52 research outputs found

    In Situ/Subcellular Localization of Arabinogalactan Protein Expression by Fluorescent In Situ Hybridization (FISH)

    Get PDF
    The arabinogalactan proteins are highly glycosylated and ubiquitous in plants. They are involved in several aspects of plant development and reproduction; however, the mechanics behind their function remains for the most part unclear, as the carbohydrate moiety, covering the most part of the protein core, is poorly characterized at the individual protein level. Traditional immunolocalization using antibodies that recognize the glycosidic moiety of the protein cannot be used to elucidate individual proteins' distribution, function, or interactors. Indirect approaches are typically used to study these proteins, relying on reverse genetic analysis of null mutants or using a reporter fusion system. In the method presented here, we propose the use of RNA probes to assist in the localization of individual AGPs expression/mRNAs in tissues of Arabidopsis by fluorescent in situ hybridization, FISH. An extensive description of all aspects of this technique is provided, from RNA probe synthesis to the hybridization, trying to overcome the lack of specific antibodies for the protein core of AGPs

    Developmental Localization and Methylesterification of Pectin Epitopes during Somatic Embryogenesis of Banana (Musa spp. AAA)

    Get PDF
    The plant cell walls play an important role in somatic embryogenesis and plant development. Pectins are major chemical components of primary cell walls while homogalacturonan (HG) is the most abundant pectin polysaccharide. Developmental regulation of HG methyl-esterification degree is important for cell adhesion, division and expansion, and in general for proper organ and plant development.Developmental localization of pectic homogalacturonan (HG) epitopes and the (1→4)-β-D-galactan epitope of rhamnogalacturonan I (RG-I) and degree of pectin methyl-esterification (DM) were studied during somatic embryogenesis of banana (Musa spp. AAA). Histological analysis documented all major developmental stages including embryogenic cells (ECs), pre-globular, globular, pear-shaped and cotyledonary somatic embryos. Histochemical staining of extracellularly secreted pectins with ruthenium red showed the most intense staining at the surface of pre-globular, globular and pear-shaped somatic embryos. Biochemical analysis revealed developmental regulation of galacturonic acid content and DM in diverse embryogenic stages. Immunodots and immunolabeling on tissue sections revealed developmental regulation of highly methyl-esterified HG epitopes recognized by JIM7 and LM20 antibodies during somatic embryogenesis. Cell walls of pre-globular/globular and late-stage embryos contained both low methyl-esterified HG epitopes as well as partially and highly methyl-esterified ones. Extracellular matrix which covered surface of early developing embryos contained pectin epitopes recognized by 2F4, LM18, JIM5, JIM7 and LM5 antibodies. De-esterification of cell wall pectins by NaOH caused a decrease or an elimination of immunolabeling in the case of highly methyl-esterified HG epitopes. However, immunolabeling of some low methyl-esterified epitopes appeared stronger after this base treatment.These data suggest that both low- and highly-methyl-esterified HG epitopes are developmentally regulated in diverse embryogenic stages during somatic embryogenesis. This study provides new information about pectin composition, HG methyl-esterification and developmental localization of pectin epitopes during somatic embryogenesis of banana

    Bioactive Compounds of Rambutan (Nephelium lappaceum L.)

    Get PDF
    Rambutan, a widely popular tropical fruit encompasses rich amount of bioactive compounds. All parts of this plant (leaves, bark, root, fruits, fruit skin, pulp and seeds) finds traditional usage, and are linked with high therapeutic values. Rambutan fruits parts like that of peel, pulp and seeds have been scientifically investigated in-depth and is reported to encompass high amounts of bioactive compounds (such as polyphenol, flavonoid, alkaloid, essential mineral, dietary fiber). These compounds contribute towards antioxidant, antimicrobial, anticancer, antidiabetic and anti-obesity activities. However, literature pertaining towards potential industrial applications (food, cosmetics, pharmaceutical) of rambutan fruits are limited. In the present chapter, it is intended to document some of the interesting research themes published on rambutan fruits, and identify the existing gaps to open up arena for future research work.This chapter theme is based on our ongoing project—VALORTECH, which has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No 810630

    Genome-wide gene expression profiling suggests distinct radiation susceptibilities in sporadic and post-Chernobyl papillary thyroid cancers

