85 research outputs found

    Ceftiofur-loaded PHBV microparticles: A potential formulation for a long-acting antibiotic to treat animal infections

    Get PDF
    Indexación: Web of Science; ScieloBackground: The infectious diseases in the livestock breeding industry represent a significant drawback that generates substantial economic loss and have led to the indiscriminate use of antibiotics. The formulation of polymeric microparticles loaded with antibiotics for veterinary use can: reduce the number of required doses; protect the drug from inactivation; and maintain a sustained-release of the antibiotic drug at effective levels. Accomplishing all of these goals would have a significant economic and animal health impact on the livestock breeding industry. Results: In this work, we formulated ceftiofur-loaded PHBV microparticles (PHBV-CEF) with a spherical shape, a smooth surface and diameter sizes between 1.65 and 2.37 μm. The encapsulation efficiency was 39.5 ± 1.1% w/w, and we obtained a sustained release of ceftiofur in PBS-buffer (pH 7.4) over 7 days. The antibacterial activity of ceftiofur was preserved after the encapsulation procedure, and toxicity of PHBV-CEF microparticles evaluated by MTS was represented by an IC50 > 10 mg/mL. Conclusions: Our results suggest that PHBV-CEF particles have a potential application for improving the treatment of infectious diseases in the livestock breeding industry. Keywords: ceftiofur, drug delivery, livestock breeding industry, PHBV, polymeric microparticle

    Neisseria gonorrhoeae challenge increases matrix metalloproteinase-8 expression in fallopian tube explants

    Get PDF
    Indexación: Scopus.Background: Neisseria gonorrhoeae (Ngo) is the etiological agent of gonorrhea, a sexually transmitted infection that initially infects the female lower genital tract. In untreated women, the bacteria can ascend to the upper genital reproductive tract and infect the fallopian tube (FTs), which is associated with salpingitis and can lead to impaired FT function and infertility. The extracellular matrix (ECM) plays an important role in cell migration and differentiation in the female genital tract, and some pathogens modify the ECM to establish successful infections. The ECM is regulated by matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs), their endogenous inhibitors; MMP deregulation causes pathological conditions in a variety of tissues. Results: The aim of this work was to analyze the expression and localization of MMP-3, MMP-8, MMP-9, and TIMP-1 in FT explants during Ngo infection using real-time PCR, immunohistochemistry, zymography and ELISA. No significant variations in MMP-3, MMP-9, and TIMP-1 transcript levels were observed. In contrast, a significant increase (p < 0.05) was observed for MMP-8 expression and was accompanied by stromal immunoreactivity in infected explants. ELISA results supported these findings and showed that MMP-8 release increased upon gonococcal infection. Conclusions: Our results indicate that gonococcal infection induces increased MMP-8 expression, which might contribute to FT damage during infection. © 2017 Juica, Rodas, Solar, Borda, Vargas, Muñoz, Paredes, Christodoulides and Velasquez.https://www.frontiersin.org/articles/10.3389/fcimb.2017.00399/ful

    The Case Against Template Informed Consent Procedures in Biomedical Research: Heterogeneity in health Literacy in Chile

    Get PDF
    Indexación: Web of Science; ScieloSe examinó el alfabetismo en salud en Chile con el fin de determinar si se pueden usar procedimientos de consentimiento informado estándares en esta población. Se evaluó el alfabetismo en salud con la versión abreviada de la prueba SAHLSA. Los resultados se expresaron como el porcentaje de respuestas correctas en cada prueba. El promedio global de respuestas correctas fue 85.4 ± 13.5 % (media aritmética ± desviación estándar, n=762). Hubo diferencias importantes entre los subgrupos examinados. El nivel más bajo de alfabetismo en salud se detectó en pescadores artesanales y sus familias y en estudiantes de liceos públicos, y el más alto en estudiantes universitarios y madres pobladoras atendidas en el sistema público de salud. Los resultados muestran la necesidad que los procedimientos de consentimiento informado tomen en cuenta la heterogeneidad del alfabetismo en salud de la población chilena.Health literacy was examined in Chile to assess whether it is homogenous enough to allow the use of "templates" for informed consent, and to identity subgroups that may need special consideration when recruited for research because of their low health literacy abbreviated SAHLSA test of health literacy was used. Results were expressed as percent of correct answers out of the 50 items of the SAHLSA test. There was high health literacy with 85.4 ± 13.5 % (arithmetic mean ± standard deviation, «=762) of correct answers. There were important differences between groups, with lower scores in artisanal fishermen families and high-school students attending public schools, and higher scores in university students and mothers attending the public health system. Results show that a case by case approach is probably more appropriate when seeking informed consent in this population because of the variability of health literacy.http://ref.scielo.org/nb426

    Novel essential role of ethanol oxidation genes at low temperature revealed by transcriptome analysis in the antarctic bacterium pseudomonas extremaustralis

