33 research outputs found

    Comparison of the effects of Duphaston and Cetrotide on oocyte and embryo quality in women undergoing ICSI: A cross-sectional study

    Get PDF
    Background: Premature luteinizing hormone (LH) surge is one of the causes for assisted reproductive technology cycle cancellation, and it is needed to find novel approaches with improved efficacy and safety profile. Objective: To compare the effects of Duphaston and Cetrotide on the prevention of premature LH surge and characteristics of retrieved follicles and embryos in women undergoing intracytoplasmic sperm injection. Materials and Methods: In this retrospective cross-sectional study, 200 patients who were administrated recombinant follicle-stimulating hormone from the third day of menstruation cycle were included. When the follicular diameter reached above 13-14 mm, Cetrotide was prescribed in the control group, while in the case group, Duphaston was taken orally from the third day of cycle. The retrieved oocytes were fertilized in vitro by intracytoplasmic sperm. The level of hormones on the third day of menstruation and the characteristic of follicles, oocytes, and embryos were compared between the two groups. Results: Duphaston successfully inhibits premature LH surge. There was no significant difference in the level of follicle-stimulating hormone, estradiol, and LH between the case and control groups (p > 0.05). However, results also showed that Duphaston causes more oocyte retrieval in comparison with Cetrotide (p = 0.04). Although, the number of follicles above 14 mm, mature oocyte, and the total number of viable embryos in the case group was slightly higher, it did not reach a significant difference compared with the control group (p > 0.05). Conclusion: Duphaston could be used as an appropriate medication instead of gonadotropin-releasing hormone antagonists in women undergoing controlled ovarian hyperstimulation. Duphaston prescription not only prevents premature LH surge but also improves the number of retrieved oocytes. Key words: Duphaston, Cetrorelix, Dydrogesterone, COH, GnRh antagonis

    Systemic delivery of menstrual blood stem cells is more effective in preventing remote organ injuries following myocardial infarction in comparison with bone marrow stem cells in rat

    Get PDF
    Objective(s): Remote organ injury is a phenomenon that could happen following myocardial infarction (MI). We evaluated the potency of menstrual blood stromal (stem) cells (MenSCs) and bone marrow stem cells (BMSCs) to alleviate remote organ injuries following MI in rats.Materials and Methods: 2 × 106 MenSCs or BMSCs were administrated seven days after MI induction via the tail vein. Four weeks after cell therapy, activities of aspartate aminotransferase (AST), urea, creatinine, and Blood Urea Nitrogen (BUN) were evaluated. The level of tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, and IL-6 were determined by ELISA assay. The expression of Nuclear Factor-κB (NF-κB) was evaluated by immunohistochemical staining. Apoptosis activity and tissue damage were also determined by TUNEL and H&E staining, respectively.Results: MenSCs and BMSCs administration caused a significant reduction in AST, urea, and BUN levels compared with the MI group. In addition, systemic injection of MenSCs significantly decreased the IL-1β level compared with BMSCs and MI groups (P0.05).Conclusion: MenSCs are probably more protective than BMSCs on remote organ injuries following MI via decreasing cell death and immunoregulatory properties

    A Bibliometric Trend Analysis of Stem Cells and Regenerative Medicine Research Output in Iran: Comparison with the Global Research Output

    No full text
    This report is a bibliometric analysis of the growth rates of publications in the fields of stem cells and tissue engineering and regenerative medicine in Iran and compares these rates with the rates in other regions of the world. PubMed database was used for extraction of relevant publications using MeSH terms. The data were extracted from 2001–2011 and the address fields of the publications were checked manually in order to allocate the publications to a relevant geographical region. Linear regression was used for fitting a linear model to the publications of a particular region and the slope of the model was used as an indicator of publication growth rate. Statistical comparison of the slopes of different regions showed that Iran enjoys a moderate growth rate in regards to tissue engineering and regenerative medicine publications (including stem cells-related papers) and a low growth rate in regards to general stem cells papers. Iran is a regionally dominant country in the field of tissue engineering but, not in the field of stem cells. Analysis of the annual growth rate showed a steady pattern of growth of tissue engineering papers and a random pattern of growth for general stem cells papers. This is an indication of instability in the general stem cell research and stability in the field of tissue engineering. Due to equal research funding opportunities, this observation is explained by the natural selection of the latter field by Iranian biomedical scientists, which is suggested to be followed by policy makers

    Endometrial and Menstrual Blood Mesenchymal Stem/Stromal Cells:Biological Properties and Clinical Application

