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A theoretical study of the orientational in-plane ordering in stage-2 graphite intercalation
compounds is developed with particular emphasis on the role of phonons. Phonon disper-
sion curves are calculated within a simple phenomenological model. The rotation angle of
intercalant layers relative to the graphite layers in the reciprocal-lattice space is shown to be
determined predominantly by the transverse-acoustic mode. The rotation angles calculated
for CsCys, RbCy, and KC,, are in fairly good agreement with experiments. The rotation
angle depends also on the lattice constants of the host and guest layers. Our calculations
have been carried out assuming a homogeneous triangular lattice structure for the inter-
calant layer. Comment is, therefore, made on the possibility of having a domain structure
in which locally registered domains are bounded by discommensurations.

I. INTRODUCTION

It is well known by now that graphite intercala-
tion compounds (GIC’s) exhibit a wide variety of
intraplanar and interplanar structural phase transi-
tions when they are subjected to pressure and/or
temperature variations.""> Among the most intrigu-
ing of these transitions are those associated with
in-plane orientational ordering in stage-2 alkali-
metal GIC’s.! For example, in CsC,, the intercalate
layer exhibits positional disorder at 165<T <228
K, but also shows an orientational epitaxy with the
graphite host layer. The rotation angle associated
with this epitaxy is temperature dependent through
the above-mentioned range, but saturates to a
temperature-independent value 6 for T <165 K.
This saturation is associated with an in-plane order-
ing of the intercalate layer that has been ascribed a
triangular lattice structure that is incommensurate
with the graphite host.> More recently, it has been
suggested that the intercalated layer orders into
registered locally commensurate (V7XV7)R19°
and (2X2)R0° domains bounded by discommen-
surations.*

To date, few theoretical explanations of the above
described phenomena have been provided. For
CsC,4 in the temperature range 165 < T <228 K the
temperature dependence of 6 is well accounted for
phenomenologically by the Landau theory when it
is applied to an orientational lock-in transition in
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which 0 is the order parameter.’ However, of

greater interest is the dependence of the saturation
value of 6 on the species of alkali intercalant. Za-
bel® has attributed the variation of 6 with inter-
calant to the lattice mismatch between host and
guest layers. Clarke et al.* have attributed it to a
species-dependent domain-size effect. Both of these
explanations are inherently phenomenological and
do not follow the role of phonons in the orientation-
al transitions.

It may be expected that phonons play an impor-
tant role in such transitions in GIC’s because their
role is crucial in the very similar orientational tran-
sitions exhibited by rare gases adsorbed onto grafoil,
i.e., by materials that could be considered sister
compounds of GIC’s. Therefore, in this paper, we
focus our attention on the orientationally ordered
phase of CsC,4 for 50 < T <165 K, but also consid-
er RbC,; and KC,, and present a microscopic
theory with particular emphasis on the role of pho-
nons. The basic idea of the microscopic theory fol-
lows one developed by Novaco and McTague,® who
studied the epitaxial ordering of monolayer films
adsorbed on solid surfaces. We modify their theory
so that it can be applied to the system consisting of
intercalant layers sandwiched between a pair of gra-
phite layers. It is shown that the total free energy
consists of two terms, i.e., the mass-density-wave
(MDW) energy Eypw associated with an energy
gain due to static displacement of atoms to their
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most stable positions, and the free energy of pho-
nons corresponding to vibrations of both intercalant
atoms and carbon atoms around the stable posi-
tions. The relative orientation of a triangular lattice
of an intercalant layer to a hexagonal carbon layer
is described by the angle 6 between 7o and G,
which are reciprocal-lattice vectors of the inter-
calant and graphite layers, respectively. The most
stable orientation given by minimizing Eypw with
respect to 6 is found at §=14°, 12°, and 8° for
CsCys, RbLCy, and KC,4, respectively, in good
agreement with experiments.>’~°

It is found that one of the most important factors
which determine the rotation angle is the shape of
the acoustic branches of the phonon dispersion
curves at low frequencies. The in-plane vibrations
of intercalant atoms are usually of low frequency
and are coupled to the in-plane vibrations of carbon
atoms, so that the dispersion curves of the
acoustic-phonon modes of the compounds flatten
noticeably at a very small wave vector and thus at
low energy. This unusual feature of the dispersion
curves of alkali-metal GIC’s produces rotation an-
gles which are significantly different from those ob-
served in the epitaxial ordering of adsorbed rare-gas
monolayers on graphite. The formulation of the
MDW within a quasiharmonic phonon approxima-
tion is described in Sec. II. The phonon dispersion
calculations are described in Sec. III for the case of
CsCy4. Also in Sec. III the results of numerical cal-
culations of the rotation angle are presented and
compared with experiment. It is noted that if the
magnitude | 70| /| Gyo| is allowed to deviate
from the ideal value corresponding to the in-plane
stoichiometry of CsC,, then the rotation angle
changes correspondingly. In this connection, the
possibility for an in-plane domain structure of inter-
calant layers is discussed. The conclusions are
presented in Sec. IV.