    Get PDF
    Temperature is one of the most important factors for bacterial growth and development. Cold environments are widely distributed on earth, and psychrotolerant and psychrophilic microorganisms have developed different adaptation strategies to cope with the stress derived from low temperatures. Pseudomonas extremaustralis is an Antarctic bacterium able to grow under low temperatures and to produce high amounts of polyhydroxyalkanoates (PHAs). In this work, we analyzed the genome-wide transcriptome by RNA deepsequencing technology of early exponential cultures of P. extremaustralis growing in LB (Luria Broth) supplemented with sodium octanoate to favor PHA accumulation at 8°C and 30°C. We found that genes involved in primary metabolism, including tricarboxylic acid cycle (TCA) related genes, as well as cytochromes and amino acid metabolism coding genes, were repressed at low temperature. Among up-regulated genes, those coding for transcriptional regulatory and signal transduction proteins were over-represented at cold conditions. Remarkably, we found that genes involved in ethanol oxidation, exaA, exaB and exaC, encoding a pyrroloquinoline quinone (PQQ)-dependent ethanol dehydrogenase, the cytochrome c550 and an aldehyde dehydrogenase respectively, were up-regulated. Along with RNA-seq experiments, analysis of mutant strains for pqqB (PQQ biosynthesis protein B) and exaA were carried out. We found that the exaA and pqqB genes are essential for growth under low temperature in LB supplemented with sodium octanoate. Additionally, prosaniline assay measurements showed the presence of alcohol dehydrogenase activity at both 8°C and 30°C, while the activity was abolished in a pqqB mutant strain. These results together with the detection of ethanol by gas chromatography in P. extremaustralis cultures grown at 8°C support the conclusion that this pathway is important under cold conditions. The obtained results have led to the identification of novel components involved in cold adaptation mechanisms in this bacterium, suggesting for the first time a role of the ethanol oxidation pathway for bacterial growth at low temperatures.Fil: Tribelli, Paula Maria. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Solar Venero, Esmeralda Clara. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Ricardi, Martiniano María. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; ArgentinaFil: Gómez Lozano, Maria. Technical University of Denmark; DinamarcaFil: Raiger Iustman, Laura Judith. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Molin, Søren. Technical University of Denmark; DinamarcaFil: López, Nancy Irene. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; Argentin

