19 research outputs found

    Charge renormalisation in a mean-field approximation of QED

    Full text link
    We study the Bogoliubov-Dirac-Fock (BDF) model, a no-photon, mean-field approxi- mation of quantum electrodynamics that allows to study relativistic electrons interacting with the vacuum. It is a variational model in which states are represented by Hilbert- Schmidt operators. We prove a charge renormalisation formula that holds close to the non-relativistic limit: the density of a ground state is shown to be integrable although such a state is known not to be trace-class. We prove that we can take the non-relativistic limit by keeping track of the vacuum polarisation. We get an altered Hartree-Fock model due to the screening effect

    Absence of binding in a mean-field approximation of quantum electrodynamics

    Full text link
    We study the Bogoliubov-Dirac-Fock model which is a mean-field approximation of QED. It allows to consider relativistic electrons interacting with the Dirac sea. We study the system of two electrons in the vacuum: it has been shown in a previous work that an electron alone can bind due to the vacuum polarization, under some technical assumptions. Here we prove the absence of binding for the system of two electrons: the response of the vacuum is not sufficient to counterbalance the repulsion of the electrons

    The positronium in a mean-field approximation of quantum electrodynamics

    Full text link
    The Bogoliubov-Dirac-Fock (BDF) model is a no-photon, mean-field approxi- mation of quantum electrodynamics. It describes relativistic electrons in the Dirac sea. In this model, a state is fully characterized by its one-body density matrix, an infinite rank nonnegative operator. We prove the existence of the positronium, the bound state of an electron and a positron, represented by a critical point of the energy functional in the absence of external field. This state is interpreted as the ortho-positronium, where the two particles have parallel spins

    The Dirac-Frenkel Principle for Reduced Density Matrices, and the Bogoliubov-de-Gennes Equations

    Get PDF
    The derivation of effective evolution equations is central to the study of non-stationary quantum many-body sytems, and widely used in contexts such as superconductivity, nuclear physics, Bose-Einstein condensation and quantum chemistry. We reformulate the Dirac-Frenkel approximation principle in terms of reduced density matrices, and apply it to fermionic and bosonic many-body systems. We obtain the Bogoliubov-de-Gennes and Hartree-Fock-Bogoliubov equations, respectively. While we do not prove quantitative error estimates, our formulation does show that the approximation is optimal within the class of quasifree states. Furthermore, we prove well-posedness of the Bogoliubov-de-Gennes equations in energy space and discuss conserved quantities.Comment: 46 pages, 1 figure; v2: simplified proof of conservation of particle number, additional references; v3: minor clarification

    Spectral flow for Dirac operators with magnetic links

    Full text link
    This paper is devoted to the study of the spectral properties of Dirac operators on the three-sphere with singular magnetic fields supported on smooth, oriented links. As for Aharonov-Bohm solenoids in Euclidean three-space, the flux carried by an oriented knot features a 2Ï€2\pi-periodicity of the associated operator. For a given link one thus obtains a family of Dirac operators indexed by a torus of fluxes. We study the spectral flow of paths of such operators corresponding to loops in this torus. The spectral flow is in general non-trivial. In the special case of a link of unknots we derive an explicit formula for the spectral flow of any loop on the torus of fluxes. It is given in terms of the linking numbers of the knots and their writhes

    On symmetry of traveling solitary waves for dispersion generalized NLS

    Full text link
    We consider dispersion generalized nonlinear Schr\"odinger equations (NLS) of the form i∂tu=P(D)u−∣u∣2σui \partial_t u = P(D) u - |u|^{2 \sigma} u, where P(D)P(D) denotes a (pseudo)-differential operator of arbitrary order. As a main result, we prove symmetry results for traveling solitary waves in the case of powers σ∈N\sigma \in \mathbb{N}. The arguments are based on Steiner type rearrangements in Fourier space. Our results apply to a broad class of NLS-type equations such as fourth-order (biharmonic) NLS, fractional NLS, square-root Klein-Gordon and half-wave equations.Comment: 17 pages. Any comments are welcome