    Get PDF
    Papillary thyroid cancers (PTCs) incidence dramatically increased in the vicinity of Chernobyl. The cancer-initiating role of radiation elsewhere is debated. Therefore, we searched for a signature distinguishing radio-induced from sporadic cancers. Using microarrays, we compared the expression profiles of PTCs from the Chernobyl Tissue Bank (CTB, n=12) and from French patients with no history of exposure to ionising radiations (n=14). We also compared the transcriptional responses of human lymphocytes to the presumed aetiological agents initiating these tumours, γ-radiation and H2O2. On a global scale, the transcriptomes of CTB and French tumours are indistinguishable, and the transcriptional responses to γ-radiation and H2O2 are similar. On a finer scale, a 118 genes signature discriminated the γ-radiation and H2O2 responses. This signature could be used to classify the tumours as CTB or French with an error of 15–27%. Similar results were obtained with an independent signature of 13 genes involved in homologous recombination. Although sporadic and radio-induced PTCs represent the same disease, they are distinguishable with molecular signatures reflecting specific responses to γ-radiation and H2O2. These signatures in PTCs could reflect the susceptibility profiles of the patients, suggesting the feasibility of a radiation susceptibility test

    Microsatellites for the genus Cucurbita and an SSR-based genetic linkage map of Cucurbita pepo L.

    Get PDF
    Until recently, only a few microsatellites have been available for Cucurbita, thus their development is highly desirable. The Austrian oil-pumpkin variety Gleisdorfer Ölkürbis (C. pepo subsp. pepo) and the C. moschata cultivar Soler (Puerto Rico) were used for SSR development. SSR-enriched partial genomic libraries were established and 2,400 clones were sequenced. Of these 1,058 (44%) contained an SSR at least four repeats long. Primers were designed for 532 SSRs; 500 primer pairs produced fragments of expected size. Of these, 405 (81%) amplified polymorphic fragments in a set of 12 genotypes: three C. moschata, one C. ecuadorensis, and eight C. pepo representing all eight cultivar groups. On an average, C. pepo and C. moschata produced 3.3 alleles per primer pair, showing high inter-species transferability. There were 187 SSR markers detecting polymorphism between the USA oil-pumpkin variety “Lady Godiva” (O5) and the Italian crookneck variety “Bianco Friulano” (CN), which are the parents of our previous F2 mapping population. It has been used to construct the first published C. pepo map, containing mainly RAPD and AFLP markers. Now the updated map comprises 178 SSRs, 244 AFLPs, 230 RAPDs, five SCARs, and two morphological traits (h and B). It contains 20 linkage groups with a map density of 2.9 cM. The observed genome coverage (Co) is 86.8%

    In situ/Subcellular localization of arabinogalactan protein expression by fluorescent in situ hybridization, FISH

    No full text
    31 p. Methods Mol Biol 2149:403-427The arabinogalactan proteins are highly glycosylated and ubiquitous in plants. They are involved in several aspects of plant development and reproduction; however, the mechanics behind their function remains for the most part unclear, as the carbohydrate moiety, covering the most part of the protein core, is poorly characterized at the individual protein level. Traditional immunolocalization using antibodies that recognize the glycosidic moiety of the protein cannot be used to elucidate individual proteins' distribution, function, or interactors. Indirect approaches are typically used to study these proteins, relying on reverse genetic analysis of null mutants or using a reporter fusion system. In the method presented here, we propose the use of RNA probes to assist in the localization of individual AGPs expression/mRNAs in tissues of Arabidopsis by fluorescent in situ hybridization, FISH. An extensive description of all aspects of this technique is provided, from RNA probe synthesis to the hybridization, trying to overcome the lack of specific antibodies for the protein core of AGPs.This work was financed by FEDER through the COMPETE program, and by Portuguese National funds through FCT, Fundação para a Ciência eTecnologia (Project PTDC/AGR-GPL/115358/2009 and FCT - 02-SAICT-2017 – POCI-01-0145-FEDER-027839) and PhD grant SFRH/BD/111781/2015), and received support from Spanish–Portuguese Joint Project Nº E 30/12. EU project 690946 ‘SexSeed’ (Sexual Plant Reproduction – Seed Formation) funded by H2020-MSCA-RISE-2015.Peer reviewe
    corecore