16 research outputs found

    Mitochondrial Inorganic Polyphosphate (polyP) Is a Potent Regulator of Mammalian Bioenergetics in SH-SY5Y Cells: A Proteomics and Metabolomics Study

    Get PDF
    Inorganic polyphosphate (polyP) is an ancient, ubiquitous, and well-conserved polymer which is present in all the studied organisms. It is formed by individual subunits of orthophosphate which are linked by structurally similar bonds and isoenergetic to those found in ATP. While the metabolism and the physiological roles of polyP have already been described in some organisms, including bacteria and yeast, the exact role of this polymer in mammalian physiology still remains poorly understood. In these organisms, polyP shows a co-localization with mitochondria, and its role as a key regulator of the stress responses, including the maintenance of appropriate bioenergetics, has already been demonstrated by our group and others. Here, using Wild-type (Wt) and MitoPPX (cells enzymatically depleted of mitochondrial polyP) SH-SY5Y cells, we have conducted a comprehensive study of the status of cellular physiology, using proteomics and metabolomics approaches. Our results suggest a clear dysregulation of mitochondrial physiology, especially of bioenergetics, in MitoPPX cells when compared with Wt cells. Moreover, the effects induced by the enzymatic depletion of polyP are similar to those present in the mitochondrial dysfunction that is observed in neurodegenerative disorders and in neuronal aging. Based on our findings, the metabolism of mitochondrial polyP could be a valid and innovative pharmacological target in these conditions.</jats:p

    Mitochondrial physiology

    Get PDF
    As the knowledge base and importance of mitochondrial physiology to evolution, health and disease expands, the necessity for harmonizing the terminology concerning mitochondrial respiratory states and rates has become increasingly apparent. The chemiosmotic theory establishes the mechanism of energy transformation and coupling in oxidative phosphorylation. The unifying concept of the protonmotive force provides the framework for developing a consistent theoretical foundation of mitochondrial physiology and bioenergetics. We follow the latest SI guidelines and those of the International Union of Pure and Applied Chemistry (IUPAC) on terminology in physical chemistry, extended by considerations of open systems and thermodynamics of irreversible processes. The concept-driven constructive terminology incorporates the meaning of each quantity and aligns concepts and symbols with the nomenclature of classical bioenergetics. We endeavour to provide a balanced view of mitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes. Uniform standards for evaluation of respiratory states and rates will ultimately contribute to reproducibility between laboratories and thus support the development of data repositories of mitochondrial respiratory function in species, tissues, and cells. Clarity of concept and consistency of nomenclature facilitate effective transdisciplinary communication, education, and ultimately further discovery

    Mitochondrial physiology

    Get PDF
    As the knowledge base and importance of mitochondrial physiology to evolution, health and disease expands, the necessity for harmonizing the terminology concerning mitochondrial respiratory states and rates has become increasingly apparent. The chemiosmotic theory establishes the mechanism of energy transformation and coupling in oxidative phosphorylation. The unifying concept of the protonmotive force provides the framework for developing a consistent theoretical foundation of mitochondrial physiology and bioenergetics. We follow the latest SI guidelines and those of the International Union of Pure and Applied Chemistry (IUPAC) on terminology in physical chemistry, extended by considerations of open systems and thermodynamics of irreversible processes. The concept-driven constructive terminology incorporates the meaning of each quantity and aligns concepts and symbols with the nomenclature of classical bioenergetics. We endeavour to provide a balanced view of mitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes. Uniform standards for evaluation of respiratory states and rates will ultimately contribute to reproducibility between laboratories and thus support the development of data repositories of mitochondrial respiratory function in species, tissues, and cells. Clarity of concept and consistency of nomenclature facilitate effective transdisciplinary communication, education, and ultimately further discovery

    Mitochondrial Dynamics and Mitophagy in the 6-Hydroxydopamine Preclinical Model of Parkinson's Disease

    Get PDF
    We discuss the participation of mitochondrial dynamics and autophagy in the 6-hydroxidopamine-induced Parkinson’s disease model. The regulation of dynamic mitochondrial processes such as fusion, fission, and mitophagy has been shown to be an important mechanism controlling cellular fate. An imbalance in mitochondrial dynamics may contribute to both familial and sporadic neurodegenerative diseases including Parkinson’s disease. With special attention we address the role of second messengers as the role of reactive oxygen species and the mitochondria as the headquarters of cell death. The role of molecular signaling pathways, for instance, the participation of Dynamin-related protein 1(Drp1), will also be addressed. Furthermore evidence demonstrates the therapeutic potential of small-molecule inhibitors of mitochondrial division in Parkinson’s disease. For instance, pharmacological inhibition of Drp1, through treatment with the mitochondrial division inhibitor-1, results in the abrogation of mitochondrial fission and in a decrease of the number of autophagic cells. Deciphering the signaling cascades that underlie mitophagy triggered by 6-OHDA, as well as the mechanisms that determine the selectivity of this response, will help to better understand this process and may have impact on human treatment strategies of Parkinson’s disease