    Etude d'un modèle de champ moyen en électrodynamique quantique

    No full text
    In QED, mean-field models appear in the modelling of the electron clouds of heavy atoms. This modelling plays a increasing role in physics and in quantum chemistry: relativistic effects cannot be neglected in these atoms. In relativistic quantum physics the vacuum is a polarizable medium that can react to the presence of an electromagnetic field.We consider the so-called Bogoliubov-Dirac-Fock (BDF) model, a variational model which is a mean-field approximation of no-photon QED (in particular the interactions are purely electrostatic).We point out that an ultraviolet regularisation is necessary to properly define the BDF model. The vacuum polarisation leads to a \emph{renormalisation} phenomenon, the "observed" charge of the electron depends on its "bare" charge and the regularisation parameter. We rigorously study both the problem of charge renormalisation and mass renormalisation. This last one is linked to the existence of ground state in the case of an electron in the vacuum, without any external field. In contrast, we show there is no ground state in the case of two electrons.Finally we exhibit some critical points of the BDF energy which are interpreted as vacuum excited states. In particular, there are the positronium (a metastable system constituted by an electron and its antiparticle called the positron) and the dipositronium (a metastable molecule constituted by two electrons and two positrons).The methods that we use are variational (concentration-compactness, Borwein and Preiss's Lemma).Les modèles de champ moyen en QED apparaissent naturellement dans la modélisation du nuage électronique des atomes lourds. Cette modélisation joue un rôle croissant en physique et chimie quantique, les effets relativistes ne pouvant pas être négligés pour ces atomes. En physique quantique relativiste, le vide est un milieu polarisable, susceptible de réagir à la présence de champ électromagnétique.On se place dans le cadre du modèle variationnel de Bogoliubov-Dirac-Fock (BDF) qui est une approximation de champ moyen de la QED sans photon (en particulier, les interactions considérées sont purement électrostatiques).Il est à noter que pour donner un sens au modèle BDF, il est nécessaire d'introduire une régularisation ultra-violette. Il se produit un phénomène de renormalisation de charge due à la polarisation du vide : la charge de l'électron observée dépend de la charge « nue » de l'électron et du paramètre de régularisation. On étudie rigoureusement ce phénomène ainsi que le problème de la renormalisation de la masse. Cette dernière est en lien avec l'existence d'un état fondamental pour le système d'un électron dans le vide, en l'absence de tout champ extérieur. En revanche, on montre l'absence de minimiseurs dans le cas de deux électrons.Enfin, on exhibe des points critiques de l'énergie BDF, interprétés comme des états excités du vide. On met en évidence le positronium, système métastable d'un électron et de son antiparticule le positron, ainsi que le dipositronium, molécule métastable constituée de deux électrons et de deux positrons.Les méthodes utilisées sont variationnelles (concentration-compacité, lemme de Borwein et Preiss)

    Study of a mean-field model in quantum electrodynamics

    No full text
    Les modèles de champ moyen en QED apparaissent naturellement dans la modélisation du nuage électronique des atomes lourds. Cette modélisation joue un rôle croissant en physique et chimie quantique, les effets relativistes ne pouvant pas être négligés pour ces atomes. En physique quantique relativiste, le vide est un milieu polarisable, susceptible de réagir à la présence de champ électromagnétique.On se place dans le cadre du modèle variationnel de Bogoliubov-Dirac-Fock (BDF) qui est une approximation de champ moyen de la QED sans photon (en particulier, les interactions considérées sont purement électrostatiques).Il est à noter que pour donner un sens au modèle BDF, il est nécessaire d'introduire une régularisation ultra-violette. Il se produit un phénomène de renormalisation de charge due à la polarisation du vide : la charge de l'électron observée dépend de la charge « nue » de l'électron et du paramètre de régularisation. On étudie rigoureusement ce phénomène ainsi que le problème de la renormalisation de la masse. Cette dernière est en lien avec l'existence d'un état fondamental pour le système d'un électron dans le vide, en l'absence de tout champ extérieur. En revanche, on montre l'absence de minimiseurs dans le cas de deux électrons.Enfin, on exhibe des points critiques de l'énergie BDF, interprétés comme des états excités du vide. On met en évidence le positronium, système métastable d'un électron et de son antiparticule le positron, ainsi que le dipositronium, molécule métastable constituée de deux électrons et de deux positrons.Les méthodes utilisées sont variationnelles (concentration-compacité, lemme de Borwein et Preiss).In QED, mean-field models appear in the modelling of the electron clouds of heavy atoms. This modelling plays a increasing role in physics and in quantum chemistry: relativistic effects cannot be neglected in these atoms. In relativistic quantum physics the vacuum is a polarizable medium that can react to the presence of an electromagnetic field.We consider the so-called Bogoliubov-Dirac-Fock (BDF) model, a variational model which is a mean-field approximation of no-photon QED (in particular the interactions are purely electrostatic).We point out that an ultraviolet regularisation is necessary to properly define the BDF model. The vacuum polarisation leads to a \emph{renormalisation} phenomenon, the "observed" charge of the electron depends on its "bare" charge and the regularisation parameter. We rigorously study both the problem of charge renormalisation and mass renormalisation. This last one is linked to the existence of ground state in the case of an electron in the vacuum, without any external field. In contrast, we show there is no ground state in the case of two electrons.Finally we exhibit some critical points of the BDF energy which are interpreted as vacuum excited states. In particular, there are the positronium (a metastable system constituted by an electron and its antiparticle called the positron) and the dipositronium (a metastable molecule constituted by two electrons and two positrons).The methods that we use are variational (concentration-compactness, Borwein and Preiss's Lemma)
    corecore