    Light electric vehicle charging strategy for low impact on the grid

    Full text link
    [EN] The alarming increase in the average temperature of the planet due to the massive emission of greenhouse gases has stimulated the introduction of electric vehicles (EV), given transport sector is responsible for more than 25% of the total global CO2 emissions. EV penetration will substantially increase electricity demand and, therefore, an optimization of the EV recharging scenario is needed to make full use of the existing electricity generation system without upgrading requirements. In this paper, a methodology based on the use of the temporal valleys in the daily electricity demand is developed for EVrecharge, avoiding the peak demand hours to minimize the impact on the grid. The methodology assumes three different strategies for the recharge activities: home, public buildings, and electrical stations. It has been applied to the case of Spain in the year 2030, assuming three different scenarios for the growth of the total fleet: low, medium, and high. For each of them, three different levels for the EV penetration by the year 2030 are considered: 25%, 50%, and 75%, respectively. Only light electric vehicles (LEV), cars and motorcycles, are taken into account given the fact that batteries are not yet able to provide the full autonomy desired by heavy vehicles. Moreover, heavy vehicles have different travel uses that should be separately considered. Results for the fraction of the total recharge to be made in each of the different recharge modes are deduced with indication of the time intervals to be used in each of them. For the higher penetration scenario, 75% of the total park, an almost flat electricity demand curve is obtained. Studies are made for working days and for non-working days.One of the authors was supported by the Generalitat Valenciana under the grant ACIF/2018/106.Bastida-Molina, P.; Hurtado-Perez, E.; Pérez Navarro, Á.; Alfonso-Solar, D. (2021). Light electric vehicle charging strategy for low impact on the grid. Environmental Science and Pollution Research. 28(15):18790-18806. https://doi.org/10.1007/s11356-020-08901-2S18790188062815Adnan, N., Nordin S. M., Rahman I., Amini M. H. (2017) A market modeling review study on predicting Malaysian consumer behavior towards widespread adoption of PHEV/EV, Environmental Science and Pollution Research. Springer Verlag, 24(22), pp. 17955–17975. doi: https://doi.org/10.1007/s11356-017-9153-8AECC. (2018). Available at: http://www.aedecc.com/enlaces-de-interes/informacion-estadistica/ ()Ahmadi L, Croiset E, Elkamel A, Douglas P, Unbangluang W, Entchev E (2012) Impact of PHEVs penetration on Ontario’s electricity grid and environmental considerations. Energies 5(12):5019–5037. https://doi.org/10.3390/en5125019Akitt, J. W. (2018) Some observations on the greenhouse effect at the Earth’s surface, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. Elsevier, 188, pp. 127–134. doi: https://doi.org/10.1016/J.SAA.2017.06.051Al-Alawi BM, Bradley TH (2013) Review of hybrid, plug-in hybrid, and electric vehicle market modeling studies. Renew Sust Energ Rev 21:190–203. https://doi.org/10.1016/j.rser.2012.12.048Alhazmi YA, Mostafa HA, Salama MMA (2017) Optimal allocation for electric vehicle charging stations using trip success ratio. Int J Electr Power Energy Syst 91:101–116. https://doi.org/10.1016/j.ijepes.2017.03.009Bagher Sadati, S. M., Moshtagh J., Shafie-khah M., Rastgou A., Catalão J. P.S. (2019) Operational scheduling of a smart distribution system considering electric vehicles parking lot: a bi-level approach, International Journal of Electrical Power & Energy Systems. Elsevier, 105, pp. 159–178. doi: https://doi.org/10.1016/J.IJEPES.2018.08.021Baran, R. and Legey, L. F. L. (2013) The introduction of electric vehicles in Brazil: impacts on oil and electricity consumption, Technological Forecasting and Social Change. North-Holland, 80(5), pp. 907–917. doi: https://doi.org/10.1016/J.TECHFORE.2012.10.024Bjerkan, K. Y., Nørbech, T. E. and Nordtømme, M. E. (2016) Incentives for promoting battery electric vehicle (BEV) adoption in Norway, Transportation Research Part D: Transport and Environment. Pergamon, 43, pp. 169–180. doi: https://doi.org/10.1016/J.TRD.2015.12.002Canals Casals, L., Martinez-Laserna E., Amante García B., Nieto N. (2016) Sustainability analysis of the electric vehicle use in Europe for CO2 emissions reduction, Journal of Cleaner Production. Elsevier, 127, pp. 425–437. doi: https://doi.org/10.1016/J.JCLEPRO.2016.03.120Ceballos Delgado, J. E., Caicedo Bravo, E. and Ospina Arango, S. (2016) A methodological proposal to measure the impact of electric vehicles on the electric grid, Ingeniería. Universidad Distrital Francisco José de Caldas, 21(2), pp. 154–175. doi: https://doi.org/10.14483/udistrital.jour.reving.2016.2.a03Clairand J-M, Rodríguez-García J, Álvarez-Bel C (2018) Electric vehicle charging strategy for isolated systems with high penetration of renewable generation. Energies 11(11):3188. https://doi.org/10.3390/en11113188Dang, Q. (2018) Electric vehicle (EV) charging management and relieve impacts in grids, 9th IEEE International Symposium on Power Electronics for Distributed Generation Systems. doi: https://doi.org/10.1109/PEDG.2018.8447802Dang, Q. and Huo, Y. (2018) Modeling EV fleet load in distribution grids: a data-driven approach, in 2018 IEEE Transportation Electrification Conference and Expo (ITEC). IEEE, pp 720–724. doi: https://doi.org/10.1109/ITEC.2018.8450195Danté, A. W., Agbossou K., Kelouwani S., Cardenas A., Bouchard J. (2019) Online modeling and identification of plug-in electric vehicles sharing a residential station, International Journal of Electrical Power & Energy Systems. Elsevier, 108, pp. 162–176. doi: https://doi.org/10.1016/J.IJEPES.2018.12.024Deb S et al (2018) Impact of electric vehicle charging station load on distribution network. Energies 11(1):178. https://doi.org/10.3390/en11010178Desai RR, Chen RB, Armington W (2018) A pattern analysis of daily electric vehicle charging profiles: operational efficiency and environmental impacts. J Adv Transp 2018:1–15. https://doi.org/10.1155/2018/6930932DGT (2017) Vehicle fleet historical data base. Available at: http://www.dgt.es/es/seguridad-vial/estadisticas-e-indicadores/parque-vehiculos/series-historicas/ ()DGT (2019) Traffic information. Available at: http://infocar.dgt.es/etraffic/ ()Dijk, M., Orsato, R. J. and Kemp, R. (2013) The emergence of an electric mobility trajectory, Energy Policy. Elsevier, 52, pp. 135–145. doi: https://doi.org/10.1016/J.ENPOL.2012.04.024Eurostat (2018) Database - Eurostat. Available at: https://ec.europa.eu/eurostat/web/lfs/data/database (Accessed: 2 August 2019)Galiveeti, H. R., Goswami, A. K. and Dev Choudhury, N. B. (2018) Impact