II. MODEL OF ORIENTATIONAL
ORDERING

Since we are interested in the orientational ar-
rangement of intercalant layers relative to the gra-
phite layers, we focus our attention only upon inter-
calant layers sandwiched between a pair of adjacent
carbon layers, neglecting the interlayer interaction
between intercalant layers, and we consider dis-
placements of atoms parallel to basal planes. In our
model, the dynamical motion of both intercalant
and carbon atoms generates static MDW’s that sta-
bilize the orientationally ordered state. This is in

contrast to the case of adsorbed rare-gas atoms, for
which Novaco and McTague® have treated dynami-
cal motions of adsorbed atoms under a static poten-
tial due to grafoil. Thus we extend the microscopic
theory developed by Novaco and McTague® so as to
be applicable to the present system.

We first consider the case of CsC,4 and assume
that the in-plane structure of an intercalant layer is
a triangular lattice with a lattice constant d;. The
homogeneous intercalate layer requires the value of
d; to be fixed at 6.02 A consistent with the in-plane
stoichiometry of CsC,4. This value is also con-
sistent with experimental observations.’ Intercalant
layers, therefore, are assumed to be nonregistered
and incommensurate with adjacent hexagonal gra-
phite layers that have a lattice constant dg =2.47 A.

We start with the Hamiltonian

H=H;+Hg+Hiy , (D

where H; and Hg represent the Hamiltonian of the
subsystem of intercalant and graphite layers, respec-
tively, and H;, represents the interaction between
intercalant atoms and the neighboring carbon atoms
(the interaction is assumed to be short ranged).
Since we have neglected the interlayer interactions
between intercalant layers, we can write H; as fol-
lows:

Vi —x o
Hy= —— B
I 2M1 ?p],] pI:]

Vi iK«(RI-KRD i¥(wI-3))
L
_zzq)%e Je i i
Lj k (2)

where v; is the number of intercalant layers, and
the sum is carried out over atoms within the same
layer. ﬁ,’ is the lattice vector and ﬁ{ represents the
displacement from l_i,l In the first approximation
the dynamical motion of the intercalant atoms is
considered to be determined by intercalant-
intercalant atom force constants. Then, within the
quasiharmonic approximation, the dynamical part
of the Hamiltonian can be written as

Hy=3 fio; (@la)(@a (@) + 7], 3)
q.j
where a;(q) and a jT(?]’) are annihilation and creation
operators of the virtual phonon associated with
dynamical motions of intercalant atoms around the
lattice sites ﬁ,’ Thus T/ is given by

I # 172
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where N; is the number of lattice sites in the inter-
calant layers and €, ; is the mode polarization.

We also introduce a set of operators
{bj(fi),b;( q)} to describe virtual phonons associat-
ed with dynamical motions of carbon atoms in a
similar approximation to that mentioned above.
The motivation for introducing the dynamical
motion of carbon atoms besides intercalant atoms is
that (1) the phonon dispersion curves calculated for
stage-1 GIC’s (Ref. 10) demonstrate that the low-

frequency motions of both intercalant and carbon
J

H="3 #io,(@laf(@)a)(@)+ 1+
< 7.

atoms are strongly modulated with respect to each
other; and (2) there is a transfer of electrons from
intercalant alkali-metal atoms to the neighboring
carbon atoms, giving rise to a screened Coulomb in-
teraction between intercalant and carbon atoms.
Usually the electrostatic interactions are considered
to be much stronger than interactions between ad-
sorbed rare-gas atoms and carbon atoms. Thus the
total Hamiltonian can be written, omitting constant
terms, as follows:

#iw6, (@b (D) ++]
1

+ 3 3 Kggo 6l (—D+a@IbH—T)+bx(G ]+ 3 C4 laf(—G)+a,(@)]

< T Lr

q,q9
+ 3 Dy [b/(—D+b,(@)],
q,!

q,!

