3 research outputs found
The MtrAB two-component system controls antibiotic production in Streptomyces coelicolor A3(2
MtrAB is a highly conserved two-component system implicated in the regulation of cell division in the Actinobacteria. It coordinates DNA replication with cell division in the unicellular Mycobacterium tuberculosis and links antibiotic production to sporulation in the filamentous Streptomyces venezuelae. Chloramphenicol biosynthesis is directly regulated by MtrA in S. venezuelae and deletion of mtrB constitutively activates MtrA and results in constitutive over-production of chloramphenicol. Here we report that in Streptomyces coelicolor, MtrA binds to sites upstream of developmental genes and the genes encoding ActII-1, ActII-4 and RedZ, which are cluster-situated regulators of the antibiotics actinorhodin (Act) and undecylprodigiosin (Red). Consistent with this, deletion of mtrB switches on the production of Act, Red and streptorubin B, a product of the Red pathway. Thus, we propose that MtrA is a key regulator that links antibiotic production to development and can be used to upregulate antibiotic production in distantly related streptomycetes
The conserved actinobacterial two-component system MtrAB coordinates chloramphenicol production with sporulation in Streptomyces venezuelae NRRL B-65442
Streptomyces bacteria make numerous secondary metabolites, including half of all known antibiotics. Production of antibiotics is usually coordinated with the onset of sporulation but the cross regulation of these processes is not fully understood. This is important because most Streptomyces antibiotics are produced at low levels or not at all under laboratory conditions and this makes large scale production of these compounds very challenging. Here we characterise the highly conserved actinobacterial two-component system MtrAB in the model organism Streptomyces venezuelae and provide evidence that it coordinates production of the antibiotic chloramphenicol with sporulation. MtrAB are known to coordinate DNA replication and cell division in Mycobacterium tuberculosis where TB-MtrA is essential for viability. We were unable to delete mtrA in S. venezuelae unless another copy was present in trans but deletion of mtrB resulted in a global shift in the metabolome, including constitutive, high-level production of chloramphenicol. We found that chloramphenicol is detectable in the wild type strain, but only at very low levels and only after it has sporulated. ChIP-seq showed that MtrA binds upstream of DNA replication and cell division genes and genes required for chloramphenicol production. dnaA, dnaN, oriC and wblE (whiB1) appear to be targets for MtrA in both M. tuberculosis and S. venezuelae. Intriguingly, over-expression of TB-MtrA and gain of function TB- and Sv-MtrA proteins in S. venezuelae also switched on high level production of chloramphenicol. Given the conservation of MtrAB, these constructs might be useful tools for manipulating antibiotic production in other filamentous actinomycetes