of plug-in electric vehicles and distributed generation on reliability of distribution systems, Engineering Science and Technology, an International Journal. Elsevier, 21(1), pp. 50–59. doi: https://doi.org/10.1016/J.JESTCH.2018.01.005Gong L et al (2018) Spatial and temporal optimization strategy for plug-in electric vehicle charging to mitigate impacts on distribution network. Energies 11(6):1373. https://doi.org/10.3390/en11061373Hasan, M. A., Frame D. J., Chapman R., Archie K. M. (2019) Emissions from the road transport sector of New Zealand: key drivers and challenges, Environmental Science and Pollution Research. Springer Verlag, 26(23), pp. 23937–23957. doi: https://doi.org/10.1007/s11356-019-05734-6IDAE (2012) Technological electric mobility map. Available at: http://www.idae.es/uploads/documentos/documentos_Movilidad_Electrica_ACC_c603f868.pdf (Accessed: 7 January 2019)INE (2018) Average distance covered by vehicles fleet. Available at: http://www.ine.es/jaxi/Tabla.htm?path=/t25/p500/2008/p10/l0/&file=10020.px&L=0 (Accessed: 30 December 2018)Limmer, S. and Rodemann, T. (2019) Peak load reduction through dynamic pricing for electric vehicle charging, International Journal of Electrical Power & Energy Systems. Elsevier, 113, pp. 117–128. doi: https://doi.org/10.1016/J.IJEPES.2019.05.031Liu Z, Wu Q, Nielsen A, Wang Y (2014) Day-ahead energy planning with 100% electric vehicle penetration in the Nordic Region by 2050. Energies 7(3):1733–1749. https://doi.org/10.3390/en7031733López, M. A., de la Torre S., Martín S., Aguado J.A. (2015) Demand-side management in smart grid operation considering electric vehicles load shifting and vehicle-to-grid support, International Journal of Electrical Power & Energy Systems. Elsevier, 64, pp. 689–698. doi: https://doi.org/10.1016/J.IJEPES.2014.07.065Luca de Tena D, Pregger T (2018) Impact of electric vehicles on a future renewable energy-based power system in Europe with a focus on Germany. Int J Energy Res 42(8):2670–2685. https://doi.org/10.1002/er.4056Mao, D., Gao, Z. and Wang, J. (2019) An integrated algorithm for evaluating plug-in electric vehicle’s impact on the state of power grid assets, International Journal of Electrical Power & Energy Systems. Elsevier, 105, pp. 793–802. doi: https://doi.org/10.1016/J.IJEPES.2018.09.028Martínez-Lao, J. et al. (2017) Electric vehicles in Spain: an overview of charging systems, Renewable and Sustainable Energy Reviews. Pergamon. doi: https://doi.org/10.1016/J.RSER.2016.11.239.Morrissey, P., Weldon, P. and O’Mahony, M. (2016) Future standard and fast charging infrastructure planning: an analysis of electric vehicle charging behaviour, Energy Policy. Elsevier, 89, pp. 257–270. doi: https://doi.org/10.1016/J.ENPOL.2015.12.001Ortega-Vazquez MA, Bouffard F, Silva V (2013) Electric vehicle aggregator/system operator coordination for charging scheduling and services procurement. IEEE Trans Power Syst 28(2):1806–1815. https://doi.org/10.1109/TPWRS.2012.2221750PNIEC (2019) Spanish climate change draft law. Available at: https://www.miteco.gob.es/es/prensa/ultimas-noticias/el-consejo-de-ministros-da-luz-verde-al-anteproyecto-de-ley-de-cambio-climático-/tcm:30-487294 ()REE (2017a) Electrical demand, energy generation structure and CO2 emissions. Available at: https://demanda.ree.es/visiona/peninsula/demanda/total/2018-10-16 ()REE (2017b) Historical data base. Available at: https://www.ree.es/es/estadisticas-del-sistema-electrico-espanol/series-estadisticas/series-estadisticas-nacionales ()REE (2018) Electric mobility guide for local entities. Available at: https://www.ree.es/sites/default/files/downloadable/Guia_movilidad_electrica_para_entidades_locales.pdf (Accessed: 31 July 2019)Su, J., Lie, T. T. and Zamora, R. (2019) Modelling of large-scale electric vehicles charging demand: a New Zealand case study, Electric Power Systems Research. Elsevier, 167, pp. 171–182. doi: https://doi.org/10.1016/J.EPSR.2018.10.030Sundstrom O, Binding C (2012) Flexible charging optimization for electric vehicles considering distribution grid constraints. IEEE Transactions on Smart Grid 3(1):26–37. https://doi.org/10.1109/TSG.2011.2168431Teixeira ACR, Sodré JR (2018) Impacts of replacement of engine powered vehicles by electric vehicles on energy consumption and CO2 emissions. Transportation Research Part D: Transport and Environment. Pergamon 59:375–384. https://doi.org/10.1016/J.TRD.2018.01.004Tietge, U., Díaz, S., et al. (2016a) From laboratory to road: a 2016 update of official and “real-world” fuel consumption and CO2 values for passenger cars in Europe, The International Council on Clean Transportation. Available at: https://theicct.org/publications/laboratory-road-2016-updateTietge, U., Mock, P., et al. (2016b) Real-world fuel consumption of popular European passenger car models | International Council on Clean Transportation, The International Council on Clean Transportation. Available at: https://www.theicct.org/publications/real-world-fuel-consumption-popular-european-passenger-car-modelsValsera-Naranjo E, Sumper A, Villafafila-Robles R, Martínez-Vicente D (2012) Probabilistic method to assess the impact of charging of electric vehicles on distribution grids. Energies. Molecular Diversity Preservation International 5(5):1503–1531. https://doi.org/10.3390/en5051503Wang, L. and Chen, B. (2019) Distributed control for large-scale plug-in electric vehicle charging with a consensus algorithm, International Journal of Electrical Power & Energy Systems. Elsevier, 109, pp. 369–383. doi: https://doi.org/10.1016/J.IJEPES.2019.02.020Wang Y, Infield D (2018) Markov chain Monte Carlo simulation of electric vehicle use for network integration studies. International Journal of Electrical Power & Energy Systems. Elsevier 99:85–94. https://doi.org/10.1016/J.IJEPES.2018.01.008Wang X, Wei X, Dai H (2019) Estimation of state of health of lithium-ion batteries based on charge transfer resistance considering different temperature and state of charge. Journal of Energy Storage. Elsevier Ltd 21:618–631. https://doi.org/10.1016/j.est.2018.11.020Zhang, K. et al. (2019) Parameter identification and state of charge estimation of NMC cells based on improved ant lion optimizer, Mathematical Problems in Engineering, pp. 1–18. doi: https://doi.org/10.1155/2019/4961045Zhao X, Ma J, Wang S, Ye Y, Wu Y, Yu M (2018a) Developing an electric vehicle urban driving cycle to study differences in energy consumption. Environmental Science and Pollution Research. Springer Verlag 26(14):13839–13853. https://doi.org/10.1007/s11356-018-3541-6Zhao, X., Yu, Q., et al. (2018b) Development of a representative EV urban driving cycle based on a k-means and SVM hybrid clustering algorithm, Journal of Advanced Transportation, pp. 1–18. doi: https://doi.org/10.1155/2018/189075