    Pharmacological Characterization of the Mechanisms Involved in Delayed Calcium Deregulation in SH-SY5Y Cells Challenged with Methadone

    Get PDF
    Previously, we have shown that SH-SY5Y cells exposed to high concentrations of methadone died due to a necrotic-like cell death mechanism related to delayed calcium deregulation (DCD). In this study, we show that, in terms of their Ca2+ responses to 0.5 mM methadone, SH-SY5Y cells can be pooled into four different groups. In a broad pharmacological survey, the relevance of different Ca2+-related mechanisms on methadone-induced DCD was investigated including extracellular calcium, L-type Ca2+ channels, μ-opioid receptor, mitochondrial inner membrane potential, mitochondrial ATP synthesis, mitochondrial Ca2+/2Na+-exchanger, reactive oxygen species, and mitochondrial permeability transition. Only those compounds targeting mitochondria such as oligomycin, FCCP, CGP 37157, and cyclosporine A were able to amend methadone-induced Ca2+ dyshomeostasis suggesting that methadone induces DCD by modulating the ability of mitochondria to handle Ca2+. Consistently, mitochondria became dramatically shorter and rounder in the presence of methadone. Furthermore, analysis of oxygen uptake by isolated rat liver mitochondria suggested that methadone affected mitochondrial Ca2+ uptake in a respiratory substrate-dependent way. We conclude that methadone causes failure of intracellular Ca2+ homeostasis, and this effect is associated with morphological and functional changes of mitochondria. Likely, this mechanism contributes to degenerative side effects associated with methadone treatment

    ATP Synthase and Mitochondrial Bioenergetics Dysfunction in Alzheimer’s Disease

    No full text
    Alzheimer’s Disease (AD) is the most common neurodegenerative disorder in our society, as the population ages, its incidence is expected to increase in the coming decades. The etiopathology of this disease still remains largely unclear, probably because of the highly complex and multifactorial nature of AD. However, the presence of mitochondrial dysfunction has been broadly described in AD neurons and other cellular populations within the brain, in a wide variety of models and organisms, including post-mortem humans. Mitochondria are complex organelles that play a crucial role in a wide range of cellular processes, including bioenergetics. In fact, in mammals, including humans, the main source of cellular ATP is the oxidative phosphorylation (OXPHOS), a process that occurs in the mitochondrial electron transfer chain (ETC). The last enzyme of the ETC, and therefore the ulterior generator of ATP, is the ATP synthase. Interestingly, in mammalian cells, the ATP synthase can also degrade ATP under certain conditions (ATPase), which further illustrates the crucial role of this enzyme in the regulation of cellular bioenergetics and metabolism. In this collaborative review, we aim to summarize the knowledge of the presence of dysregulated ATP synthase, and of other components of mammalian mitochondrial bioenergetics, as an early event in AD. This dysregulation can act as a trigger of the dysfunction of the organelle, which is a clear component in the etiopathology of AD. Consequently, the pharmacological modulation of the ATP synthase could be a potential strategy to prevent mitochondrial dysfunction in AD

    Human Prune Regulates the Metabolism of Mammalian Inorganic Polyphosphate and Bioenergetics