(5

where
Kqgur=2 283 5,7 3 (NiNg) [#/4MMgo; /(Do (G ]2
G 7

X[(F=8) € (DG —C)Ee (G IUGF—-F)S(G), (6)

Cqi=i 3 285 ¢, 7N *Nelh/2Mro (@] (G (DIVGS(S) @)
G 7
Dy =~i 3 385, 7 g NN [A/2M 506,/ [7E6(PIUTIS(G) . ®
G 7

The third term in Eq. (5) represents the dynami-
cal coupling between two sets of virtual phonons as-
sociated with vibrations of intercalant atoms and
carbon atoms, respectively. The function U(q) in
Egs. (6)—(8) is the Fourier transform of the interac-
tion potential between carbon and intercalant
atoms. The summations Y, g and Y, - are over the
reciprocal-lattice points of the hexagonal graphite
layer and the triangular intercalant layer, respec-
tively. Also S(G) represents the two-dimensional
(2D) structure factor of the hexagonal graphite
layer.

The usual method to obtain a complete set of
phonons is not applicable to the present case of in-
commensurability because there is no common fin-
ite unit cell. Moreover, the fact that there is no
common finite Brillouin zone leads us to difficulties
that we have to include interactions between all vir-
tual phonons in the two systems of intercalant and
carbon atoms and not their finite subsets. This
would, of course, invalidate the usual procedure of
diagonalization of the Hamiltonian. We need,

|
therefore, to employ the following approximation to
bring the Hamiltonian into a tractable form. First,
we confine ourselves to the small Brillouin zone of
the intercalant lattice and ignore interactions with
phonons with wave vectors outside the Brillouin
zone. Thus we consider interactions only between
virtual phonons with §’'=—gq’ in the third term of
Eq. (5). This approximation will not produce seri-
ous errors in the final result obtained below because
U(q) in Eq. (6) is important only for a sufficiently
small | q |. This point will be discussed in the next
section. Second, in the present -calculations
described below, we take the six low-lying modes of
virtual phonons polarized parallel to the basal plane
of the crystal, because phonons with low frequen-
cies are found to play an important role of stabiliz-
ing the MDW. Finally, an approximate but physi-
cally reasonable determination of w; ;(q)wg, ;(q) is
made by referring to the phonon dispersion curves
of KCg. The details will be described in the next
section.

The six virtual phonon modes that are considered
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here are two acoustic modes, E,; rigid layer shear
modes, and two optical modes. By the analogy with
the case of KCg, the E,, rigid layer modes and the
two acoustic modes can be assigned as being associ-
ated with vibrations of carbon atoms so that
they are described by {b,,(ﬁ),blfl(ﬁ)} and
{b12(q), b,z(q)} respectively, where / =L, T denote
the polarization. On the other hand, the optical
modes associated with vibrations of intercalant
atoms relative to carbon lattices are assigned as be-
ing intercalant v1rtua1 phonon modes and are
described by {a,(q),a,(q)} with [ =L,T.

The two sets of virtual phonons are not exact
phonons representing harmonic motions of all
atoms around the most stable positions. In fact,
those virtual phonons are modulated with respect to
each other by means of the interatomic potential be-
tween intercalant and carbon atoms. The real pho-
nons of the crystal are obtained by diagonalizing the
Hamiltonian H. It is convenient to diagonalize H
in two steps. F1rst we introduce a new set of opera-
tors {4, ,,(q), A,,,,(q)} each of which is defined by
a linear combination of a,(q), aIT(—q) b (q),
b“( —4q), bj»(q), and blz( —1q) with the same polar-
ization, and diagonalize the bilinear terms of H.
This canonical transformation yields new frequen-
cies E;,,(q) for the phonons. The number of in-
dependent modes with frequencies E;,(q) is, of
course, equal to the number of the relevant virtual
phonon modes, and they are classified by the suffix
m as well as . Then the Hamiltonian is written as

H=3 3 {#E)m(@[A]m(@Aym(@)+7]
Lm g

+gl,m(a)Al,m(a)
8 (— DA (— D)) )

The details of the canonical transformation yield-
ing Eq. (9) are described in the Appendix. The fre-
quencies E; ,,(q) for the new phonons are given by
the solutions of cubic equation (AS5) and are speci-
fied by the polarization index ! and the branch suf-
fix m=1, 2, 3. The explicit expression for E,, is
not written here because it is lengthy and too com-
plex. The explicit expression for g; ,,(q) is given by
Eq. (A8).