    Methodology to evaluate the feasibility of local biomass resources as a fuel for building boilers. Application to a Mediterranean area

    Full text link
    [EN] The massive implementation of distributed energy resources based on biofuels requires a complex methodology to assess the optimal energy valorization options and economic feasibility. This paper has focused on producing pellets for boilers. The work focuses on the residential and commercial sectors. To consume local biomass, it must be considered the availability of potential customers, biomass availability, properties, and dispersion to evaluate transport cost. The developed methodology was applied to three different counties of the Valencian Community (typical of Mediterranean areas). Biomass resources for different counties have been quantified and characterized regarding key issues as heating value and ash content. Considering every evaluated area (the typical total area in the range 600 to 1800 km2) as a biomass management unit, the impact of pellet production plant size and biomass transport costs for three different counties was evaluated. However, different balances between biomass resources availability and self-consumption potentials are obtained, the economic feasibility of pellet plants was acceptable in the three cases with payback periods from 5 to 6 years.Alfonso-Solar, D.; Vargas-Salgado, C.; Hurtado-Perez, E.; Bastida-Molina, P. (2022). Methodology to evaluate the feasibility of local biomass resources as a fuel for building boilers. Application to a Mediterranean area. Área de Innovación y Desarrollo,S.L. 21-29. http://hdl.handle.net/10251/181099S212

    Assessment of the transversal competences: analysis and resolution of problems and, planning and time management

    Full text link
    [EN] European universities are in the process of experimenting with teaching by applying the new learning model according to the Bologna plan, based on specific and transversal competences. Due to the old teaching model, which is still rooted in the current learning system, professors have difficulties in assessing transversal competences. In this paper, the results of applying a methodology to assess the transversal competences: analysis and problem solving, and planning and time management is presented. Although the methodology is designed to evaluate transversal competences, it could also be used to evaluate traditional specific competences, in which the acquired technical knowledge is assessed. The methodology consists of explaining to the student how a practical problem is solved, applied to a case that an engineer can find in professional life. Subsequently, the student must solve another problem of the same type raised by the professor. The student will be given a limited time to solve the problem. The methodology is applied in two different sessions. The students have previously been informed about the performance of the test. Unlike the traditional method, the student must prepare the class before the lecture. Therefore, when the professor explains the theoretical part and how to solve the problem, it can also resolve doubts raised by the student during the preparation of the session. Additionally, the students who take less time to solve the test will have a higher score in the assessment of planning and time management. The results obtained are analysed and improvements are proposed to facilitate the acquisition of skills.Vargas Salgado, CA.; Bastida Molina, P.; Ribó Pérez, DG.; Alfonso Solar, D. (2020). Assessment of the transversal competences: analysis and resolution of problems and, planning and time management. Editorial Universitat Politècnica de València. 139-147. https://doi.org/10.4995/INN2019.2019.10112OCS13914

    Chronic Venous Insufficiency in Workers without Risks Factors who Remain Long Hours Standing

