24 research outputs found

    Implementation of GPU accelerated SPECT reconstruction with Monte Carlo-based scatter correction

    Get PDF
    Statistical SPECT reconstruction can be very time-consuming especially when compensations for collimator and detector response, attenuation, and scatter are included in the reconstruction. This work proposes an accelerated SPECT reconstruction algorithm based on graphics processing unit (GPU) processing. Ordered subset expectation maximization (OSEM) algorithm with CT-based attenuation modelling, depth-dependent Gaussian convolution-based collimator-detector response modelling, and Monte Carlo-based scatter compensation was implemented using OpenCL. The OpenCL implementation was compared against the existing multi-threaded OSEM implementation running on a central processing unit (CPU) in terms of scatter-to-primary ratios, standardized uptake values (SUVs), and processing speed using mathematical phantoms and clinical multi-bed bone SPECT/CT studies. The difference in scatter-to-primary ratios, visual appearance, and SUVs between GPU and CPU implementations was minor. On the other hand, at its best, the GPU implementation was noticed to be 24 times faster than the multi-threaded CPU version on a normal 128 x 128 matrix size 3 bed bone SPECT/CT data set when compensations for collimator and detector response, attenuation, and scatter were included. GPU SPECT reconstructions show great promise as an every day clinical reconstruction tool.Peer reviewe

    Comparison of deep learning-based denoising methods in cardiac SPECT

    Get PDF
    Correction: Volume10, Issue1 Article Number: 26 DOI: 10.1186/s40658-023-00542-x Published: APR 6 2023BackgroundMyocardial perfusion SPECT (MPS) images often suffer from artefacts caused by low-count statistics. Poor-quality images can lead to misinterpretations of perfusion defects. Deep learning (DL)-based methods have been proposed to overcome the noise artefacts. The aim of this study was to investigate the differences among several DL denoising models.MethodsConvolution neural network (CNN), residual neural network (RES), UNET and conditional generative adversarial neural network (cGAN) were generated and trained using ordered subsets expectation maximization (OSEM) reconstructed MPS studies acquired with full, half, three-eighths and quarter acquisition time. All DL methods were compared against each other and also against images without DL-based denoising. Comparisons were made using half and quarter time acquisition data. The methods were evaluated in terms of noise level (coefficient of variation of counts, CoV), structural similarity index measure (SSIM) in the myocardium of normal patients and receiver operating characteristic (ROC) analysis of realistic artificial perfusion defects inserted into normal MPS scans. Total perfusion deficit scores were used as observer rating for the presence of a perfusion defect.ResultsAll the DL denoising methods tested provided statistically significantly lower noise level than OSEM without DL-based denoising with the same acquisition time. CoV of the myocardium counts with the different DL noising methods was on average 7% (CNN), 8% (RES), 7% (UNET) and 14% (cGAN) lower than with OSEM. All DL methods also outperformed full time OSEM without DL-based denoising in terms of noise level with both half and quarter acquisition time, but this difference was not statistically significant. cGAN had the lowest CoV of the DL methods at all noise levels. Image quality and polar map uniformity of DL-denoised images were also better than reduced acquisition time OSEM's. SSIM of the reduced acquisition time OSEM was overall higher than with the DL methods. The defect detection performance of full time OSEM measured as area under the ROC curve (AUC) was on average 0.97. Half time OSEM, CNN, RES and UNET provided equal or nearly equal AUC. However, with quarter time data CNN, RES and UNET had an average AUC of 0.93, which was lower than full time OSEM's AUC, but equal to quarter acquisition time OSEM. cGAN did not achieve the defect detection performance of the other DL methods. Its average AUC with half time data was 0.94 and 0.91 with quarter time data.ConclusionsDL-based denoising effectively improved noise level with slightly lower perfusion defect detection performance than full time reconstruction. cGAN achieved the lowest noise level, but at the same time the poorest defect detection performance among the studied DL methods.Peer reviewe

    Reduction of Collimator Correction Artefacts with Bayesian Reconstruction in Spect

