6,469 research outputs found
Tunable entanglement distillation of spatially correlated down-converted photons
We report on a new technique for entanglement distillation of the bipartite
continuous variable state of spatially correlated photons generated in the
spontaneous parametric down-conversion process (SPDC), where tunable
non-Gaussian operations are implemented and the post-processed entanglement is
certified in real-time using a single-photon sensitive electron multiplying CCD
(EMCCD) camera. The local operations are performed using non-Gaussian filters
modulated into a programmable spatial light modulator and, by using the EMCCD
camera for actively recording the probability distributions of the
twin-photons, one has fine control of the Schmidt number of the distilled
state. We show that even simple non-Gaussian filters can be finely tuned to a
~67% net gain of the initial entanglement generated in the SPDC process.Comment: 12 pages, 6 figure
Approach to some hematological variables of healthy captive “yaguareté” (Panthera onca) from Northeast Argentina
Samples of three healthy Panthera onca from a Northeast Argentina reserve were analyzed through spectrophotometry, electrophoresis, densitometry, and microscopy in order to obtain hematological and biochemical reference values. Means and standard deviation for hematocrit, hemoglobin, red and white blood cells, leukocyte differential count, total protein, albumin, globulins, glucose, total cholesterol, lipoproteins, calcium, inorganic phosphorus, urea, creatinine and some enzymatic activities, were obtained. Usefulness of studied parameters to evaluate sanitary and nutritional state on captive P. onca, is emphasized
Recommended from our members
Shape analysis and tracking of migrating macrophages
Cell migration is important in many human processes of development and disease. In Cancer, migration can be related to metastasis or cell defects. A precise analysis of the cell shapes in biological studies could lead to insights about migration. Therefore, this paper describes an algorithm to iteratively segment, track and analyse the shape of macrophages from fluorescent microscopy image sequences. This process allows observation of shape variations as the cells migrate. The algorithm identifies and separates overlapping and non-overlapping cells, then for the non-overlapping cases analyses the shape and extracts a series of measurements, including the number of "corner" or pointy edges through a multiscale angle variation matrix, anglegram. The shape evolution algorithm was tested on fluorescently labelled macrophages observed on embryos of Drosophila melanogaster
Recommended from our members
Analysis of the Interactions of Migrating Macrophages
Understanding the migrating patterns of cells in the immune system is of great importance; especially the changes of direction and its cause. For macrophages and other immune cells, excessive migration could be related to autoimmune diseases and cancer. In this work, an algorithm to analyse the change in direction of cells before and after they interact with another cell is proposed. The main objective is to provide insights into the notion that interactions between cell structures appear to anticipate migration. Such interactions are determined when the cells overlap and form clumps of two or more cells. The algorithm integrates a segmentation technique capable of detecting overlapping cells and a tracking framework into a tool for the analysis of the trajectories of cells before and after they overlap. The preliminary results show promise into the analysis and the hypothesis proposed, and it lays the ground work for further developments
Recommended from our members
Segmentation of Overlapping Macrophages Using Anglegram Analysis
This paper describes the automatic segmentation of overlapping cells through different algorithms. As the first step, the algorithm detects junctions between the boundaries of overlapping objects based on the angles between points of the overlapping boundary. For this purpose, a novel 2D matrix with multiscale angle variation is introduced, i.e anglegram. The anglegram is used to find junctions of overlapping cells. The algorithm to retrieve junctions from the boundary was tested and validated with synthetic data and fluorescently labelled macrophages observed on embryos of Drosophila melanogaster. Then, four different segmentation techniques were evaluated: (i) a Voronoi partition based on the nuclei positions, (ii) a slicing method, which joined the clumps together (junction slicing), (iii) a partition based on the following of the edges from the junctions (edge following), and (iv) a custom self-organising map to fit to the area of overlap between the cells. Only (ii)-(iv) were based on the junctions. The segmentation results were compared based on precision, recall and Jaccard similarity. The algorithm that reported the best segmentation was the junction slicing
Neutrinos and Nucleosynthesis in Supernova
The type II supernova is considered as a candidate site for the production of
heavy elements. The nucleosynthesis occurs in an intense neutrino flux, we
calculate the electron fraction in this environment.Comment: RevTex4 style, 3 pages including 1 figure. Presented at Mexican
School of Astrophysics 2002, Guanajuato, Mexico, 31 Jul - 7 Aug 2002. Final
version to appear in the Proceedings of IX Mexican Workshop on Particles and
Fields Physics Beyond the Standard Model, Colima Col. Mexico, November 17-22,
200
On the Gannon-Lee Singularity Theorem in Higher Dimensions
The Gannon-Lee singularity theorems give well-known restrictions on the
spatial topology of singularity-free (i.e., nonspacelike geodesically
complete), globally hyperbolic spacetimes. In this paper, we revisit these
classic results in the light of recent developments, especially the failure in
higher dimensions of a celebrated theorem by Hawking on the topology of black
hole horizons. The global hyperbolicity requirement is weakened, and we expand
the scope of the main results to allow for the richer variety of spatial
topologies which are likely to occur in higher-dimensional spacetimes.Comment: 13 pages, no figures, to appear in Class. Quantum Gra
Uniqueness of de Sitter space
All inextendible null geodesics in four dimensional de Sitter space dS^4 are
complete and globally achronal. This achronality is related to the fact that
all observer horizons in dS^4 are eternal, i.e. extend from future infinity
scri^+ all the way back to past infinity scri^-. We show that the property of
having a null line (inextendible achronal null geodesic) that extends from
scri^- to scri^+ characterizes dS^4 among all globally hyperbolic and
asymptotically de Sitter spacetimes satisfying the vacuum Einstein equations
with positive cosmological constant. This result is then further extended to
allow for a class of matter models that includes perfect fluids.Comment: 22 pages, 2 figure
Underbarrier nucleation kinetics in a metastable quantum liquid near the spinodal
We develop a theory in order to describe the effect of relaxation in a
condensed medium upon the quantum decay of a metastable liquid near the
spinodal at low temperatures. We find that both the regime and the rate of
quantum nucleation strongly depend on the relaxation time and its temperature
behavior. The quantum nucleation rate slows down with the decrease of the
relaxation time. We also discuss the low temperature experiments on cavitation
in normal He and superfluid He at negative pressures. It is the sharp
distinctions in the high frequency sound mode and in the temperature behavior
of the relaxation time that make the quantum cavitation kinetics in He and
He completely different in kind.Comment: 10 pages, 2 figure
Polyelectrolyte Multilayering on a Charged Planar Surface
The adsorption of highly \textit{oppositely} charged flexible
polyelectrolytes (PEs) on a charged planar substrate is investigated by means
of Monte Carlo (MC) simulations. We study in detail the equilibrium structure
of the first few PE layers. The influence of the chain length and of a (extra)
non-electrostatic short range attraction between the polycations and the
negatively charged substrate is considered. We show that the stability as well
as the microstructure of the PE layers are especially sensitive to the strength
of this latter interaction. Qualitative agreement is reached with some recent
experiments.Comment: 28 pages; 11 (main) Figs - Revtex4 - Higher resolution Figs can be
obtained upon request. To appear in Macromolecule
- …