615 research outputs found

    Extraordinary Magnetoresistance in Hybrid Semiconductor-Metal Systems

    Full text link
    We show that extraordinary magnetoresistance (EMR) arises in systems consisting of two components; a semiconducting ring with a metallic inclusion embedded. The im- portant aspect of this discovery is that the system must have a quasi-two-dimensional character. Using the same materials and geometries for the samples as in experiments by Solin et al.[1;2], we show that such systems indeed exhibit a huge magnetoresistance. The magnetoresistance arises due to the switching of electrical current paths passing through the metallic inclusion. Diagrams illustrating the flow of the current density within the samples are utilised in discussion of the mechanism responsible for the magnetoresistance effect. Extensions are then suggested which may be applicable to the silver chalcogenides. Our theory offers an excellent description and explanation of experiments where a huge magnetoresistance has been discovered[2;3].Comment: 12 Pages, 5 Figure

    Excitonic transitions in GaAs-AlxGa1-xAs multiple quantum wells affected by interface roughness

    Get PDF
    Time-resolved photoluminescence has been used to study the effects of interface roughness on excitonic transitions in GaAs-AlxGa1-xAs multiple quantum wells. In addition to the luminescence linewidth broadening and Stokes red shift, the interface roughness also strongly affects the dynamic process of optical transitions so that the excitonic transition peak shifts with delay time. However, the heavy-hole exciton transition has red shifts at short delay times and exhibits a turnover at longer delay times. A maximum shift of about 0.1 meV at a delay time of 4 ns was obtained. We have demonstrated that the peak shift is caused by interface roughness in the quantum wells. Furthermore, the decay of the excitonic transition is found to fit a two-exponential form. Based on a model involving interface roughness and two-exponential decay, we calculated the position of the excitonic transition peak as a function of delay time. Our calculations are consistent with experimental results

    Coherence Length of Excitons in a Semiconductor Quantum Well

    Get PDF
    We report on the first experimental determination of the coherence length of excitons in semiconductors using the combination of spatially resolved photoluminescence with phonon sideband spectroscopy. The coherence length of excitons in ZnSe quantum wells is determined to be 300 ~ 400 nm, about 25 ~ 30 times the exciton de Broglie wavelength. With increasing exciton kinetic energy, the coherence length decreases slowly. The discrepancy between the coherence lengths measured and calculated by only considering the acoustic phonon scattering suggests an important influence of static disorder.Comment: 4 Pages, 4 figure

    Subjective mental well-being among higher education students in Finland during the first wave of COVID-19

    Get PDF
    Aims: Increased mental health problems during the COVID-19 pandemic have become a major concern among young adults. Our aim was to understand which COVID-19-related questions predicted mental well-being during the outbreak. Methods: Two cross-sectional datasets were used. The primary dataset was collected in May 2020 (n = 1001), during the initial COVID-19 outbreak, and the secondary in April 2019 (n = 10866), before the pandemic. Mental well-being was assessed with the Short Warwick-Edinburgh Mental Well-Being Scale. Relationships between mental well-being and COVID-19-related questions were investigated with lasso regression. As an exploratory analysis, two-way ANOVAs were used to compare mental well-being before and during the outbreak. Results: Higher levels of mental well-being were associated with lower levels of academic stress and COVID-19-related worry, along with a higher satisfaction with the procedures and information provided by the higher education institutions and the government. COVID-19-related symptoms and infections did not have an impact on students' mental well-being during the outbreak. Small to moderate effect sizes across the time points were detected, indicating an overall decrease in mental well-being across age and gender during the outbreak. Conclusions: COVID-19 had an impact on higher education students' mental well-being. Higher education institutes may play a crucial role in protecting their students' well-being during uncertain times.Peer reviewe

    Nogo-B regulates endothelial sphingolipid homeostasis to control vascular function and blood pressure.