We introduce new phonon operators A, m(q) and
A, m(q) by the equations

A,,,,,(q)=A,,,,,(?i)+m,,,,(?]’) , (10)

Al (@ = (@) (D), (11)

where 71;,,(4) and 7/,(q) are c-numbers deter-
mined by the conditions

<Zz,m(5))=(ffgm(?1'))=0. (12)

Here, the notation of angular brackets means the
statistical average over the equilibrium state of new
phonons. The conditions (12) guarantee that the
new phonons described in terms  of
{X,,m(a),@fm(a)} represent harmonic motion of
atoms around a stable arrangement of lattices, so
that 7;,,(q) and 7/,(q) are associated with the
MDW?’s generated.® The average of the total energy
is then given by

(H)=Epn+Ewmpw » (13)

where E; is the average energy of phonons with
frequencies E;,,(q) and Eypw is the energy gain
due to static displacements of atoms and is given by

m(@) |2
EMDW=—22M . (14)

img #E,m(Q)

In order to describe the arrangement of the tri-
angular lattice of intercalant layers relative to the
adjacent hexagonal lattices of carbon layers, we in-
troduce 6 which is defined as an angle between G
and 7o in reciprocal-lattice space. Then the most
stable orientational arrangement of the two lattices
is given by minimizing the total free energy with
respect to 6.

To evaluate the free energy F=(H)—TS we
note that the 6 dependence of F is essentially con-
tained in H, where, however, E; ,,(q) is assumed to
be not dependent on 6 for the temperature range
under consideration. In principle, there may be
contributions to the entropy term of F from the
atomic configurations and from the phonons. Note,
however, that for each value of 6 there are only two
configurations possible corresponding to +6 and
—6. Therefore, for the case of the homogeneous
triangular incommensurate intercalate lattices, the
configuration entropy is 6 independent. The
phonon-entropy contribution is also € independent
because phonon entropy is a function of E; ,,,(q).

Until now we have employed the quasiharmonic
phonon approximation to establish the free energy.
It is obviously desirable to take into account anhar-
monic effects. However, given the incommensura-
bility of the intercalate lattice with respect to the
carbon lattice, a self-cconsistent solution for E; ,,,(q)
becomes inaccessible because the dynamical matrix
would be of infinite dimension. Therefore, we ap-
proximate the anharmonic effects with the follow-
ing procedure.
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We formally follow the self-consistent phonon
approximation method.!! Then we obtain the same
expression [Eq. (14)] for Eypw as derived above,

provided that U(q) in Egs. (6)—(8) is replaced by a
potential renormalized by the motion of carbon and
intercalant atoms.!! The renormalization factor
would be written as

exp[ — %q“( Wb+ Wgﬂ—ZA,-';ﬁ)qB] ,

where a,B specify a Cartesian component, q"W,-“Bqﬁ
(i=I or G) is a Debye-Waller factor associated
with intercalant or graphite layers, respectively, and
q"A,-‘}ﬂqB is a similar (but more complicated)
factor.!! On the other hand, the contribution of
phonon entropy to the Eypw in the self-consistent
phonon approximation can be calculated perturba-
tionally. It is found that the phonon-entropy effect
can be involved in the formulation if the Wf*? and
W‘G'B if the renormalization factors are appropriate-
ly modified. It should be noted that those factors
wee, wek, and A,-?B include a phonon occupation
number so that they are temperature dependent.
Those renormalization factors, however, cannot be
calculated rigorously. Therefore in the numerical
calculation described in the next section, we make
an approximation that the renormalization factor
is replaced by a phenomenological factor
exp( —% | G |2W), where W is a parameter propor-
tional to the average occupation number of pho-
nons.

It has been experimentally observed in the case of
CsC,,4 that the rotation angle 6 is essentially tem-
perature independent below 165 K, whereas it de-
creases and finally vanishes when the temperature
increases from 165 towards 228 K.> Accordingly,
in the orientationally ordered state at temperatures
50<T <165 K, which we address here, we simply
assume that the phonon frequencies E; ,,(q) are in-
dependent of 0 as noted above. Consequently, the
rotation angle in the rotationally ordered state is
determined by the minimum of Eppw. The results
of numerical calculation of Eypw will be described
in the next section.