    Get PDF
    A highly proliferative mesenchymal stem/stromal cell (MSC) population was recently discovered in the dynamic, cyclically regenerating human endometrium as clonogenic stromal cells that fulfilled the International Society for Cellular Therapy (ISCT) criteria. Specific surface markers enriching for clonogenic endometrial MSC (eMSC), CD140b and CD146 co-expression, and the single marker SUSD2, showed their perivascular identity in the endometrium, including the layer which sheds during menstruation. Indeed, cells with MSC properties have been identified in menstrual fluid and commonly termed menstrual blood stem/stromal cells (MenSC). MenSC are generally retrieved from menstrual fluid as plastic adherent cells, similar to bone marrow MSC (bmMSC). While eMSC and MenSC share several biological features with bmMSC, they also show some differences in immunophenotype, proliferation and differentiation capacities. Here we review the phenotype and functions of eMSC and MenSC, with a focus on recent studies. Similar to other MSC, eMSC and MenSC exert immunomodulatory and anti-inflammatory impacts on key cells of the innate and adaptive immune system. These include macrophages, T cells and NK cells, both in vitro and in small and large animal models. These properties suggest eMSC and MenSC as additional sources of MSC for cell therapies in regenerative medicine as well as immune-mediated disorders and inflammatory diseases. Their easy acquisition via an office-based biopsy or collected from menstrual effluent makes eMSC and MenSC attractive sources of MSC for clinical applications. In preparation for clinical translation, a serum-free culture protocol was established for eMSC which includes a small molecule TGFβ receptor inhibitor that prevents spontaneous differentiation, apoptosis, senescence, maintains the clonogenic SUSD2+ population and enhances their potency, suggesting potential for cell-therapies and regenerative medicine. However, standardization of MenSC isolation protocols and culture conditions are major issues requiring further research to maximize their potential for clinical application. Future research will also address crucial safety aspects of eMSC and MenSC to ensure these protocols produce cell products free from tumorigenicity and toxicity. Although a wealth of data on the biological properties of eMSC and MenSC has recently been published, it will be important to address their mechanism of action in preclinical models of human disease. © Copyright © 2020 Bozorgmehr, Gurung, Darzi, Nikoo, Kazemnejad, Zarnani and Gargett

    Lipopolysaccharide- And lipoteichoic acid-mediated pro-inflammatory cytokine production and modulation of TLR2, TLR4 and MyD88 expression in human endometrial cells

    No full text
    Background: Toll-like receptor (TLR)-mediated inflammatory processes are supposed to be involved in pathophysiology of spontaneous abortion and preterm labor. Here, we investigated functional responses of human endometrial stromal cells (ESCs) and whole endometrial cells (WECs) to lipopolysaccharide (LPS) and lipoteichoic acid (LTA). Methods: Endometrial tissues were obtained from 15 cycling women who underwent laparoscopic tubal ligation. Modulation of TLR2, TLR4 and MyD88 expression and production of pro-inflammatory cytokines by WECs and ESCs in response to LPS and LTA were assessed. Results: WECs and ESCs expressed significant levels of TLR4 and MyD88 transcripts but, unlike WECs, ESCs failed to express TLR2 gene. Regardless of positive results of Western blotting, ESCs did not express TLR4 at their surface as judged by flow cytometry. Immunofluorescent staining revealed intracellular localization of TLR4 with predominant perinuclear pattern. LPS stimulation marginally increased TLR4 gene expression in both cell types, whereas such treatment significantly upregulated MyD88 gene expression after 8 hr (p<0.05). At the protein level, however, LPS activation significantly increased TLR4 expression by ESCs (p<0.05). LTA stimulation of WECs was accompanied with non-significant increase of TLR2 and MyD88 transcripts. LPS and LTA stimulation of WECs caused significant production of IL-6 and IL-8 in a dosedependent manner (p<0.05). Similarly, ESCs produced significant amounts of IL-6, IL-8 and also TNF-α in response to LPS activation (p<0.05). Conclusion: Our results provided further evidence of initiation of inflammatory processes following endometrial TLR activation by bacterial components which could potentially be harmful to developing fetus

    Comparative evaluation of in vivo biocompatibility and biodegradability of regenerated silk scaffolds reinforced with/without natural silk fibers

    Get PDF
    Nowadays, exceptional advantages of silk fibroin over synthetic and natural polymers have impelled the scientists to application of this biomaterial for tissue engineering purposes. Recently, we showed that embedding natural degummed silk fibers in regenerated Bombyx mori silk-based scaffold significantly increases the mechanical stiffness, while the porosity of the scaffolds remains the same. In the present study, we evaluated degradation rate, biocompatibility and regenerative properties of the regenerated 2% and 4% wt silk-based composite scaffolds with or without embedded natural degummed silk fibers within 90 days in both athymic nude and wild-type C57BL/6 mice through subcutaneous implantation. In all scaffolds, a suitable interconnected porous structure for cell penetration was seen under scanning electron microscopy. Compressive tests revealed a functional relationship between fiber reinforcement and compressive modulus. In addition, the fiber/fibroin composite scaffolds support cell attachment and proliferation. On days 30 to 90 after subcutaneous implantation, the retrieved tissues were examined via gross morphology, histopathology, immunofluorescence staining and reverse transcription-polymerase chain reaction as shown in Figure 1. Results showed that embedding the silk fibers within the matrix enhances the biodegradability of the matrix resulting in replacement of the composite scaffolds with the fresh connective tissue. Fortification of the composites with degummed fibers not only regulates the degradation profile but also increases the mechanical performance of the scaffolds. This report also confirmed that pore size and structure play an important role in the degradation rate. In conclusion, the findings of the present study narrate key role of additional surface area in improving in vitro and in vivo biological properties of the scaffolds and suggest the potential ability of these fabricated composite scaffolds for connective tissue regeneration
    corecore