The derivation of effective evolution equations is central to the study of
non-stationary quantum many-body sytems, and widely used in contexts such as
superconductivity, nuclear physics, Bose-Einstein condensation and quantum
chemistry. We reformulate the Dirac-Frenkel approximation principle in terms of
reduced density matrices, and apply it to fermionic and bosonic many-body
systems. We obtain the Bogoliubov-de-Gennes and Hartree-Fock-Bogoliubov
equations, respectively. While we do not prove quantitative error estimates,
our formulation does show that the approximation is optimal within the class of
quasifree states. Furthermore, we prove well-posedness of the
Bogoliubov-de-Gennes equations in energy space and discuss conserved
quantities.Comment: 46 pages, 1 figure; v2: simplified proof of conservation of particle
number, additional references; v3: minor clarification