115 research outputs found

    Rapidity Dependence of Strange Particle Ratios in Nuclear Collisions

    Get PDF
    It was recently found that in sulphur-induced nuclear collisions at 200 A GeV the observed strange hadron abundances can be explained within a thermodynamic model where baryons and mesons separately are in a state of relative chemical equilibrium, with overall strangeness being slightly undersaturated, but distributed among the strange hadron channels according to relative chemical equilibrium with a vanishing strange quark chemical potential. We develop a consistent thermodynamic formulation of the concept of relative chemical equilibrium and show how to introduce into the partition function deviations from absolute chemical equilibrium, e.~g.~an undersaturation of overall strangeness or the breaking of chemical equilibrium between mesons and baryons. We then proceed to test on the available data the hypothesis that the strange quark chemical potential vanishes everywhere, and that the rapidity distributions of all the observed hadrons can be explained in terms of one common, rapidity-dependent function μq(η)\mu_{\rm q}(\eta) for the baryon chemical potential only. The aim of this study is to shed light on the observed strong rapidity dependence of the strange baryon ratios in the NA36 experiment.Comment: uses REVTeX, 14 pages, 17 ps-figures (uuencoded) added with figures comman

    Strange Messages: Chemical and Thermal Freeze-out in Nuclear Collisions

    Get PDF
    Thermal models are commonly used to interpret heavy-ion data on particle yields and spectra and to extract the conditions of chemical and thermal freeze-out in heavy-ion collisions. I discuss the usefulness and limitations of such thermal model analyses and review the experimental and theoretical evidence for thermalization in nuclear collisions. The crucial role of correlating strangeness production data with single particle spectra and two-particle correlation measurements is pointed out. A consistent dynamical picture for the heavy-ion data from the CERN SPS involves an initial prehadronic stage with deconfined color and with an appreciable isotropic pressure component. This requires an early onset of thermalization.Comment: 15 pages, 2 figures, talk given at Strange Quark Matter '98, Padova, Italy, 20-24 July 1998, to be published in J. Phys. G 25; final version with updated reference

    Unified Description of Freeze-Out Parameters in Relativistic Heavy Ion Collisions

    Full text link
    It is shown that the chemical freeze-out parameters obtained at CERN/SPS, BNL/AGS and GSI/SIS energies all correspond to a unique value of 1 GeV per hadron in the local rest frame of the system, independent of the beam energy and of the target and beam particles.Comment: revtex, 1 figur

    Chemical equilibration of strangeness

    Get PDF
    Thermal models are very useful in the understanding of particle production in general and especially in the case of strangeness. We summarize the assumptions which go into a thermal model calculation and which differ in the application of various groups. We compare the different results to each other. Using our own calculation we discuss the validity of the thermal model and the amount of strangeness equilibration at CERN-SPS energies. Finally the implications of the thermal analysis on the reaction dynamics are discussed.Comment: 23 pages, LaTeX (figures included); Talk given at the Int. Symposium on Strangeness in Quark Matter 1997, Santorini (Greece), April 199

    Aspects of thermal and chemical equilibration of hadronic matter

    Full text link
    We study thermal and chemical equilibration in 'infinite' hadron matter as well as in finite size relativistic nucleus-nucleus collisions using a BUU cascade transport model that contains resonance and string degrees-of-freedom. The 'infinite' hadron matter is simulated within a cubic box with periodic boundary conditions. The various equilibration times depend on baryon density and energy density and are much shorter for particles consisting of light quarks then for particles including strangeness. For kaons and antikaons the chemical equilibration time is found to be larger than \simeq 40 fm/c for all baryon and energy densities considered. The inclusion of continuum excitations, i.e. hadron 'strings', leads to a limiting temperature of TsT_s\simeq 150 MeV. We, furthermore, study the expansion of a hadronic fireball after equilibration. The slope parameters of the particles after expansion increase with their mass; the pions leave the fireball much faster then nucleons and accelerate subsequently heavier hadrons by rescattering ('pion wind'). If the system before expansion is close to the limiting temperature TsT_s, the slope parameters for all particles after expansion practically do not depend on (initial) energy and baryon density. Finally, the equilibration in relativistic nucleus-nucleus collision is considered. Since the reaction time here is much shorter than the equilibration time for strangeness, a chemical equilibrium of strange particles in heavy-ion collisions is not supported by our transport calculations. However, the various particle spectra can approximately be described within the blast model.Comment: 39 pages, LaTeX, including 18 postscript figures, Nucl. Phys. A, in pres

