271 research outputs found

    A new Coniopterygidae from Lebanese amber

    Get PDF
    We describe the oldest fossil Coniopterygidae, possibly attributable to the Coniopteryginae, in the new genus and species Libanosemidalis hammanaensis, from the outcrop Hammana / Mdeyrij in the Lower Cretaceous amber of Lebanon. This fossil shares with the extant and Cenozoic lineages of Coniopterygidae the presence of only two M branches, unlike other Cretaceous representatives of the family

    Inducing or suppressing the anisotropy in multilayers based on CoFeB

    Full text link
    Controlling the uniaxial magnetic anisotropy is of practical interest to a wide variety of applications. We study Co40_{40}Fe40_{40}B20_{20} single films grown on various crystalline orientations of LiNbO3_3 substrates and on oxidized silicon. We identify the annealing conditions that are appropriate to induce or suppress uniaxial anisotropy. Anisotropy fields can be increased by annealing up to 11 mT when using substrates with anisotropic surfaces. They can be decreased to below 1 mT when using isotropic surfaces. In the first case, the observed increase of the anisotropy originates from the biaxial strain in the film caused by the anisotropic thermal contraction of the substrate when back at room temperature after strain relaxation during annealing. In the second case, anisotropy is progressively removed by applying successive orthogonal fields that are assumed to progressively suppress any chemical ordering within the magnetic film. The method can be applied to CoFeB/Ru/CoFeB synthetic antiferromagnets but the tuning of the anisotropy comes with a decrease of the interlayer exchange coupling and a drastic change of the exchange stiffness

    Exchange energies in CoFeB/Ru/CoFeB Synthetic Antiferromagnets

    Full text link
    The interlayer exchange coupling confers specific properties to Synthetic Antiferromagnets that make them suitable for several applications of spintronics. The efficient use of this magnetic configuration requires an in-depth understanding of the magnetic properties and their correlation with the material structure. Here we establish a reliable procedure to quantify the interlayer exchange coupling and the intralayer exchange stiffness in synthetic antiferromagnets; we apply it to the ultrasmooth and amorphous Co40_{40}Fe40_{40}B20_{20} (5-40 nm)/Ru/ Co40_{40}Fe40_{40}B20_{20} material platform. The complex interplay between the two exchange interactions results in a gradient of the magnetization orientation across the thickness of the stack which alters the hysteresis and the spin wave eigenmodes of the stack in a non trivial way. We measured the field-dependence of the frequencies of the first four spin waves confined within the thickness of the stack. We modeled these frequencies and the corresponding thickness profiles of these spin waves using micromagnetic simulations. The comparison with the experimental results allows to deduce the magnetic parameters that best account for the sample behavior. The exchange stiffness is established to be 16 ±\pm 2 pJ/m, independently of the Co40_{40}Fe40_{40}B20_{20} thickness. The interlayer exchange coupling starts from -1.7 mJ/m2^2 for the thinnest layers and it can be maintained above -1.3 mJ/m2^2 for CoFeB layers as thick as 40 nm. The comparison of our method with earlier characterizations using the sole saturation fields argues for a need to revisit the tabulated values of interlayer exchange coupling in thick synthetic antiferromagnets

    Unidirectionality of spin waves in Synthetic Antiferromagnets

    Full text link
    We study the frequency non-reciprocity of the spin waves in symmetric CoFeB/Ru/CoFeB synthetic antiferromagnets stacks set in the scissors state by in-plane applied fields. Using a combination of Brillouin Light Scattering and propagating spin wave spectroscopy experiments, we show that the acoustical spin waves in synthetic antiferromagnets possess a unique feature if their wavevector is parallel to the applied field: the frequency non-reciprocity can be so large that the acoustical spin waves transfer energy in a unidirectional manner for a wide and bipolar interval of wavevectors. Analytical modeling and full micromagnetic calculations are conducted to account for the dispersion relations of the optical and acoustical spin waves for arbitrary field orientations. Our formalism provides a simple and direct method to understand and design devices harnessing propagating spin waves in synthetic antiferromagnets

    Measuring a population of spin waves from the electrical noise of an inductively coupled antenna

    Full text link
    We study how a population of spin waves can be characterized from the analysis of the electrical microwave noise delivered by an inductive antenna placed in its vicinity. The measurements are conducted on a synthetic antiferromagnetic thin stripe covered by a micron-sized antenna that feeds a spectrum analyser after amplification. The antenna noise contains two contributions. The population of incoherent spin waves generates a fluctuating field that is sensed by the antenna: this is the "magnon noise". The antenna noise also contains the contribution of the electronic fluctuations: the Johnson-Nyquist noise. The latter depends on all impedances within the measurement circuit; this includes the antenna self-inductance. As a result, the electronic noise contains information about the magnetic susceptibility, though it does not inform on the absolute amplitude of the magnetic fluctuations. For micrometer-sized systems at thermal equilibrium, the electronic noise dominates and the pure magnon noise cannot be determined. If in contrast the spinwave bath is not at thermal equilibrium with the measurement circuit, and if the spinwave population can be changed then one could measure a mode-resolved effective magnon temperature provided specific precautions are implemented

