9 research outputs found

    The Natriuretic Peptide Uroguanylin Elicits Physiologic Actions Through 2 Distinct Topoisomers

    Get PDF
    The peptide uroguanylin regulates electrolyte transport in the intestine and kidney. Human uroguanylin has two conformations that can be stably isolated, owing to their slow interconversion rate. The A isomer potently activates the guanylate cyclase-C receptor found primarily in the intestine. The B isomer, by contrast, is a very weak agonist of this receptor, leading to a widely-held assumption that it is physiologically irrelevant. We show here, however, that human uroguanylin B has potent natriuretic activity in the kidney. Interestingly, uroguanylin A and B both induce saliuretic responses, but the activity profiles for the two peptides differ markedly. The uroguanylin B dose-response curve is sigmoidal with a threshold dose near 10 nmol/kg body weight, whereas uroguanylin A has a comparable threshold, but a bell-shaped dose-response curve. Additionally, our study indicates a unique interplay between the A and B isoforms, such that the A form at high concentrations antagonizes the natriuretic action of the B form. These data show that the kidney contains a uroguanylin receptor whose pharmacological profile does not match that of the well-defined intestinal uroguanylin receptor (guanylate cyclase-C), an observation consistent with previous studies showing that the kidney of the guanylate cyclase-C knockout mouse remains responsive to uroguanylin. The results presented here also support the unconventional notion that distinct conformations of a single endocrine peptide can elicit different responses in different tissues

    Abstracts from the 8th International Conference on cGMP Generators, Effectors and Therapeutic Implications

    Get PDF
    This work was supported by a restricted research grant of Bayer AG

    Discovery of stimulator binding to a conserved pocket in the heme domain of soluble guanylyl cyclase

    No full text
    Soluble guanylyl cyclase (sGC) is the receptor for nitric oxide and a highly sought-after therapeutic target for the management of cardiovascular diseases. New compounds that stimulate sGC show clinical promise, but where these stimulator compounds bind and how they function remains unknown. Here, using a photolyzable diazirine derivative of a novel stimulator compound, IWP-051, and MS analysis, we localized drug binding to the 1 heme domain of sGC proteins from the hawkmoth Manduca sexta and from human. Covalent attachments to the stimulator were also identified in bacterial homologs of the sGC heme domain, referred to as H-NOX domains, including those from Nostoc sp. PCC 7120, Shewanella oneidensis, Shewanella woodyi, and Clostridium botulinum, indicating that the binding site is highly conserved. The identification of photoaffinity-labeled peptides was aided by a signature MS fragmentation pattern of general applicability for unequivocal identification of covalently attached compounds. Using NMR, we also examined stimulator binding to sGC from M. sexta and bacterial H-NOX homologs. These data indicated that stimulators bind to a conserved cleft between two subdomains in the sGC heme domain. L12W/T48W substitutions within the binding pocket resulted in a 9-fold decrease in drug response, suggesting that the bulkier tryptophan residues directly block stimulator binding. The localization of stimulator binding to the sGC heme domain reported here resolves the longstanding question of where stimulators bind and provides a path forward for drug discovery.National Institutes of Health from NIEHS [ES06694]; National Institutes of Health from NCI [CA023074]; BIO5 Institute of the University of Arizona; National Institutes of Health from the National Center for Research Resources (NCRR) [1S10 RR028868-01]; National Institutes of Health from NIGMS [P41GM103399, P41RR002301]; University of Wisconsin-Madison; National Institutes of Health [P41GM103399, S10RR02781, S10RR08438, S10RR023438, S10RR025062, S10RR029220]; National Science Foundation [DMB-8415048, OIA-9977486, BIR-9214394]; U.S. Department of Agriculture12 month embargo; published online: 8 December 2017This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]

    CD4(+) T cells and CXC chemokines modulate the pathogenesis of Staphylococcus aureus wound infections

    No full text
    T cells are critical for the formation of intraabdominal abscesses by Staphylococcus aureus. We hypothesized that T cells modulate the development of experimental staphylococcal infections by controlling polymorphonuclear leukocyte (PMN) trafficking. In models of staphylococcal s.c. abscess formation, hindpaw infection, and surgical wound infection, S. aureus multiplied in the tissues of WT C57BL/6J mice and elicited a marked inflammatory response. CD4(+) αβ T cells homed to the surgical wound infection site of WT animals. In contrast, significantly fewer S. aureus were recovered from the tissues of mice deficient in αβ T cells, and the inflammatory response was considerably diminished compared with that of WT animals. αβ T cell receptor (−/−) mice had significantly lower concentrations of PMN-specific CXC chemokines in wound tissue than did WT mice. The severity of the wound infection was enhanced by administration of a CXC chemokine and abrogated by antibodies that blocked the CXC receptor. An acapsular mutant was less virulent than the parental S. aureus strain in both the s.c. abscess and the surgical wound infection models in WT mice. These data reveal an important and underappreciated role for CD4(+) αβ T cells in S. aureus infections in controlling local CXC chemokine production, neutrophil recruitment to the site of infection, and subsequent bacterial replication
    corecore