III. RESULTS AND DISCUSSION

The basic idea of constructing phonon dispersion
curves E;,(q) from the virtual phonon scheme
refers to the phonon dispersion relations of the
stage-1 GIC intercalated with K (or Rb).1° The
phonon dispersion curves of KCjy calculated within
a force-constant model suggest that they are quali-

tatively equivalent to those constructed by the fol-
lowing procedure: (1) Fold the phonon dispersion
curves of pristine graphite into the Brillouin zone
(BZ) of KC;, (2) superimpose dispersion curves of
the optical modes associated with vibrations of in-
tercalant atoms relative to those of carbon atoms,
and (3) if modes originating from pristine graphite
and those from intercalant atoms couple to each
other because they have the same polarization, then
diagonalize them. The same prescription, however,
is not applicable to the stage-2 GIC’s because of the
incommensurability mentioned before. Therefore
we modify the procedure to construct the phonon
dispersions E| ,,(q) as follows. First, we determine
separately the dispersion curves of virtual phonons
associated with vibrations of intercalant atoms and
of those associated with carbon atoms. Then, intro-
ducing the dynamical coupling between those virtu-
al phonons, we diagonalize the modes to obtain
E; (). This will be demonstrated for the case of
CsCy4 below.

We ignore the modes polarized parallel to the ¢
axis because they have no effect on the orientational
rotation under consideration. We focus our atten-
tion on phonons with low frequencies because they
give the main contribution to the energy Eppw as is
seen from Eq. (14). Frequencies of in-plane modes
at the point I' are determined on a linear-chain
model in which atoms are arranged in a sequence
AaAAaAdA - - - . The masses of a and A4 are taken
as being a mass of the Cs atom and a mass equal to
12 times the carbon mass, respectively, to achieve
the ideal in-plane stoichiometry of CsC,,. The ef-
fective force constants are estimated by referring to
neutron data.!>!?

Nontrivial eigenfrequencies are calculated to be
0G(0)=20.4 cm™! and ©;(0)=32.8 cm~!, and the
corresponding eigenmodes are obtained. The
lower-frequency modes are doubly degenerate and
correspond to the E,, rigid-layer shear mode of
pristine graphite.!* The higher-frequency modes
are doubly degenerate and correspond to out-of-
phase vibrations of the Cs atom relative to carbon
atoms. Thus we assign those modes with frequen-
cies wg(0) and w;(0) at the point I" as being virtual
phonon modes associated with vibrations of carbon
and intercalant atoms, respectively.

On the other hand, we can assume that the acous-
tic modes are determined by vibrations mostly of
graphite because in-plane bondings between carbon
atoms are strong enough even in compounds. Since
only phonons with low frequencies have significant
influence on the MDW?’s, the frequencies wg,;>(q)
of the acoustic modes are well described by a linear



27 IN-PLANE ORDERING IN STAGE-2 GRAPHITE. .. 3801

function vg, where v is taken to be a sound velocity
of graphite. The in-plane symmetry of pristine gra-
phite has been taken into account by interpolating
the sound velocities between vy;10; and v[jo) by use
of sinusoidal functions.

It is noticed that frequencies wg 1(q) of the E;;
rigid-layer modes should approach the acoustic-
mode frequencies wg, >(q) asymptotically for large
|g|. Thus the dispersion curves of wg,,(q) are
calculated by readjusting interlayer force parame-
ters'* in the case of pristine graphite to reproduce
the point I" frequency wg(0)=20.4 cm™! obtained
above.

Frequencies w; ;(q) of virtual phonons associated
with the motion of intercalant atoms relative to gra-
phite are assumed to be represented by

011(@)=wy(0)+agsin? | T—1—|,  (15)
2 max

0 1(§)=w;(0)+arsin® | =—1— | | (16)
qmax

where the suffices L and T denote the longitudinal
and transverse modes, respectively, and g, is the
value at the boundary of the BZ of the intercalant
lattice. The dispersion of w;; and wj 7 originates
mainly from interactions between intercalant atoms.
Taking the radial and tangential force constants be-
tween Cs atoms to be of the same order of magni-
tude as those in the case of KCs and RbCs,'® we ob-
tain @; =50 cm~' and a7 =30 cm .

It should be noted that the dispersion curves of
wr,1(q) cross the curves of wg 1(q) and/or wg,;1»(q)
at around g =0.05¢,,, and that virtual phonon fre-
quencies wg,;; and ©g,j; at § ~Gmax are more than
ten times the frequencies of w;;(gmax). Thus the
neglect of phonons with g > g, does not create
any serious errors in the result. We take three
branches of virtual phonons with the same polariza-
tion L and T, respectively, and construct new pho-
nons with frequencies E ,,(q). The resultant pho-
non dispersion curves for CsC,4 are shown in Fig. 1.

