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We show that a layer rigidity model which includes the effects of elastic deformations of the host lay-
ers can account for the composition dependence of the c-axis lattice expansion of a variety of layered in-
tercalation compounds. Rigidity parameters deduced from this model for each of the three classes of
layered solids are reflective of structurally derived rigidity as are the healing lengths computed on the
basis of discrete and continuum analyses. The layer rigidity model provides the first quantitative ex-
planation for the 1D non-Vegard’s-law behavior of a 2D solid solution.

PACS numbers: 68.65.+¢g

All crystalline solid solutions exhibit a composition-
dependent unit-cell volume which generally increases
with the concentration of the largest constituent.! When
this variation is linear the system is said to obey
Vegard’s law.? Most solid solutions exhibit a more com-
plex nonlinear behavior® which has been accounted for
empirically by augmenting Vegard’s law with a polyno-
mial that represents a composition-dependent mixing
volume.® In order to gain a more fundamental under-
standing of the origin of non-Vegard’s-law behavior
several authors*~ have found it advantageous to address
systems which contain crystalline solid solutions of re-
duced dimensionality. For instance, there are a variety
of ternary layered intercalation compounds (hereinafter
called ternaries) of the form A—xBi L, 0=x,=<1,
where B is the larger ion and x; defines the composition
of the ions which actually reside in the gallery and con-
tribute to c-axis expansion. The guest species, 4 and B,
form a 2D commensurate but compositionally disordered
solid solution between the host layers, L. -9 [Note that
A can represent a vacancy (i.e., A=V).] Because of the
highly anisotropic structural and physical properties of
ternaries,”~’ the dominant change in their cell volume
with intercalate composition results from c-axis expan-
sion. The one-dimensional (1D) form of Vegard’s law is
then

c(xg) =0 —xg)ca+xecs, (n

where ¢, ¢4, and cp are the c-axis repeat distances of the
mixed and end-member compounds. But most ternaries
exhibit a superlinear (concave downward) c(xg).*”
Even though ternaries represent the most basic and
simplified (e.g., 1D) systems for studying composition-
driven lattice expansion, attempts to account for their
nonlinear response have to date been markedly unsuc-
cessful. In this Letter we rectify this deficiency and
present a one-parameter model which accounts for the
c-axis expansion of a broad range of ternaries.

Layered solids have been classified into three sub-
groups on the basis of their rigidity with respect to out-
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of-plane distortions.'® Thus graphite is the prototypical
class-I layered solid whose monatomically thin layers'!
are “floppy.” The three-atom-thick layers of the dichal-
cogenides'? such as TiS, are more “rigid” and render
them class-II status.'® Finally, the 2:1 layered-silicate
clays such as vermiculite (Vm) whose host layers are
constructed from seven interconnected planes of atoms'?
are extremely “rigid” and belong in the class-III group-
ing.'® All of the above-mentioned host systems can be in-
tercalated to form solid solution ternaries. Although the
three resultant classes of ternaries exhibit a broad range
of physical properties, the graphite, TiS,, and Vm hosts
possess a common structural feature: Their guest sites
can form a 2D triangular lattice. We will show that the
c-axis lattice expansions of these “triangular’ ternaries
are amenable to an analysis which spans their physical
diversity.

In Fig. 1, we show the measured composition depen-
dence of the normalized basal spacing, d, (xg), for
Vi-xLix,Ce® Vi-yLi,TiS;* and Rb;—, Cs,Vm,'
which represent, respectively, the class-I, -II, and -III
triangular host systems. Here

dn(xg)=lc(xy) —c(0)1/[c(1) —c(0)].

All three ternaries exhibit a superlinear non-Vegard’s-
law behavior.

In an attempt to explain the c-axis expansion of
Vl_XgLingisz, Dahn, Dahn, and Haering4 employed a
rigid-layer model in which the undeformable layers are
coupled by springs of spring constants k and K represent-
ing, respectively, the guest-host interaction and the
vacancy- or host-host interaction. Safran modified the
original rigid-layer model to account for anharmonic
softening of the vacancy springs in the presence of the
guest springs.” Then the rigid-layer model yields
dn(xg) =xg/[(1 —x,)a+x,] which satisfies the bound-
ary conditions d,(0) =0, d,(1) =1 and gives Vegard’s-
law behavior when a=1. Plots of the modified rigid-
layer model for several values of a are shown in Fig. 1.
It is evident from these plots that the rigid-layer model
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FIG. 1. The normalized basal spacing vs expanding-site gal-
lery composition for Rbi-x Csx, Vm (squares) (Ref. 14),
Vi-x,Lix, TiSz (circles) (Ref. 4), and V- Lix Cs (diamonds)
(Ref. 6). The solid lines are fits to the data using the layer ri-
gidity model (see text) and yield the rigidity parameters, P,
given in Table I. The dotted lines are fits to the data using the
rigid-layer model (see text) with «=0.5, 0.2, 0.1, and 0.05,
bottom to top, respectively. The straight dash-dotted line rep-
resents Vegard’s law and corresponds to P=1 or a =1.