    Get PDF
    Revisiones[ES] La insuficiencia venosa crónica (IVC) es una patología prevalente en la sociedad actual. Los problemas derivados de ella, son una causa importante de gasto económico y absentismo laboral. Las condiciones laborales actuales, como jornadas de larga duración, con largas horas en bipedestación, inadecuada carga de pesos y malas condiciones de humedad y temperatura, contribuyen al desarrollo de esta patología. En este trabajo se ha realizado una revisión sistemática de la bibliografía existente en relación a la insuficiencia venosa crónica y el tiempo en bipedestación de las jornadas laborales. Para determinar el nivel de evidencia de los estudios evaluados, se han seguido los criterios del Scottish Intercollegiate Guidelines Network (SIGN). En particular, se ha concluido que existe una asociación significativamente positiva entre el tiempo prolongado en bipedestación y el riesgo de padecer insuficiencia venosa crónica. Sin embargo, la literatura actual no permite establecer un umbral que determine el número de horas considerado como bipedestación prolongada.Para poder valorar si la insuficiencia venosa crónica debería considerarse una enfermedad profesional, es necesario diseñar y llevar a cabo nuevos estudios de investigación en esta dirección. Estos estudios son necesarios para poder establecer evidencias de cara a concienciar a la sociedad y generar campañas de prevención y promoción de la salud que disminuyan los costes económicos y mejoren la calidad de vida de la población. [EN] The chronic venous insufficiency (CVI) is a prevalent pathology in the today’s society. The arising problems represent an important cause of economic costs and absenteeism in the workplace. Current working conditions, such as long working hours, standing for long periods of time, inadequate load weight as well as bad humidity and temperature conditions, contribute to the development of this pathology.In this essay, a systematic review of existing bibliography related to chronic venous insufficiency and standing up long time at working hours has been conducted. In order to determine the evidence level of the evaluated studies the criteria established by the Scottish Intercollegiate Guidelines Network (SIGN) has been considered. In particular, a significant positive link between long period of time standing and a risk for suffering chronic venous insufficiency has been found. However, the existing literature is not specific enough to establish a threshold that determines the number of working hours required to be considered an extreme period of time standing.In order to determine if the chronic venous insufficiency should be considered an occupational disease, it is required to design and conduct further research on this topic. These studies are necessary to establish new evidence in order to make the society aware and generate new health prevention and promotion campaigns so that economic costs and quality of life could continue improving.N

    Sustainable Cooking Based on a 3 kW Air-Forced Multifuel Gasification Stove Using Alternative Fuels Obtained from Agricultural Wastes