    Thermal analysis of hadron multiplicities from relativistic quantum molecular dynamics

    Full text link
    Some questions arising in the application of the thermal model to hadron production in heavy ion collisions are studied. We do so by applying the thermal model of hadron production to particle yields calculated by the microscopic transport model RQMD(v2.3). We study the bias of incomplete information about the final hadronic state on the extraction of thermal parameters.It is found that the subset of particles measured typically in the experiments looks more thermal than the complete set of stable particles. The hadrons which show the largest deviations from thermal behaviour in RQMD(v2.3) are the multistrange baryons and antibaryons. We also looked at the influence of rapidity cuts on the extraction of thermal parameters and found that they lead to different thermal parameters and larger disagreement between the RQMD yields and the thermal model.Comment: 12 pages, 2 figures, uses REVTEX, only misprint and stylistic corrections, to appear in Physical Review

    Strangeness Conservation in Hot Nuclear Fireballs

    Full text link
    A constraint between thermal fireball parameters arises from the requirement that the balance of strangeness in a fireball is (nearly) zero. We study the impact of this constraint on (multi-)strange (anti-)baryon multiplicities and compare the hadron gas and quark-gluon plasma predictions. We explore the relation between the entropy content and particle multiplicities and show that the data are compatible with the quark-gluon plasma hypothesis, but appear to be inconsistent with the picture of an equilibrated hadron gas fireball. We consider the implications of the results on the dynamics of evolution and decay of the particle source.Comment: 35 pages, 11 postscript figures, report PAR/LPTHE/92--2

    Thermal phenomenology of hadrons from 200 AGeV S+S collisions

    Full text link
    We develop a complete and consistent description for the hadron spectra from heavy ion collisions in terms of a few collective variables, in particular temperature, longitudinal and transverse flow. To achieve a meaningful comparison with presently available data, we also include the resonance decays into our picture. To disentangle the influences of transverse flow and resonance decays in the mTm_T-spectra, we analyse in detail the shape of the mTm_T-spectra.Comment: 31 pages, 13 figs in seperate uuencoded file, for LaTeX, epsf.sty and dvips, TPR-93-16 and BNL-(no number yet

    System-size dependence

    Full text link
    The final state in The final state in heavy-ion collisions has a higher degree of strangeness saturation than the one produced in collisions between elementary particles like p-p or p-pˉ\bar{p}. A systematic analysis of this phenomenon is made for C-C, Si-Si and Pb-Pb collisions at the CERN SPS collider and for AuAuAu-Au collisions at RHIC and at AGS energies. Strangeness saturation is shown to increase smoothly with the number of participants at AGS, CERN and RHIC energies.Comment: 5 pages, 5 figures, presented at SQM2003 conferenc

    Strangeness counting in high energy collisions

    Get PDF
    The estimates of overall strange quark production in high energy e+e-, pp and ppbar collisions by using the statistical-thermal model of hadronisation are presented and compared with previous works. The parametrization of strangeness suppression within the model is discussed. Interesting regularities emerge in the strange/non-strange produced quark ratio which turns out to be fairly constant in elementary collisions while it is twice as large in SPS heavy ion collision.Comment: talk given at Strangeness in Quark Matter 98, submitted to J. Phys.
    corecore