fails to fit the measured d,(x,) for any of the ternaries.
This is not surprising for graphite or even for TiS; since
their host layers are far from rigid. But the model also
fails for the Rb, -x,Csx,Vm system to which it should be
most applicable given its high host-layer rigidity. '°

In an effort to improve upon the rigid-layer model, Jin
and Mahanti'® (JM) introduced a model with nonde-
formable layers but with “additional” springs which rep-
resented the finite compressibility of the guest species.
Their model also addressed interlayer correlations. Nev-
ertheless, even though this model employed several pa-
rameters, its success was marginal when it was applied
to the dual-alkali graphite intercalation compounds
(GIC’s) of the type M;_,M;Cs for which interlayer
correlations should be most pronounced in d,(x). [We
do not address the dual-alkali GIC’s because the gallery
composition of these materials has not yet been estab-

lished and the actual form of d,(x,) is therefore un-
known.] Moreover, the multiparameter JM model does
not provide an acceptable fit to the data of Fig. 1.

We now describe our layer rigidity model which unlike
all previous models accounts for the data of Fig. 1 and
does so with the introduction of only one parameter. The
essential feature of the layer rigidity model is the defor-
mability of the host layers which in its discrete version is
characterized by a rigidity parameter, P. Here we also
introduce a continuum version which is characterized by
a healing length, A, and we derive a relation between P
and A which provides an independent test of the model
when the host elastic constants or phonon dispersions are
known.

In the discrete embodiment of the model which we in-
troduced ' to explain the sigmoidal form of d,(x) for
Vm ternaries, one envisions a single gallery bounded by a
pair of host layers. Incompressible guest ions whose rel-
ative proportions depend on x, randomly decorate the
sites of a 2D triangular lattice. The layers experience a
pillboxlike discrete puckering over the larger B ion. The
lateral extent of this puckering is specified by P which is
equal to the total number of puckered lattice sites for a
single B ion. Computer simulations'> of the average gal-
lery height, d(x;), yield a normalized basal spacing
which obeys Vegard’s law for P=1 and exhibits super-
linear behavior for larger values of P. These simulation
results are in excellent agreement with an analytical
solution of the form '*1¢

di(xg)=1—(0—x,)f, 0=x,=<1. )

In Fig. 1 the solid lines represent fits to the data using
Eq. (2). With the exception of the V-, Li,TiS; sys-
tem the fits are excellent and far superior to those ob-
tained using the rigid-layer model. The rigidity parame-
ters deduced from the fits to the data in Fig. 1 are given
in Table I and as expected increase from class-I to
class-III ternaries.

It is desirable to relate P to a healing length which is a
measure of the lateral range over which a puckered layer
returns to its undistorted form. The healing length, A4,
for the discrete layer rigidity model can be simply es-

TABLE I. Important parameters for several ternary layered intercalation compounds.

Rigidity Site Intersite Healing
Stage of parameter ratio distance lengths
structure Class Sample P a ao (A) ra (R) Ae (R)
Stage 1, triangular I V1 -xLixCs 2 3 2.46 3.16 2.45
I1 V1-xLixTiS; 3.5 1 3.41 3.35 2.60
I11 Rb;—xCsxVm 7 1 5.34 7.42 5.77
Stage 2, unknown I V2—x(H2)xKCs 4.8 {6.9}° V12(2.46)° . e
e V2—x(D2)<KCa4 5.0 {24.8}° V12(2.46)°

4The class designation of this compound is based on the fact that the KCy4 “host layers™ consist of three atomic planes (see text).
5The bracketed number is the measured value and the unbracketed number is the actual (corrected) value (see text).

“This value is based on a stoichiometric K/C ratio of exactly 1/24.
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timated from the relation P=(x\7)/aA,, where the
numerator is the area of the puckered region and « is the
ratio of the area per site of the saturated (x, =1) super-
lattice to the area per host site [for Ling6 the superlat-
tice is (+/3x~/3)R30°, so a=3]. If ay is the host-lattice
intersite distance, then Ay =1[1/(3.63)'21(aP)2a, (see
Table I).