    Utilisation of the sol-gel technique for the development of novel stationary phases for capillary electrochromatography on a chip

    Get PDF
    Capillary electrochromatography (CEC) appears ideally suited for high performance separations at small scale, i.e. on a chip. Problems with the reproducible production of the required HPLC column, but also the lack of commercially available CEC instruments have prevented many putative applicants of this promising technique from entering the field. In this paper, a fast and easy way to produce self-containing open-tubular CEC columns (C8-moieties for reversed phase applications) by the sol-gel technique is described. The corresponding chips were designed to be compatible with a commercial system for capillary electrophoresis (namely a Beckman P/ACE 5500 system with diode array detection). Method development and application hence benefited from the injection and the detection options of this setup. The separation of a mixture of three uncharged analytes (polycyclic aromatic hydrocarbons) by the chip is given as example. Under optimized conditions, the performance of the chip appeared to be comparable or better than that of capillary-based CEC columns of the same kind

    Powder blasting for the realisation of microchips for bio-analytic applications

    Get PDF
    We introduce powder blasting for the fabrication of glass microchips. Powder blasting is a fast and cheap technique with which we pattern channels in sodalime and pyrex glass with a width down to 100µm. We combine the technique with appropriate bonding procedures to realise sealed microchannel structures. We study the transport of fluorescent dye solutions and fluorescent beads within channels made by powder blasting and in "classical" channels made by HF-etching. We find a remarkable difference in sign of the electric field induced flow for both types of channels and explain the observed strong plug broadening effects in the powder blasted channels

    The genome of Apis mellifera: dialog between linkage mapping and sequence assembly

    Get PDF
    Two independent genome projects for the honey bee, a microsatellite linkage map and a genome sequence assembly, have interactively produced an almost complete organization of the euchromatic genome

    Fine Scale Analysis of Crossover and Non-Crossover and Detection of Recombination Sequence Motifs in the Honeybee (Apis mellifera)

    Get PDF
    BACKGROUND: Meiotic exchanges are non-uniformly distributed across the genome of most studied organisms. This uneven distribution suggests that recombination is initiated by specific signals and/or regulations. Some of these signals were recently identified in humans and mice. However, it is unclear whether or not sequence signals are also involved in chromosomal recombination of insects. METHODOLOGY: We analyzed recombination frequencies in the honeybee, in which genome sequencing provided a large amount of SNPs spread over the entire set of chromosomes. As the genome sequences were obtained from a pool of haploid males, which were the progeny of a single queen, an oocyte method (study of recombination on haploid males that develop from unfertilized eggs and hence are the direct reflect of female gametes haplotypes) was developed to detect recombined pairs of SNP sites. Sequences were further compared between recombinant and non-recombinant fragments to detect recombination-specific motifs. CONCLUSIONS: Recombination events between adjacent SNP sites were detected at an average distance of 92 bp and revealed the existence of high rates of recombination events. This study also shows the presence of conversion without crossover (i. e. non-crossover) events, the number of which largely outnumbers that of crossover events. Furthermore the comparison of sequences that have undergone recombination with sequences that have not, led to the discovery of sequence motifs (CGCA, GCCGC, CCGCA), which may correspond to recombination signals

    Representativeness of microsatellite distributions in genomes, as revealed by 454 GS-FLX Titanium pyrosequencing

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Microsatellites are markers of choice in population genetics and genomics, as they provide useful insight into patterns and processes as diverse as genome evolutionary dynamics and demographic processes. The acquisition of microsatellites through multiplex-enriched libraries and 454 GS-FLX Titanium pyrosequencing is a promising new tool for the isolation of new markers in unknown genomes. This approach can also be used to evaluate the extent to which microsatellite-enriched libraries are representative of the genome from which they were isolated. In this study, we deciphered potential discrepancies in microsatellite content recovery for two reference genomes (<it>Apis mellifera </it>and <it>Danio rerio</it>), selected on the basis of their extreme heterogeneity in terms of the proportions and distributions of microsatellites on chromosomes.</p> <p>Results</p> <p>The <it>A. mellifera </it>genome, in particular, was found to be highly heterogeneous, due to extremely high rates of recombination, with hotspots, but the only bias consistently introduced into pyrosequenced multiplex-enriched libraries concerned sequence length, with the overrepresentation of sequences 160 to 320 bp in length. Other deviations from expected proportions or distributions of motifs on chromosomes were observed, but the significance and intensity of these deviations was mostly limited. Furthermore, no consistent adverse competition between multiplexed probes was observed during the motif enrichment phase.</p> <p>Conclusions</p> <p>This approach therefore appears to be a promising strategy for improving the development of microsatellites, as it introduces no major bias in terms of the proportions and distribution of microsatellites.</p
    • …
    corecore