    Get PDF
    Endothelial dysfunction is a critical factor in many cardiovascular diseases, including hypertension. Although lipid signaling has been implicated in endothelial dysfunction and cardiovascular disease, specific molecular mechanisms are poorly understood. Here we report that Nogo-B, a membrane protein of the endoplasmic reticulum, regulates endothelial sphingolipid biosynthesis with direct effects on vascular function and blood pressure. Nogo-B inhibits serine palmitoyltransferase, the rate-limiting enzyme of the de novo sphingolipid biosynthetic pathway, thereby controlling production of endothelial sphingosine 1-phosphate and autocrine, G protein-coupled receptor-dependent signaling by this metabolite. Mice lacking Nogo-B either systemically or specifically in endothelial cells are hypotensive, resistant to angiotensin II-induced hypertension and have preserved endothelial function and nitric oxide release. In mice that lack Nogo-B, pharmacological inhibition of serine palmitoyltransferase with myriocin reinstates endothelial dysfunction and angiotensin II-induced hypertension. Our study identifies Nogo-B as a key inhibitor of local sphingolipid synthesis and shows that autocrine sphingolipid signaling within the endothelium is critical for vascular function and blood pressure homeostasis

    Pancreatic metabolism, blood flow, and β-cell function in obese humans.

    Get PDF
    Context: Glucolipotoxicity is believed to induce pancreatic &beta;-cell dysfunction in obesity. Previously, it has not been possible to study pancreatic metabolism and blood flow in humans. Objective: The objective of the study was to investigate whether pancreatic metabolism and blood flow are altered in obesity using positron emission tomography (PET). In the preclinical part, the method was validated in animals. Design: This was a cross-sectional study. Setting: The study was conducted in a clinical research center. Participants: Human studies consisted of 52 morbidly obese and 25 healthy age-matched control subjects. Validation experiments were done with rodents and pigs. Interventions: PET and magnetic resonance imaging studies using a glucose analog ([18F]fluoro-2-deoxy-d-glucose), a palmitate analog [14(R,S)-[18F]fluoro-6-thia-heptadecanoic acid], and radiowater ([15O]H2O) were performed. In animals, a comparison between ex vivo and in vivo data was performed. Main Outcome Measures: Pancreatic glucose/fatty acid (FA) uptake, fat accumulation, and blood flow parameters of &beta;-cell function were measured. Results: PET proved to be a feasible method to measure pancreatic metabolism. Compared with healthy participants, obese participants had elevated pancreatic FA uptake (P &lt; .0001), more fat accumulation (P = .0001), lowered glucose uptake both during fasting and euglycemic hyperinsulinemia, and blunted blood flow (P &lt; .01) in the pancreas. Blood flow, FA uptake, and fat accumulation were negatively associated with multiple markers of &beta;-cell function. Conclusions: Obesity leads to changes in pancreatic energy metabolism with a substrate shift from glucose to FAs. In morbidly obese humans, impaired pancreatic blood flow may contribute to &beta;-cell dysfunction and in the pathogenesis of type 2 diabetes. &nbsp;</div

    Adaptive servoventilation improves cardiac function and respiratory stability

    Get PDF
    Cheyne–Stokes respiration (CSR) in patients with chronic heart failure (CHF) is of major prognostic impact and expresses respiratory instability. Other parameters are daytime pCO2, VE/VCO2-slope during exercise, exertional oscillatory ventilation (EOV), and increased sensitivity of central CO2 receptors. Adaptive servoventilation (ASV) was introduced to specifically treat CSR in CHF. Aim of this study was to investigate ASV effects on CSR, cardiac function, and respiratory stability. A total of 105 patients with CHF (NYHA ≥ II, left ventricular ejection fraction (EF) ≤ 40%) and CSR (apnoea–hypopnoea index ≥ 15/h) met inclusion criteria. According to adherence to ASV treatment (follow-up of 6.7 ± 3.2 months) this group was divided into controls (rejection of ASV treatment or usage <50% of nights possible and/or <4 h/night; n = 59) and ASV (n = 56) adhered patients. In the ASV group, ventilator therapy was able to effectively treat CSR. In contrast to controls, NYHA class, EF, oxygen uptake, 6-min walking distance, and NT-proBNP improved significantly. Moreover, exclusively in these patients pCO2, VE/VCO2-slope during exercise, EOV, and central CO2 receptor sensitivity improved. In CHF patients with CSR, ASV might be able to improve parameters of SDB, cardiac function, and respiratory stability
    corecore