To more precisely quantify the influence of layer de-
formations on c-axis expansion we treat the host layers
as a stacked set of elastic continua in the form of de-
formable plates of finite thickness. For galleries which
each contain single pointlike B ions at ro in a sea of va-
cancies or A ions, the gallery height, W(r —r¢), is ob-
tained from'”'®

{DV*— KV +GIW(a —10) =f06(r —19) , 3)

where D and K are, respectively, the flexural rigidity and
the transverse rigidity of the individual plates, and G is
the c-axis compressibility of the stack while f represents
the &-function-like force from the B ion. Each of the
coefficients in the curly brackets in Eq. (3) can be ex-
pressed in terms of the effective layer thickness, 2H, the
basal spacing, d, and the host elastic constants, C[j.‘g
Thus D=2[(C} —C%)IH?1/3Cy, K=dCs, and G
=2C33/d. Equation (3) can be solved to give

fo = gJolgp/lo)
dq , 4)
27r(DG)'/2j; g*+28q°+1 (

where p=|r—r10|, lo=(D/G)'"* gives the length scale,
and §=K/2(GD) > <1 gives the relative strength of the
transverse rigidity.

For a single defect, we can define the healing length A,
as the distance at which the gallery height relaxes to half
its maximum value, i.e., W(.) =+ W(0). From Eq. (4)
we obtain A.(8) =Z(8)ly, where Z(8) is a slowly de-
creasing function of & with Z(0)=1.302, Z(0.5)
=1.276. One can obtain A. from & and /o. These are
functions, respectively, of D, K, and G, the first two of
which can be determined from the in-plane TA disper-
sion of layered solids given by w?(q) < Dg*+Kq?% Al-
ternatively, K and G can be obtained from the stiffness
constants as can D if H is known. For graphite K=0, so
the TA dispersion yields D directly and K and G are
found from the known basal spacing and reported C;;’s.
Using this approach we find A, =1.88 A in reasonable
agreement with the value 2.45 A obtained from the ex-
perimental value of P (see Table I and the following dis-
cussion).

For most layered materials, neither the elastic con-
stants nor the phonon dispersions are available. There-
fore, it is useful to derive a relationship between A, and P
by extending the continuum theory to the case of a dilute
distribution of B ions. Using the superposition principle,
we can obtain the average gallery height, (W), as a func-
tion of the concentration of x,. In the limit x, <1 the
result for (W) normalized by the maximum gallery

W(p)=
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height, W(p =0), due to a single B ion yields
dy(xy) =ag(8) A (8)/aol*xg, (5)
where g(§8) is given by

16 (1—s1)12
Ji3 1 —@/m)tan ~'s/(1 =822

By comparing Eq. (5) with Eq. (2), we have
A (8) =aolaP/g(8)1'2. @)

The values of A.(8) thus evaluated for stage-1 ternaries
compare reasonably well with those of A, (see Table I).
Note that A, for a defect of finite size should be some-
what larger than of a point object. Here the value of & is
assumed to be the same as for graphite (0.14) in the
cases of TiS; and Vm. The short healing length found
for graphite is consistent with the results of x-ray studies
of disordered alkali graphite intercalation compounds'®
which indicate that the host potential is strongly modu-
lated in the vicinity of a guest ion.

Since the charge on the host layers in class-III ter-
naries is fixed, their c-axis expansion is purely elastic.
However, the success of the layer rigidity model for the
class-I and -II ternaries is an indication that charge ex-
change has a small effect on host layer stiffness. If this
were not so, P would be composition dependent and the
data in Fig. 1 could not be fitted with a single parameter.
As further evidence of the success of the layer rigidity
model for systems dominated by elastic forces, we ad-
dress the case of the physisorbtion of H, and D; into
stage-2 KCy4 to form the ternaries V-, (R;)KCys,
0<x'=<2, R=H,D.?° (Here we consider KCy to be
the host material.) Although the structure of the site su-
perlattice for this has not been definitively clarified,”?°
and there appear to be two sets of guest sites,?®?! it is
well established that the physisorbtion of H; or D, into
KC,4 does not result in measurable charge backtransfer
from the host layers to the intercalate layer.”?* There-
fore the layer rigidity model should account well for the
c-axis expansion in these ternaries. That this is indeed
the case is evidenced by the data shown in Fig. 2. These
data were derived from the work of Doll, Ekland, and
Senatore,?® who fitted d(x') with the arbitrary function
d(x') =1—exp(—yx'). The same function when nor-
malized and rescaled from x' to x with 0 < x < 1 gives a
reasonable fit to d,(x) (dotted lines in Fig. 2). However,
Eq. (2) of the layer rigidity model gives an equally good
fit for both D, and H,. The reason that the function
chosen by Doll, Eklund, and Senatore works so well is
that Eq. (2) extrapolates to that function at small x and
the two functions are very similar but do not extrapolate
for x— 1.