    Full text link
    [EN] In this research work, a 3 kW stove based on biomass gasification, together with a fuel obtained from agriculture wastes as an alternative to the commonly used charcoal, have been developed looking for sustainable cooking in poor communities. Alternative fuel (BSW) are briquettes obtained by carbonization and densification of agricultural solid wastes. Two laboratory methods, water boil test (WBT) and controlled kitchen test (CCT) were used to analyze the performance of this approach by comparing the proposed improved stove (ICS-G) with the traditional one (TCS), when using both types of fuels: charcoal and BSW. Results indicate that consumption of charcoal decreases by 61% using the improved ICS-G stove instead of the traditional TCS. Similar fuel savings are obtained when using BSW fuels. BSW fuel allows for a carbon monoxide (CO) emission reduction of 41% and 67%, and fine particles (PM) in a 84% and 93%, during the high and low power phases of the tests, respectively. Use of BSW fuel and ICS-G stove instead of the TCS stove with charcoal, provides a cooking time reduction of 18%, savings of $353.5 per year per family in the purchase of fuel, and an emission reduction of 3.2 t CO2/year.family.This research received no external funding. P.B.M. was funded by the Generalitat Valenciana under the grant ACIF/2018/106.Hurtado-Perez, E.; Mulumba Ilunga, O.; Alfonso-Solar, D.; Moros Gómez, MC.; Bastida-Molina, P. (2020). Sustainable Cooking Based on a 3 kW Air-Forced Multifuel Gasification Stove Using Alternative Fuels Obtained from Agricultural Wastes. Sustainability. 12(18):1-15. https://doi.org/10.3390/su12187723S1151218Bhutto, A. W., Bazmi, A. A., Karim, S., Abro, R., Mazari, S. A., & Nizamuddin, S. (2019). Promoting sustainability of use of biomass as energy resource: Pakistan’s perspective. Environmental Science and Pollution Research, 26(29), 29606-29619. doi:10.1007/s11356-019-06179-7Maes, W. H., & Verbist, B. (2012). Increasing the sustainability of household cooking in developing countries: Policy implications. Renewable and Sustainable Energy Reviews, 16(6), 4204-4221. doi:10.1016/j.rser.2012.03.031Zhang, Y., Zhang, Z., Zhou, Y., & Dong, R. (2018). The Influences of Various Testing Conditions on the Evaluation of Household Biomass Pellet Fuel Combustion. Energies, 11(5), 1131. doi:10.3390/en11051131Mwampamba, T. H., Ghilardi, A., Sander, K., & Chaix, K. J. (2013). Dispelling common misconceptions to improve attitudes and policy outlook on charcoal in developing countries. Energy for Sustainable Development, 17(2), 75-85. doi:10.1016/j.esd.2013.01.001Jones, D., Ryan, C. M., & Fisher, J. (2016). Charcoal as a diversification strategy: The flexible role of charcoal production in the livelihoods of smallholders in central Mozambique. Energy for Sustainable Development, 32, 14-21. doi:10.1016/j.esd.2016.02.009Chiteculo, V., Lojka, B., Surový, P., Verner, V., Panagiotidis, D., & Woitsch, J. (2018). Value Chain of Charcoal Production and Implications for Forest Degradation: Case Study of Bié Province, Angola. Environments, 5(11), 113. doi:10.3390/environments5110113Lynch, M. (2002). Reducing Environmental Damage Caused by the Collection of Cooking Fuel by Refugees. Refuge: Canada’s Journal on Refugees, 18-27. doi:10.25071/1920-7336.21280Barbieri, J., Parigi, F., Riva, F., & Colombo, E. (2018). Laboratory Testing of the Innovative Low-Cost Mewar Angithi Insert for Improving Energy Efficiency of Cooking Tasks on Three-Stone Fires in Critical Contexts. Energies, 11(12), 3463. doi:10.3390/en11123463Ramanathan, V., & Carmichael, G. (2008). Global and regional climate changes due to black carbon. Nature Geoscience, 1(4), 221-227. doi:10.1038/ngeo156Ndindeng, S. A., Wopereis, M., Sanyang, S., & Futakuchi, K. (2019). Evaluation of fan-assisted rice husk fuelled gasifier cookstoves for application in sub-Sahara Africa. Renewable Energy, 139, 924-935. doi:10.1016/j.renene.2019.02.132Jagger, P., & Das, I. (2018). Implementation and scale-up of a biomass pellet and improved cookstove enterprise in Rwanda. Energy for Sustainable Development, 46, 32-41. doi:10.1016/j.esd.2018.06.005Gitau, J. K., Sundberg, C., Mendum, R., Mutune, J., & Njenga, M. (2019). Use of Biochar-Producing Gasifier Cookstove Improves Energy Use Efficiency and Indoor Air Quality in Rural Households. Energies, 12(22), 4285. doi:10.3390/en12224285Kirch, T., Medwell, P. R., Birzer, C. H., & van Eyk, P. J. (2020). Feedstock Dependence of Emissions from a Reverse-Downdraft Gasifier Cookstove. Energy for Sustainable Development, 56, 42-50. doi:10.1016/j.esd.2020.02.008Dresen, E., DeVries, B., Herold, M., Verchot, L., & Müller, R. (2014). Fuelwood Savings and Carbon Emission Reductions by the Use of Improved Cooking Stoves in an Afromontane Forest, Ethiopia. Land, 3(3), 1137-1157. doi:10.3390/land3031137Barbieri, J., Riva, F., & Colombo, E. (2017). Cooking in refugee camps and informal settlements: A review of available technologies and impacts on the socio-economic and environmental perspective. Sustainable Energy Technologies and Assessments, 22, 194-207. doi:10.1016/j.seta.2017.02.007Tucho, G., & Nonhebel, S. (2015). Bio-Wastes as an Alternative Household Cooking Energy Source in Ethiopia. Energies, 8(9), 9565-9583. doi:10.3390/en8099565Smith, K. R., Uma, R., Kishore, V. V. N., Zhang, J., Joshi, V., & Khalil, M. A. K. (2000). Greenhouse Implications of Household Stoves: An Analysis for India. Annual Review of Energy and the Environment, 25(1), 741-763. doi:10.1146/annurev.energy.25.1.741Bhojvaid, V., Jeuland, M., Kar, A., Lewis, J., Pattanayak, S., Ramanathan, N., … Rehman, I. (2014). How do People in Rural India Perceive Improved Stoves and Clean Fuel? Evidence from Uttar Pradesh and Uttarakhand. International Journal of Environmental Research and Public Health, 11(2), 1341-1358. doi:10.3390/ijerph110201341Loo, J., Hyseni, L., Ouda, R., Koske, S., Nyagol, R., Sadumah, I., … Stanistreet, D. (2016). User Perspectives of Characteristics of Improved Cookstoves from a Field Evaluation in Western Kenya. International Journal of Environmental Research and Public Health, 13(2), 167. doi:10.3390/ijerph13020167Perspective Monde 2020https://perspective.usherbrooke.ca/bilan/servlet/BMTendanceStatPays?codeTheme=5&codeStat=RS.NUT.PROD.PP.MT&codePays=COD&optionsPeriodes=Aucune&codeTheme2=5&codeStat2=RSA.FAO.RicePaddy&codePays2=COD&optionsDetPeriodes=avecNomP&langue=frStrategie Nationale De Developpement De La Riziculture (SNDR)https://riceforafrica.net/images/pdf/NRDS_drc_fr-min.pdfPanwar, N. L., & Rathore, N. S. (2008). Design and performance evaluation of a 5kW producer gas stove. Biomass and Bioenergy, 32(12), 1349-1352. doi:10.1016/j.biombioe.2008.04.007Panwar, N. L., Kurchania, A. K., & Rathore, N. S. (2009). Mitigation of greenhouse gases by adoption of improved biomass cookstoves. Mitigation and Adaptation Strategies for Global Change, 14(6), 569-578. doi:10.1007/s11027-009-9184-7Normas UNE-AENOR (Spain)https://www.aenor.com/normas-y-libros/buscador-de-normas?k=(i:7516040)Hurtado Pérez, E. J., Mulumba Ilunga, O., Moros Gómez, M. C., & Vargas Salgado, C. (2017). Analyse des impacts économico-environnementaux du changement d’usage d’un foyer de cuisson traditionnel par un foyer de cuisson amélioré optimisé à charbon de bois dans les ménages de la ville de Kinshasa. Déchets, sciences et techniques, (N°75). doi:10.4267/dechets-sciences-techniques.3714Siva Kumar, S., Pitchandi, K., & Natarajan, E. (2008). Modeling and Simulation of Down Draft Wood Gasifier. Journal of Applied Sciences, 8(2), 271-279. doi:10.3923/jas.2008.271.279Ojolo, S. J., Abolarin, S. M., & Adegbenro, O. (2012). Development of a Laboratory Scale Updraft Gasifier. International Journal of Manufacturing Systems, 2(2), 21-42. doi:10.3923/ijmsaj.2012.21.42Panwar, N. L. (2009). Design and performance evaluation of energy efficient biomass gasifier based cookstove on multi fuels. Mitigation and Adaptation Strategies for Global Change, 14(7), 627-633. doi:10.1007/s11027-009-9187-4Jetter, J. J., & Kariher, P. (2009). Solid-fuel household cook stoves: Characterization of performance and emissions. Biomass and Bioenergy, 33(2), 294-305. doi:10.1016/j.biombioe.2008.05.014Berrueta, V. M., Edwards, R. D., & Masera, O. R. (2008). Energy performance of wood-burning cookstoves in Michoacan, Mexico. Renewable Energy, 33(5), 859-870. doi:10.1016/j.renene.2007.04.016Smith, K. R., Dutta, K., Chengappa, C., Gusain, P. P. S., Berrueta, O. M. and V., Edwards, R., … Shields, K. N. (2007). Monitoring and evaluation of improved biomass cookstove programs for indoor air quality and stove performance: conclusions from the Household Energy and Health Project. Energy for Sustainable Development, 11(2), 5-18. doi:10.1016/s0973-0826(08)60396-8Bailis, R., Berrueta, V., Chengappa, C., Dutta, K., Edwards, R., Masera, O., … Smith, K. R. (2007). Performance testing for monitoring improved biomass stove interventions: experiences of the Household Energy and Health Project. Energy for Sustainable Development, 11(2), 57-70. doi:10.1016/s0973-0826(08)60400-7MacCarty, N., Ogle, D., Still, D., Bond, T., & Roden, C. (2008). A laboratory comparison of the global warming impact of five major types of biomass cooking stoves. Energy for Sustainable Development, 12(2), 56-65. doi:10.1016/s0973-0826(08)60429-9Lombardi, F., Riva, F., Bonamini, G., Barbieri, J., & Colombo, E. (2017). Laboratory protocols for testing of Improved Cooking Stoves (ICSs): A review of state-of-the-art and further developments. Biomass and Bioenergy, 98, 321-335. doi:10.1016/j.biombioe.2017.02.005Lombardi, F., Riva, F., & Colombo, E. (2018). Dealing with small sets of laboratory test replicates for Improved Cooking Stoves (ICSs): Insights for a robust statistical analysis of results. Biomass and Bioenergy, 115, 27-34. doi:10.1016/j.biombioe.2018.04.00

