimensional reconstructions were conducted. Furthermore, the achieved neuroanatomical data were compared to available studies on the nervous systems of chelicerates. The deutocerebrum in Chilopoda is characterized by several features: (1) innervation by antennal sensory neurites, (2) an anterior olfactory lobe, (3) a posterior Corpus lamellosum, (4) afferent neurite projections into the subesophageal ganglion and (5) projection tracts between protocerebral neuropils and the olfactory lobe. Neuroanatomical data show that a sistergroup relationship between Myriapoda and Chilopoda is highly unlikely because in the Chelicerata the innervated neuromere is not equipped with a mechanosensory neuropil. In summary, in the Mandibulata the sensoric neurites innervate two distinct neuropilar regions. This feature is postulated as an apomorphic character. The majority of sensory information in Chilopoda is perceived by antennal sensilla. With exception of the Scutigeromorpha, for all other higher taxa of the Chilopoda information on the external structure and distribution of antennal sensilla is available. Within the Chilopoda, three unique characters were found for the Scutigeromorpha: (1) the presence of long antennae with nodes bearing sensory cones, (2) the presence of a bipartite shaft including the shaft organ, and (3) the presence of beak-like sensilla. A third aspect of this dissertation deals with ethological investigations of representatives of the Chilopoda. To sum up, ethological experiments show that chilopods (and especially Scutigera coleoptrata) can perceive olfactory stimuli via the antennae, possess distinct nervous system structures to process these information, and are able to react to olfactory stimuli
    corecore