497 research outputs found

    Diagnostic and therapeutic considerations in idiopathic hypereosinophilia with warm autoimmune hemolytic anemia.

    Get PDF
    Hypereosinophilic syndrome (HES) encompasses numerous diverse conditions resulting in peripheral hypereosinophilia that cannot be explained by hypersensitivity, infection, or atopy and that is not associated with known systemic diseases with specific organ involvement. HES is often attributed to neoplastic or reactive causes, such as chronic eosinophilic leukemia, although a majority of cases remains unexplained and are considered idiopathic. Here, we review the current diagnosis and management of HES and present a unique case of profound hypereosinophilia associated with warm autoimmune hemolytic anemia requiring intensive management. This case clearly illustrates the limitations of current knowledge with respect to hypereosinophilia syndrome as well as the challenges associated with its classification and management

    Low-temperature (4.2°K) study of the 2E1u←2E2g band system in the electronic spectra of various ferricenium compounds

    Get PDF
    The 2E1u←2E2g (16200cm^−1) band system for the three ferricenium salts [Fe(C5H5)2]PF6,[Fe(C5H5)2]BF4, and [Fe(C5H5)2](CCl3CO2H)2(CCl3CO2−) has been studied at 4.2°K. Analysis of the observed vibrational structure indicates that the 2E1u excited state is split into two Kramers doublets, with the extent of splitting being a function of the anion. Several ferricenium 2E1u vibrational frequencies have been identified and compared with corresponding values for ground state ferrocene. It appears from these comparisons that the iron 4px and 4py orbitals are minimally involved in the iron-ring bonding

    Chemical Abundances of the Leo II Dwarf Galaxy

    Full text link
    We use previously-published moderate-resolution spectra in combination with stellar atmosphere models to derive the first measured chemical abundance ratios in the Leo II dSph galaxy. We find that for spectra with SNR > 24, we are able to measure abundances from weak Ti, Fe and Mg lines located near the calcium infrared triplet (CaT). We also quantify and discuss discrepancies between the metallicities measured from Fe I lines and those estimated from the CaT features. We find that while the most metal-poor ([Fe/H] <-2.0]) Leo II stars have Ca and Ti abundance ratios similar to those of Galactic globular clusters, the more metal-rich stars show a gradual decline of Ti, Mg and Ca abundance ratio with increasing metallicity. Finding these trends in this distant and apparently dynamically stable dSph galaxy supports the hypothesis that the slow chemical enrichment histories of the dSph galaxies is universal, independent of any interaction with the Milky Way. Combining our spectroscopic abundances with published broadband photometry and updated isochrones, we are able to approximate stellar ages for our bright RGB stars to a relative precision of 2-3 Gyr. While the derived age-metallicity relationship of Leo II hints at some amount of slow enrichment, the data are still statistically consistent with no enrichment over the history of Leo II.Comment: Accepted to A

    Probing the Intermediate-Age Globular Clusters in NGC 5128 from Ultraviolet Observations

    Get PDF
    We explore the age distribution of the globular cluster (GC) system of the nearby elliptical galaxy NGC 5128 using ultraviolet (UV) photometry from Galaxy Evolution Explorer (GALEX) observations, with UV - optical colors used as the age indicator. Most GCs in NGC 5128 follow the general trends of GCs in M31 and Milky Way in UV - optical color-color diagram, which indicates that the majority of GCs in NGC 5128 are old similar to the age range of old GCs in M31 and Milky Way. A large fraction of spectroscopically identified intermediate-age GC (IAGC) candidates with ~ 3-8 Gyr are not detected in the FUV passband. Considering the nature of intermediate-age populations being faint in the far-UV (FUV) passband, we suggest that many of the spectroscopically identified IAGCs may be truly intermediate in age. This is in contrast to the case of M31 where a large fraction of spectroscopically suggested IAGCs are detected in FUV and therefore may not be genuine IAGCs but rather older GCs with developed blue horizontal branch stars. Our UV photometry strengthens the results previously suggesting the presence of GC and stellar subpopulation with intermediate age in NGC 5128. The existence of IAGCs strongly indicates the occurrence of at least one more major star formation episode after a starburst at high redshift.Comment: 8 pages, 3 figures, accepted for ApJ Lette

    The Least Luminous Galaxy: Spectroscopy of the Milky Way Satellite Segue 1

    Get PDF
    We present Keck/DEIMOS spectroscopy of Segue 1, an ultra-low luminosity (M_V = -1.5) Milky Way satellite companion. While the combined size and luminosity of Segue 1 are consistent with either a globular cluster or a dwarf galaxy, we present spectroscopic evidence that this object is a dark matter-dominated dwarf galaxy. We identify 24 stars as members of Segue 1 with a mean heliocentric recession velocity of 206 +/- 1.3 kms. We measure an internal velocity dispersion of 4.3+/-1.2 kms. Under the assumption that these stars are in dynamical equilibrium, we infer a total mass of 4.5^{+4.7}_{-2.5} x 10^5 Msun in the case where mass-follow-light; using a two-component maximum likelihood model, we determine a similar mass within the stellar radius of 50 pc. This implies a mass-to-light ratio of ln(M/L_V) = 7.2^{+1.1}_{-1.2} or M/L_V = 1320^{+2680}_{-940}. The error distribution of the mass-to-light ratio is nearly log-normal, thus Segue 1 is dark matter-dominated at a high significance. Using spectral synthesis modeling, we derive a metallicity for the single red giant branch star in our sample of [Fe/H]=-3.3 +/- 0.2 dex. Finally, we discuss the prospects for detecting gamma-rays from annihilation of dark matter particles and show that Segue 1 is the most promising satellite for indirect dark matter detection. We conclude that Segue 1 is the least luminous of the ultra-faint galaxies recently discovered around the Milky Way, and is thus the least luminous known galaxy.Comment: 12 pages, 6 figures, ApJ accepte

    GALEX Ultraviolet Photometry of Globular Clusters in M31

    Full text link
    We present ultraviolet photometry for globular clusters (GCs) in M31 from 15 square deg of imaging using the Galaxy Evolution Explorer (GALEX). We detect 200 and 94 GCs with certainty in the near-ultraviolet (NUV; 1750 - 2750 Angstroms) and far-ultraviolet (FUV; 1350 - 1750 Angstroms) bandpasses, respectively. Our rate of detection is about 50% in the NUV and 23% in the FUV, to an approximate limiting V magnitude of 19. Out of six clusters with [Fe/H]>-1 seen in the NUV, none is detected in the FUV bandpass. Furthermore, we find no candidate metal-rich clusters with significant FUV flux, because of the contribution of blue horizontal-branch (HB) stars, such as NGC 6388 and NGC 6441, which are metal-rich Galactic GCs with hot HB stars. We show that our GALEX photometry follows the general color trends established in previous UV studies of GCs in M31 and the Galaxy. Comparing our data with Galactic GCs in the UV and with population synthesis models, we suggest that the age range of M31 and Galactic halo GCs are similar.Comment: This paper will be published as part of the Galaxy Evolution Explorer (GALEX) Astrophysical Journal Letters Special Issue. Links to the full set of papers will be available at http://www.galex.caltech.edu/PUBLICATIONS/ after November 22, 200
    corecore