The rigidity parameters obtained from the fits to the
data in Fig. 2 are given in Table I. Since the site super-
lattice structure is uncertain,"?® we cannot calculate the
healing lengths. Nevertheless, the measured rigidity pa-

(6)

g(8)=
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FIG. 2. The normalized basal spacing vs gross composition
for V1-x(R2)xKCa (Ref. 20), R=H (squares), D (circles).
The solid lines are fits to the data using Eq. (2) of the text and
yield the measured rigidity parameters given in Table I. The
dotted lines are fits using the function d,(x) =1 —exp(— yx)
with y=7.26 and 25.2 for H; and D, respectively.

rameters are large especially in the case of D,. We sug-
gest that this apparent enhancement of the rigidity pa-
rameter results from the presence of two types of gallery
sites?%2! of which only one contributes to c-axis expan-
sion.?® The fraction of expanding sites can be estimated
from the minimum value of x at which d,(x) =1 and is
estimated from Fig. 2 to be ~0.2 and 0.7 for D; and H»,
respectively. Thus the actual rigidity parameters which
correspond to a rescaling (stretching) of the abscissa in
Fig. 2 are 0.2x24.8=5.0 and 0.7%6.9=4.8 (see Table
I). The increased rigidity of the stage-2 KCj4 “host”
relative to that of graphite is a consequence of the fact
that the host “layers” in the former contain three inter-
connected planes of atoms (two C layers and one K lay-
er), whereas those in the latter are single atomic sheets.
We gratefully acknowledge useful discussions with M.
F. Thorpe and T. J. Pinnavaia. This work was supported

by the NSF and in part by the Michigan State Universi-
ty Center for Fundamental Materials Research.

@permanent address: Department of Applied Physics,
Tohoku University, Sendai, Japan.

IF. S. Galasso, Structure and Properties of Inorganic Solids
(Pergamon, New York, 1970).

2L. Vegard, Z. Phys. 5, 17 (1921).

3J. B. Thompson, in Researches in Geochemistry, edited by
P. H. Abelson (Wiley, New York, 1967), Vol. 2, p. 340.

4J. R. Dahn, D. C. Dahn, and R. R. Haering, Solid State
Commun. 42, 179 (1982).

5S. A. Safran, in Solid State Physics, edited by D. Turnbull
and H. Ehrenreich (Academic, New York, 1987).

6J. E. Fischer and H. J. Kim, Phys. Rev. B 35, 3295 (1987).

7S. A. Solin and H. Zabel, Adv. Phys. 37, 87 (1988).

8S. A. Solin, in Intercalation in Layered Materials, edited
by M. S. Dresselhaus (Plenum, New York, 1986), p. 291.

9R. Setton, in “Graphite Intercalation Compounds, Vol. I:
Structure and Vibrations,” edited by H. Zabel and S. A. Solin
(Springer-Verlag, Berlin, to be published).

105, A. Solin, J. Mol. Catal. 27, 293 (1984).

1S A. Solin, Adv. Chem. Phys. 49, 455 (1982).

I12E. A. Marseglia, Int. Rev. Phys. Chem. 3, 177 (1983).

3R. E. Grim, Clay Mineralogy (McGraw-Hill, New York,
1968), 2nd ed.

14H. Kim, W. Jin, S. Lee, P. Zhou, T. J. Pinnavaia, S. D.
Mahanti, and S. A. Solin, Phys. Rev. Lett. 60, 2168 (1988).

ISW. Jin and S. D. Mahanti, Phys. Rev. B 37, 8647 (1988).

16M. F. Thorpe, Phys. Rev. B 39, 10370 (1989).

7K. Komatsu, J. Phys. Soc. Jpn. 6, 438 (1951).

I18H. Miyazaki, S. Lee, S. D. Mahanti, and S. A. Solin (to be
published).

19S. C. Moss, G. Reiter, J. L. Robertson, C. Thompson, J. D.
Fan, and K. Ohshima, Phys. Rev. Lett. 57, 3191 (1986).

20G. L. Doll, P. C. Eklund, and G. Senatore, in Intercalation
in Layered Materials, edited by M. S. Dresselhaus (Plenum,
New York, 1986), p. 309; G. L. Doll, Ph.D. thesis, University
of Kentucky, 1987 (unpublished).

21y, P. Beaufils, T. Crowley, T. Rayment, R. K. Thomas, and
J. W. White, Mol. Phys. 44, 1257 (1981).

3069



