4,093 research outputs found

    The effects of smoking on obesity: Evidence from Indonesian panel data

    Get PDF
    Background: It has been known that smoking is negatively related to weight-related outcomes. However, it has been difficult to determine whether the relationship is causal, and if so, how strong it is. We attempted to estimate the approximately causal effects of smoking on weight, body mass index (BMI), and obesity. Methods: The Indonesian Family Life Survey provided a sample of over 9000 men aged 15-55 years - each of them was observed in 1993, 1997, 2000 and 2007. The preferred method was a fixed effects model; that is, we related changes in smoking status or smoking intensity to changes in weight-related outcomes, while controlling for time-varying covariates. We also compared these results to those estimated by ordinary least squares and assessed the importance of controlling for time invariant individual heterogeneity. Results: Although the effects of smoking were precisely estimated in a statistical sense, their size was minuscule: a quitter would gain weight by at most 1 kg, or a smoker would lose weight by the same amount. The results were similar for BMI and obesity. When we did not control for time invariant individual heterogeneity, the size of the relationship was overestimated at least three times. Conclusions: Smoking exerted little influence on weight, and it was important to control for bias stemming from time invariant individual heterogeneity

    High Performance Electrocatalysts Based on Pt Nanoarchitecture for Fuel Cell Applications

    Get PDF
    Fuel cells, converting chemical energy from fuels into electricity directly without the need for combustion, are promising energy conversion devices for their potential applications as environmentally friendly, energy efficient power sources. However, to take fuel cell technology forward towards commercialization, we need to achieve further improvements in electrocatalyst technology, which can play an extremely important role in essentially determining cost-effectiveness, performance, and durability. In particular, platinum- (Pt-) based electrocatalyst approaches have been extensively investigated and actively pursued to meet those demands as an ideal fuel cell catalyst due to their most outstanding activity for both cathode oxygen reduction reactions and anode fuel oxidation reactions. In this review, we will address important issues and recent progress in the development of Pt-based catalysts, their synthesis, and characterization. We will also review snapshots of research that are focused on essential dynamics aspects of electrocatalytic reactions, such as the shape effects on the catalytic activity of Pt-based nanostructures, the relationships between structural morphology of Pt-based nanostructures and electrochemical reactions on both cathode and anode electrodes, and the effects of composition and electronic structure of Pt-based catalysts on electrochemical reaction properties of fuel cells.</jats:p

    The nuclear immune receptor RPS4 is required for RRS1SLH1-dependent constitutive defense activation in Arabidopsis thaliana

    Get PDF
    Plant nucleotide-binding leucine-rich repeat (NB-LRR) disease resistance (R) proteins recognize specific ‘‘avirulent’’ pathogen effectors and activate immune responses. NB-LRR proteins structurally and functionally resemble mammalian Nod-like receptors (NLRs). How NB-LRR and NLR proteins activate defense is poorly understood. The divergently transcribed Arabidopsis R genes, RPS4 (resistance to Pseudomonas syringae 4) and RRS1 (resistance to Ralstonia solanacearum 1), function together to confer recognition of Pseudomonas AvrRps4 and Ralstonia PopP2. RRS1 is the only known recessive NBLRR R gene and encodes a WRKY DNA binding domain, prompting suggestions that it acts downstream of RPS4 for transcriptional activation of defense genes. We define here the early RRS1-dependent transcriptional changes upon delivery of PopP2 via Pseudomonas type III secretion. The Arabidopsis slh1 (sensitive to low humidity 1) mutant encodes an RRS1 allele (RRS1SLH1) with a single amino acid (leucine) insertion in the WRKY DNA-binding domain. Its poor growth due to constitutive defense activation is rescued at higher temperature. Transcription profiling data indicate that RRS1SLH1-mediated defense activation overlaps substantially with AvrRps4- and PopP2-regulated responses. To better understand the genetic basis of RPS4/RRS1-dependent immunity, we performed a genetic screen to identify suppressor of slh1 immunity (sushi) mutants. We show that many sushi mutants carry mutations in RPS4, suggesting that RPS4 acts downstream or in a complex with RRS1. Interestingly, several mutations were identified in a domain C-terminal to the RPS4 LRR domain. Using an Agrobacterium-mediated transient assay system, we demonstrate that the P-loop motif of RPS4 but not of RRS1SLH1 is required for RRS1SLH1 function. We also recapitulate the dominant suppression of RRS1SLH1 defense activation by wild type RRS1 and show this suppression requires an intact RRS1 P-loop. These analyses of RRS1SLH1 shed new light on mechanisms by which NB-LRR protein pairs activate defense signaling, or are held inactive in the absence of a pathogen effector

    Role of extracellular DNA in Enterococcus faecalis biofilm formation and its susceptibility to sodium hypochlorite