    Assessing the increase of solar fields in Iberian Peninsula

    Full text link
    [EN] Spanish electrical generation has traditionally included high pollutant energy resources, like fuel or carbon. However, disturbing ever-increase in the average temperature of Planet Earth has led to a search for sustainability in the energy scenario. Therefore, Spanish electrical generation mix is prone to replace contaminant energy resources by non-contaminant, such renewables. Concretely, Spain is one of the countries with more solar peak annual hours. Nevertheless, having enough space to increase solar fields has been widely question. In this paper, an unrealistic scenario where all the annual Spanish consumption would be covered by photovoltaics is deeply analysed. Considering real electrical Spanish consumption data from 2017, required total quantity of solar panels has been quantified. Additionally, the study takes the hypothesis that all the panels should be placed on Spanish desert zones for two main reasons. First, total solar peak annual hours there are higher than in other Spanish regions. Last, making there the installation would give use to previous wasted zones. Obtained results indicate that around 691 million of 330Wp solar panels would be required for this issue, taking up 492175 km2. This space means only a 0.77% of all Iberian Peninsula. These outcomes clearly show that there is suitable and enough space to increase solar fields in Iberian Peninsula.This work was supported in part by the regional public administration of Valencia under the grant ACIF/2018/106.Bastida-Molina, P.; Alfonso Solar, D.; Vargas Salgado, CA.; Montuori, L. (2019). Assessing the increase of solar fields in Iberian Peninsula. En Proceedings 5th CARPE Conference: Horizon Europe and beyond. Editorial Universitat Politècnica de València. 106-113. https://doi.org/10.4995/CARPE2019.2019.10205OCS10611
    corecore