The interaction potential between carbon and Cs
atoms is taken to consist of a Born-Mayer-type
repulsive part and a screened Coulomb interaction.
The Fourier transform is written as

8ma 1 _ ¢ 1
ro | (g2+rg?)? 2 g*42?

U(q)=

(17

An isotropic screening is assumed for the Coulomb
potential, so that the screening factor is given as

[aq0)

L

FREQUENCY (cm™)

0.0 * Oj1 * 012
r WAVE VECTORq
FIG. 1. Phonon dispersion curves for CsC,,. The
wave vector q is measured in units of 47 /3d;. L and T
denote the longitudinal and transverse modes, respective-
ly.

A=0.067 A~ if one assumes that the fraction of
charge transfer per Cs is unity. Other parameters
are chosen by the conditions that tlo)e minimum of
the potential U(r) is at r=3.05 A which corre-
sponds to the closest distance yet observed between
C and Cs atoms. It also seems reasonable to require
U(q) to have a large value in a certain range of ¢
where the coupling between virtual phonons is con-
sidered imoportant. Thus we have chosen r;=0.6 A,
¢=0.063 A, and a=18 eV.

The MDW energy Eypw for CsC,, is calculated
by using the phonon dispersion curves shown in
Fig. 1, and is plotted against the rotation angle 6 in
Fig. 2. We find that the minimum of Eypw is at
about 14° in good agreement with experiment.’ In
Fig. 2, contributions from each phonon mode are
also plotted. It is interesting to observe that the
lowest longitudinal mode denoted by L, always
tends to stabilize the energy at 6=19.1°, which cor-
responds to the rotation angle of a

O == —s S e
=<7 ] “~ 777N,
N \ -
_ N
) X
e / N
E /' Sy
£ /h
s /
/
H o
3
w
TOTAL ENERGY
\ .
20 30

ROTATION ANGLE 0 (deg)

FIG. 2. Plot of Epqpw Vs 6 for CsCys. The value of
Empw is normalized by the absolute value of the
minimum of Epypw. The dashed curves are contributions
to Empw from longitudinal modes, whereas dash-dotted
curves are those from transverse modes. The discontinui-
ty at @ =7° is discussed in the text.
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(V7XV7)R19.1° commensurate superlattice. The
lowest-transverse mode denoted by T'; is, however,
more effective in stabilizing the MDW at angles less
than 19.1°. This result is associated with a flatten-
ing of phonon dispersion curves of the lowest trans-
verse T| mode beyond ¢q/q..,=0.05 as is seen
from Fig. 1. The temperature dependence of Eppw
comes from the phonon-entropy term and the factor
exp(—-;- | G |2W) introduced in the preceding sec-
tion to take account of anharmonic effects.

The value of W can be estimated by assuming
that it is the same order of magnitude as the
Debye-Waller factors. Taking the Einstein phonon
with a frequency w;=30 cm™!, the Debye-Waller
factor W; for intercalant layers is estimated to be
about 102 A2 for T=100 K. On the other hand,
the Debye-Waller factor Wy for graphite layers is
about 10~* A2 if one takes the Debye approxima-
tion with ®=10° cm~!. Thus if we assume that
W =W, then we find that W varies in a range of
0.02—0.08 for 50<T <165 K. Figure 3 shows the
temperature variation of Eypw for several values of
W within this temperature range. It is concluded
from the numerical calculation that the rotation an-
gle 0 is practically independent of temperature in
the temperature region under consideration, provid-
ed that E; ,,(q) is assumed to be independent of 6.
The strong T dependence of 6 observed above 165
K for the case of CsC,,, therefore, seems to suggest
a softening of the T'; mode.

A similar calculation of the rotation angle has
been done for the cases of RbC,, and KC,,.
Parameters involving atomic mass were scaled by a
mass ratio from the value of parameters chosen for
CsCy4. It turns out that the curve Eypw plotted
against 6 has a minimum at 6 =12° for the case of
RbCyy4 (d;/dg=2.45) and 6 =8 for KC,,, respec-

Empw (arb. units)

1.0 L L L L
o 10 20 30

ROTATION ANGLE 6 (deg)

FIG. 3. Temperature dependence of Eypw calculated
for CsCy, for an appropriate value for the parameter W
(see text) which is assumed to be proportional to tempera-
ture for 50 < T < 165 K.

tively. Those values of rotation angle are close to
the experimental data’~° for RbC,, and KC,,
respectively, though the experimental results for 6
reported by different groups show some variation.