    Get PDF
    Objective: This study investigated the role of extracellular deoxyribonucleic acid (eDNA) on Enterococcus faecalis (E. faecalis) biofilm and the susceptibility of E. faecalis to sodium hypochlorite (NaOCl). Methodology: E. faecalis biofilm was formed in bovine tooth specimens and the biofilm was cultured with or without deoxyribonuclease (DNase), an inhibitor of eDNA. Then, the role of eDNA in E. faecalis growth and biofilm formation was investigated using colony forming unit (CFUs) counting, eDNA level assay, crystal violet staining, confocal laser scanning microscopy, and scanning electron microscopy. The susceptibility of E. faecalis biofilm to low (0.5%) or high (5%) NaOCl concentrations was also analyzed by CFU counting. Results: CFUs and biofilm formation decreased significantly with DNase treatment (p&lt;0.05). The microstructure of DNase-treated biofilms exhibited less structured features when compared to the control. The volume of exopolysaccharides in the DNase-treated biofilm was significantly lower than that of control (p&lt;0.05). Moreover, the CFUs, eDNA level, biofilm formation, and exopolysaccharides volume were lower when the biofilm was treated with DNase de novo when compared to when DNase was applied to matured biofilm (p&lt;0.05). E. faecalis in the biofilm was more susceptible to NaOCl when it was cultured with DNase (p&lt;0.05). Furthermore, 0.5% NaOCl combined with DNase treatment was as efficient as 5% NaOCl alone regarding susceptibility (p&gt;0.05). Conclusions: Inhibition of eDNA leads to decrease of E. faecalis biofilm formation and increase of susceptibility of E. faecalis to NaOCl even at low concentrations. Therefore, our results suggest that inhibition of eDNA would be beneficial in facilitating the efficacy of NaOCl and reducing its concentration

    Quantum effects in a superconducting glass model

    Full text link
    We study disordered Josephson junctions arrays with long-range interaction and charging effects. The model consists of two orthogonal sets of positionally disordered NN parallel filaments (or wires) Josephson coupled at each crossing and in the presence of a homogeneous and transverse magnetic field. The large charging energy (resulting from small self-capacitance of the ultrathin wires) introduces important quantum fluctuations of the superconducting phase within each filament. Positional disorder and magnetic field frustration induce spin-glass like ground state, characterized by not having long-range order of the phases. The stability of this phase is destroyed for sufficiently large charging energy. We have evaluated the temperature vs charging energy phase diagram by extending the methods developed in the theory of infinite-range spin glasses, in the limit of large magnetic field. The phase diagram in the different temperature regimes is evaluated by using variety of methods, to wit: semiclassical WKB and variational methods, Rayleigh-Schr\"{o}dinger perturbation theory and pseudospin effective Hamiltonians. Possible experimental consequences of these results are briefly discussed.Comment: 17 pages REVTEX. Two Postscript figures can be obtained from the authors. To appear in PR

    Nonequilibrium mesoscopic transport: a genealogy

    Full text link
    Models of nonequilibrium quantum transport underpin all modern electronic devices, from the largest scales to the smallest. Past simplifications such as coarse graining and bulk self-averaging served well to understand electronic materials. Such particular notions become inapplicable at mesoscopic dimensions, edging towards the truly quantum regime. Nevertheless a unifying thread continues to run through transport physics, animating the design of small-scale electronic technology: microscopic conservation and nonequilibrium dissipation. These fundamentals are inherent in quantum transport and gain even greater and more explicit experimental meaning in the passage to atomic-sized devices. We review their genesis, their theoretical context, and their governing role in the electronic response of meso- and nanoscopic systems.Comment: 21p

    UV Bright Globular Clusters in M87: More Evidence for Super-helium-rich Stellar Populations?

    Get PDF
    We study the UV and optical properties of 38 massive GCs in M87, imaged using the HST/STIS and WFPC2 instruments. The majority of these GCs appear extremely bright in the FUV - roughly a magnitude brighter than their Galactic counterparts with similar metallicities. The observed FUV flux is several times larger than predictions of canonical old stellar population models. These canonical models, which assume a fiducial helium enrichment parameter, dY/dZ=2, are able to reproduce the observed FUV fluxes only if ages are 3--5 Gyr larger than the WMAP age of the Universe, although the same models fit the UV photometry of Galactic and M31 GCs for ages less than the WMAP age. A similar discrepancy is found between the mass-weighted and UV-luminosity weighted ages of the massive Galactic GC omega Cen, whose CMD (including peculiar features on its well-populated horizontal branch) can be accurately reproduced by invoking a small super-He-rich (dY/dZ ~ 90) stellar component. By comparison to omega Cen, we propose that the majority of M87 GCs in our sample contain strong signatures of similarly minor super-He-rich sub-components. Although we cannot prove or disprove the extreme helium scenario at the moment, we show that the same phenomenon that causes the extended horizontal branch of omega Cen explains the UV brightness of our sample. If this is indeed due to the extreme helium, this study would be the first to find its signatures in extragalactic objects.Comment: 19 pages, 10 figures, accepted for publication in MNRA

    UV properties of early-type galaxies in the Virgo cluster

    Get PDF
    We study the UV properties of a volume limited sample of early-type galaxies in the Virgo cluster combining new GALEX far- (1530 A) and near-ultraviolet (2310 A) data with spectro-photometric data available at other wavelengths. The sample includes 264 ellipticals, lenticulars and dwarfs spanning a large range in luminosity (M(B)<-15). While the NUV to optical or near-IR color magnitude relations (CMR) are similar to those observed at optical wavelengths, with a monotonic reddening of the color index with increasing luminosity, the (FUV-V) and (FUV-H) CMRs show a discontinuity between massive and dwarf objects. An even more pronounced dichotomy is observed in the (FUV-NUV) CMR. For ellipticals the (FUV-NUV) color becomes bluer with increasing luminosity and with increasing reddening of the optical or near-IR color indices. For the dwarfs the opposite trend is observed. These observational evidences are consistent with the idea that the UV emission is dominated by hot, evolved stars in giant systems, while in dwarf ellipticals residual star formation activity is more common.Comment: 5 pages, 2 figures, 1 table. Accepted for publication in Astrophysical Journal Letter
    corecore