    No full text
    Inorganic polyphosphate (polyP) is an evolutionarily conserved and ubiquitous polymer that is present in all studied organisms. PolyP consists of orthophosphates (Pi) linked together by phosphoanhydride bonds. The metabolism of polyP still remains poorly understood in higher eukaryotes. Currently, only F0F1-ATP synthase, Nudt3, and Prune have been proposed to be involved in this metabolism, although their exact roles and regulation in the context of polyP biology have not been fully elucidated. In the case of Prune, in vitro studies have shown that it exhibits exopolyphosphatase activity on very short-chain polyP (up to four units of Pi), in addition to its known cAMP phosphodiesterase (PDE) activity. Here, we expand upon studies regarding the effects of human Prune (h-Prune) on polyP metabolism. Our data show that recombinant h-Prune is unable to hydrolyze short (13–33 Pi) and medium (45–160 Pi) chains of polyP, which are the most common chain lengths of the polymer in mammalian cells. Moreover, we found that the knockdown of h-Prune (h-Prune KD) results in significantly decreased levels of polyP in HEK293 cells. Likewise, a reduction in the levels of polyP is also observed in Drosophila melanogaster loss-of-function mutants of the h-Prune ortholog. Furthermore, while the activity of ATP synthase, and the levels of ATP, are decreased in h-Prune KD HEK293 cells, the expression of ATP5A, which is a main component of the catalytic subunit of ATP synthase, is upregulated in the same cells, likely as a compensatory mechanism. Our results also show that the effects of h-Prune on mitochondrial bioenergetics are not a result of a loss of mitochondrial membrane potential or of significant changes in mitochondrial biomass. Overall, our work corroborates the role of polyP in mitochondrial bioenergetics. It also demonstrates a conserved effect of h-Prune on the metabolism of short- and medium-chain polyP (which are the predominant chain lengths found in mammalian cells). The effects of Prune in polyP are most likely exerted via the regulation of the activity of ATP synthase. Our findings pave the way for modifying the levels of polyP in mammalian cells, which could have pharmacological implications in many diseases where dysregulated bioenergetics has been demonstrated

    Mitochondrial Function Is Compromised in Cortical Bone Osteocytes of Long-Lived Growth Hormone Receptor Null Mice

    No full text
    © 2018 American Society for Bone and Mineral Research Despite increased longevity and resistance to multiple stressors, growth hormone receptor null (GHRKO) mice exhibit severe skeletal impairment. The role of GHR in maintaining osteocyte mitochondrial function is unknown. We found that GHR ablation was detrimental to osteocyte mitochondrial function. In vivo multiphoton microscopy revealed significant reductions of \u3e10% in mitochondrial membrane potential (MMP) in GHRKO osteocytes and reduced mitochondrial volumetric density. Reductions in MMP were accompanied by reductions in glucose transporter-1 levels, steady state ATP, NADH redox index, oxygen consumption rate, and mitochondrial reserve capacity in GHRKO osteocytes. Glycolytic capacity did not differ between control and GHRKO males’ osteocytes. However, osteocytes from aged female GHRKO mice exhibited reductions in glycolytic parameters, indicating impairments in glucose metabolism, which may be sex dependent. GHRKO osteocytes exhibited increased levels of cytoplasmic reactive oxygen species (ROS) (both basal and in response to high glucose), insulin-like growth factor-1 (IGF-1), and insulin. Mitochondrial ROS levels were increased and correlated with reduced glutathione in GHRKO osteocytes. Overall, the compromised osteocyte mitochondrial function and responses to metabolic insults strongly correlated with skeletal impairments, suggesting that despite increased life span of the GHRKO mice, skeletal health span is decreased. © 2018 American Society for Bone and Mineral Research

    Mitochondrial Function Is Compromised in Cortical Bone Osteocytes of Long‐Lived Growth Hormone Receptor Null Mice

    No full text
    Despite increased longevity and resistance to multiple stressors, growth hormone receptor null (GHRKO) mice exhibit severe skeletal impairment. The role of GHR in maintaining osteocyte mitochondrial function is unknown. We found that GHR ablation was detrimental to osteocyte mitochondrial function. In vivo multiphoton microscopy revealed significant reductions of \u3e10% in mitochondrial membrane potential (MMP) in GHRKO osteocytes and reduced mitochondrial volumetric density. Reductions in MMP were accompanied by reductions in glucose transporter-1 levels, steady state ATP, NADH redox index, oxygen consumption rate, and mitochondrial reserve capacity in GHRKO osteocytes. Glycolytic capacity did not differ between control and GHRKO males\u27 osteocytes. However, osteocytes from aged female GHRKO mice exhibited reductions in glycolytic parameters, indicating impairments in glucose metabolism, which may be sex dependent. GHRKO osteocytes exhibited increased levels of cytoplasmic reactive oxygen species (ROS) (both basal and in response to high glucose), insulin-like growth factor-1 (IGF-1), and insulin. Mitochondrial ROS levels were increased and correlated with reduced glutathione in GHRKO osteocytes. Overall, the compromised osteocyte mitochondrial function and responses to metabolic insults strongly correlated with skeletal impairments, suggesting that despite increased life span of the GHRKO mice, skeletal health span is decreased. © 2018 American Society for Bone and Mineral Research
    corecore