2,068 research outputs found
Managing crop tradeoffs: A methodology for comparing the water footprint and nutrient density of crops for food system sustainability
The relationship between human nutrition and the use of available resources to feed the planet's growing population demands greater attention from decision makers at all levels of governance. Indicators with dual environmental sustainability and food and nutrition security goals can encourage and measure progress towards a more sustainable food system. This article proposes a methodology that supports the development of an approach to assess the water footprint of nutrient-dense foods [m3/kg]. It provides a clear explanation of the methodology, and the use of water footprint benchmark data and corresponding United States Department of Agriculture (USDA) nutrient composition data to apply the process. The study analyzed data for 17 grains, roots and tubers, 9 pulses, 10 nuts and seeds, 17 vegetables, and 27 fruits. Of these, fruits and vegetables are 85% of the bottom quartile for water footprint (i.e., highly water efficient) and 100% of the top quartile for nutrient-density (i.e., very nutrient dense). Spinach is a clear winner, with a very high nutrient-density and low water footprint. The article proposes that this approach can help to establish broad typologies to guide decision makers in distinguishing between win-win, win-lose, and lose-lose scenarios of natural resource use and nutrition security. This resource, if considered along with contributing social, environmental, and economic factors (e.g., local tastes, available water resources, soil fertility, local economies) can promote a food system that offers a diverse range of nutrient-dense foods more sustainably
How Hertzian solitary waves interact with boundaries in a 1-D granular medium
We perform measurements, numerical simulations, and quantitative comparisons
with available theory on solitary wave propagation in a linear chain of beads
without static preconstrain. By designing a nonintrusive force sensor to
measure the impulse as it propagates along the chain, we study the solitary
wave reflection at a wall. We show that the main features of solitary wave
reflection depend on wall mechanical properties. Since previous studies on
solitary waves have been performed at walls without these considerations, our
experiment provides a more reliable tool to characterize solitary wave
propagation. We find, for the first time, precise quantitative agreements.Comment: Proof corrections, ReVTeX, 11 pages, 3 eps (Focus and related papers
on http://www.supmeca.fr/perso/jobs/
The spatial spread of schistosomiasis: a multidimensional network model applied to Saint-Louis region, Senegal
Big-data-driven modeling unveils country-wide drivers of endemic schistosomiasis
Schistosomiasis is a parasitic infection that is widespread in sub-Saharan Africa, where it represents a major health problem. We study the drivers of its geographical distribution in Senegal via a spatially explicit network model accounting for epidemiological dynamics driven by local socioeconomic and environmental conditions, and human mobility. The model is parameterized by tapping several available geodatabases and a large dataset of mobile phone traces. It reliably reproduces the observed spatial patterns of regional schistosomiasis prevalence throughout the country, provided that spatial heterogeneity and human mobility are suitably accounted for. Specifically, a fine-grained description of the socioeconomic and environmental heterogeneities involved in local disease transmission is crucial to capturing the spatial variability of disease prevalence, while the inclusion of human mobility significantly improves the explanatory power of the model. Concerning human movement, we find that moderate mobility may reduce disease prevalence, whereas either high or low mobility may result in increased prevalence of infection. The effects of control strategies based on exposure and contamination reduction via improved access to safe water or educational campaigns are also analyzed. To our knowledge, this represents the first application of an integrative schistosomiasis transmission model at a whole-country scale
Emergency Medical Services Utilization And Interventions By Paramedics During A Blizzard
EMERGENCY MEDICAL SERVICES UTLIZATION AND INTERVENTIONS BY PARAMEDICS DURING A BLIZZARD.
Shalom Sokolow (Sponsored by Sandy Bogucki). Department of Emergency Medicine, Yale University, School of Medicine, New Haven, CT.
On February 8th, 2013, southern Connecticut was struck by a powerful blizzard. Emergency Medical Services (EMS) crews experienced significantly increased call volume along with increased response and transport times. This study examined which types of EMS calls increased or decreased during the storm and whether paramedics performed more or fewer advanced life support (ALS) interventions.
EMS calls were differentiated by call type and analyzed to determine which types increased or decreased significantly during the blizzard. Then electronic patient care reports were searched for interventions by paramedics and analyzed to determine whether calls with interventions increased or decreased.
During the storm, average calls per day increased from 196 to 249 (p=0.001). Statistically significant increases (p
The findings may suggest that the higher EMS call volume was due to an increase in lower acuity patients without a corresponding increase in higher acuity patients. Planning for future blizzards therefore may best be met with increased staffing of emergency medical technicians without an increase in paramedic personnel or equipment
Electrocardiography in people living at high altitude of Nepal.
OBJECTIVE: The main objective of this study was to estimate the prevalence of coronary heart disease (CHD) of high-altitude populations in Nepal determined by an ECG recordings and a medical history. METHODS: We carried out a cross-sectional survey of cardiovascular disease and risk factors among people living at four different altitude levels, all above 2800 m, in the Mustang and Humla districts of Nepal. 12-lead ECGs were recorded on 485 participants. ECG recordings were categorised as definitely abnormal, borderline or normal. RESULTS: No participant had Q waves to suggest past Q-wave infarction. Overall, 5.6% (95% CI 3.7 to 8.0) of participants gave a self-report of CHD. The prevalence of abnormal (or borderline abnormal) ECG was 19.6% (95% CI 16.1 to 23.4). The main abnormalities were: right axis deviation in 5.4% (95% CI 3.5 to 7.7) and left ventricular hypertrophy by voltage criteria in 3.5% (95% CI 2.0 to 5.5). ECG abnormalities were mainly on the left side of the heart for Mustang participants (Tibetan origin) and on the right side for Humla participants (Indo-Aryans). There was a moderate association between the probability of abnormal (or borderline abnormal) ECG and altitude when adjusted for potential confounding variables in a multivariate logistic model; with an OR for association per 1000 m elevation of altitude of 2.83 (95% CI 1.07 to 7.45), p=0.03. CONCLUSIONS: Electrocardiographic evidence suggests that although high-altitude populations do not have a high prevalence of CHD, abnormal ECG findings increase by altitude and risk pattern varies by ethnicity
- …