It should be noted here that the discontinuity in
Eypw curve at 6 =7° in Fig. 2 is due to the approx-
imation that in the calculation of Eypw we have re-
stricted the wave vectors of phonons to fall within
the first BZ of intercalant lattice. Actually, when
we rotate the reciprocal lattice of an intercalant
layer relative to that of graphite layer, some of the
phonon wave vectors satisfying the relation
Z]’:é— 7 lie on the boundary of the BZ for 6 =7°.
Therefore if one restricts the magnitude of the ¢ so
as to fall within the BZ, then one has to take pho-
nons with different G’s depending on 6>7° or
0 <7°. It is checked that this restriction for q’s
produces only discontinuities in the Epy curve
and has no significant effect on the rotation angle
corresponding to the minimum of Eypw-.

So far we have assumed a homogeneous in-plane
distribution of intercalant atoms so that the ratio of
in-plane lattice constant Z =d;/d; is fixed to be
2.44 throughout the crystal. In the case of CsCyy,
this assumption seems consistent with experimental
observations® and d; is 6.02 A. On the other hand,
Clarke et al. have recently proposed that the inter-
calate layer orders into domains bounded by
discommensurations. In connection with this
point, it seems worthwhile to mention the possibili-
ty for the present theory to be extended to the inho-
mogeneous system. We have checked the case
where Z =d;/d; is varied. Figure 4 shows the
variation of the rotation angle corresponding to the
minimum of Eypw as a function of Z. It is in-
teresting to see from Fig. 4 that the rotation angle
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FIG. 4. Variation of the rotation angle for CsC,4
determined by the minimum of Eypw as a function of
Z =d;/ds. The open circle is the experimental data
(Ref. 3).
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becomes 19.1° when Z approaches /7, so that it ex-
actly corresponds to the (V7 X V'7)R 19.1° superlat-
tice structure. We have also found that the MDW
energy is gained as Z deviates from the ideal value
2.44 that corresponds to the homogeneous in-plane
stoichiometry of MC,,. Then one might suppose
that the intercalant layer structure would consist of
a (V7XV7)R19.1° region and other more dense re-
gions like (2X2)RO0° since the average in-plane
concentration of intercalant atoms should be kept
constant. This is, in fact, consistent with the rela-
tion

MCiys;=TMCuyxs+ TMCsy; (18)

where stoichiometries of MC,,y, and MCy,, are in
correspondence with the commensurate in-plane
structures (V7 XV7)R 19.1° and (2X2)R 0°, respec-
tively.

For such a domain structure, however, we have to
take into account the locking energy of commensu-
rate domains (commensuration energies) which van-
ishes in our incommensurate case, and also the sig-
nificant entropy contribution to free energy associ-
ated with configurations of domain walls. Thus, al-
though there is a possibility of having an in-plane
domain structure in stage-2 GIC’s, further discus-
sion of the domain structure is obviously beyond
the scope of the present theory.

IV. SUMMARY AND CONCLUDING
REMARKS

The same idea of MDW’s as developed by No-
vaco and McTague® in studying the epitaxial order-
ing of adsorbed films has been extended to study
the orientationally ordered state of the stage-2
GIC’s; CsCyy, RbCy4, and KC,4. The intercalant
atoms are assumed to constitute a homogeneous tri-

angular lattice, so that the arrangement of inter-
calant lattices is nonregistered with the hexagonal
lattice of the adjacent carbon layers.

It is of interest to see that phonons with low fre-
quencies play a crucial role in stabilizing the orien-
tationally ordered state in which the MDW’s are
generated. The phonon dispersion curves for CsCy,,
RbCy,, and KC,, have been calculated by starting
from the virtual-phonon scheme. The virtual pho-
nons are originally associated with dynamical
|

motions of intercalant atoms and carbon atoms,
respectively, and couple with each other by means
of interaction between intercalant and carbon
atoms. The resultant phonon dispersion curves for
the stage-2 alkali GIC’s show a characteristic
feature of mixed modes, as demonstrated in Fig. 1.
The most stable orientation of intercalant triangular
lattice relative to hexagonal graphite lattice is given
by the minimum of Eypw as a function of 6, which
is defined as an angle between 7o and Gjgo. It is
found that the rotation angle is 6=14° for CsCy,
=12° for RbC,4, and =8° for KC,4, respectively,
and agrees fairly well with experiments. It should
be mentioned that the lowest longitudinal mode L,
stabilizes the rotation angle at 19.1°, whereas the
lowest transverse mode T; dominates and tends to
depress the rotation angle to values less than 19.1°.
Therefore, we conclude that the flattened dispersion
curves of low-frequency phonons in the stage-2
GIC’s are responsible for the rotation angle ob-
served.
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APPENDIX

In this appendix we describe the details of canon-
ical transformation yielding Eq. (9). We also give
the equation determining frequencies Ej,,(q) and
the explicit expression for g; ,,(q) in Eq. (9). As is
noted in the text the longitudinal and transverse
virtual-phonon modes of the intercalate atoms are
coupled, respectively, with two virtual-phonon
modes associated with the carbon atoms with the
same polarization direction. In order to diagonalize
the Hamiltonian H, therefore, we introduce a linear
combination of three virtual-phonon modes with
the same polarization for the transverse and longi-
tudinal modes, respectively. Let us define the vec-
tors A;(§) and a;(§) as

Ay ="{A41(T), Apo(@), A1), Af (— D) Ay (— @), Al (— D)}
@(d)="{a/(§),b;(@),b12(F)a] (—Q),b/} (=), b (-},

(A1)
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where presuperscript ¢ indicates the transpose of the row vectors, / indicates the polarization direction, and a;,
byy, and by, are phonon operators corresponding to the intercalate layer mode, the E,,; rigid-layer shear mode,
and the acoustic mode of pristine graphite, respectively. The canonical transformation to diagonalize the bi-
linear terms of H is written in terms of A;(q) and &;(q) as

Aq) =)@ (3) . (A2)

Here I';(§) is a 6X 6 matrix whose elements are given by (in the following we will omit the wave vector q for
simplicity of description)

(') 1=1/Ny; ,

(Tp)i2=—2K, 15,1 /[#iN (06,11 — Epi Nog +E;)]

(Ty)i3=—2K, p0r,1 /[ #iN)j(06,12— Eli Nwr + Ep )]

(Tp)ia= —(or1—Ep;)/[Nyilor +E)l (A3)
(Ty)s=2K; nor /[#iNi(w6,n+Epi o +E;)]

(Ty)i,6=2K} 1011 /[#iN},i (06,12 +Ei Nop1 +Ei)]

for 1<i <3, and

r (Cp)iozj43 1<j<3
(Ty)y;= (Tpi_s,j_3 4<j<6

for 4 <i <6 with
Ao B, 4| Ky | *of
ﬁ(wl,1+EI,i)2 ﬁ(wl,l“l"El,i)z
4| Ky | 0l
ﬁz(w“-i-EL,')z

1 1
((06,11—1':1,;')2 (wG,Il+El,i)2

Ny

1 1
(w6 12—Epi)*  (wg+E)*

(A4)

From commutation relations for 4, ,, and A,:r m We obtain the equation to determine the frequencies E; ,, as
Eppm—(0f1+ &1 +0§,15)Eim
+07 1081 +0§ 108,12+ 0§ 1ol — 4oy (011 | Ky | 2+ 06,12 | Kii2 | D]E]
—(0}i0d10&n—4| K | *on1061061 —4| K2 | 205108 106,2)=0 . (AS)
Substitution of Eq. (A2) into Eq. (5) yields, after some manipulation, the expression for the Hamiltonian H

written in terms of a new set of operators {4, ,,,(E]’),A,T,,,(?;’)} as follows:

3 - -
H=3 3 S (DAn@4n@+5]1+ 3 3 ADTHDF), (A6)
I=L,Tm=1 3 I=L,T3
where the vector F;(q) is defined by
—F’I(a)='(Cq,l»Dq,IliDq,IZ’Cq,I)Dq,Il’Dq,IZ) . (A7

Comparison of the second term of Eq. (A6) with the second term of Eq. (9) yields the explicit expression for
gl,m(a):
g =0T 1+ (TN 41C, 1 +[(T)] 2+ (D)1 51D 11+ [(T))] 3+(T))1 61Dg 12 »
82=[(T))31+ (T3 41C, 1+ [(T1)3,2+(Ty)3 51Dy 11+ [(T1)3, 34+ (T1)3,61Dg.12 » (A8)

81,3=[(T)3,1+(T1)341C, 1+ [(T1)3 24+ (T3 51Dg 11 + (T3, 3+ ()3 61Dy 15 -
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