    Get PDF
    Poor resolution of single photon emission computed tomography (SPECT) has degraded its use in clinical practice. Collimator correction has been shown to improve the reconstructed resolution, but the correction can generate ringing artefacts, which lower image quality. This paper investigates whether Bayesian reconstruction methods could reduce these artefacts. We have applied and tested three Bayesian reconstruction methods: smoothing prior, median root prior, and anatomical prior. To demonstrate the efficacy of these methods, we compared their physical and visual performance both in phantom and patient studies. All the three Bayesian reconstruction methods reduced the collimator correction artefacts. Images reconstructed using the smoothing prior and the median root prior had slightly lower contrast than the standard reconstruction with collimator correction, whereas the anatomical prior produced images with good resolution and contrast

    Quantitative accuracy of Lu-177 SPECT reconstruction using different compensation methods : phantom and patient studies

    Get PDF
    Background: In targeted radionuclide therapy (TRT), accurate quantification using SPECT/CT images is important for optimizing radiation dose delivered to both the tumour and healthy tissue. Quantitative SPECT images are regularly reconstructed using the ordered subset expectation maximization (OSEM) algorithm with various compensation methods such as attenuation (A), scatter (S) and detector and collimator response (R). In this study, different combinations of the compensation methods are applied during OSEM reconstruction and the effect on the Lu-177 quantification accuracy is studied in an anthropomorphic torso phantom. In addition, the phantom results are reflected to (177) Lu-DOTA-Tyr3-octreotate (Lu-177-DOTATATE)-treated patient data and kidney absorbed dose estimates. Methods: The torso phantom was imaged with nine various sized (0.4-104.4 cm(3)) spherical inserts, filled with known Lu-177 activity ranging from 0.5 to 105.5 MBq. Images were reconstructed using OSEM algorithm using A, AR and ARS compensation method combinations. The compensation method combinations were compared by calculating the concentration recovery coefficient (cRC) for each insert. In addition, ten Lu-177-DOTATATE-treated patient's post-therapy dosimetry acquisitions were reconstructed, and the absorbed dose to kidneys was estimated. Results: cRC values depend on the insert size for all compensation methods. AR and ARS produced significantly higher cRC values than attenuation correction alone. There were no cRC value differences between the methods for the smallest 1-cm-diameter insert, cRC being 0.18. However, the collimator and detector response compensation method (R) made the 1.3-cm-diameter insert clearly visible and improved cRC estimate from 0.19 to 0.43. ARS produced slightly higher cRC values for small- and medium-sized inserts than AR. On the patient data, a similar trend could be seen. AR and ARS produced higher kidney activities than using attenuation correction alone; the total absorbed doses to the right and left kidneys were on average 15 and 20 % higher for AR and 19 and 25 % higher for ARS, respectively. The effective half-life decay estimated from time-activity curves however showed no notable difference between the compensation methods. Conclusions: The highest cRC values were achieved by applying ARS compensation during reconstruction. The results were notably higher than those using attenuation correction alone. Similarly, higher activity estimates and thus higher absorbed dose estimates were found in patient data when all compensation methods were applied. ARS improved cRC especially in small-sized sources, and it thus might aid tumour dosimetry for Lu-177 PRRT treatments.Peer reviewe

    Comparison of reprojected bone SPECT/CT and planar bone scintigraphy for the detection of bone metastases in breast and prostate cancer

    Get PDF
    Objective The aim of this study was to compare reprojected bone SPECT/CT (RBS) against planar bone scintigraphy (BS) in the detection of bone metastases in breast and prostate cancer patients. Methods Twenty-six breast and 105 prostate cancer patients with high risk for bone metastases underwent Tc-99m-HMDP BS and whole-body SPECT/CT, 1.5-T whole-body diffusion-weighted MRI and F-18-NaF or F-18-PSMA-1007 PET/CT within two prospective clinical trials (NCT01339780 and NCT03537391). Consensus reading of all imaging modalities and follow-up data were used to define the reference standard diagnosis. The SPECT/CT data were reprojected into anterior and posterior views to produce RBS images. Both BS and RBS images were independently double read by two pairs of experienced nuclear medicine physicians. The findings were validated against the reference standard diagnosis and compared between BS and RBS on the patient, region and lesion levels. Results All metastatic patients detected by BS were also detected by RBS. In addition, three metastatic patients were missed by BS but detected by RBS. The average patient-level sensitivity of two readers for metastases was 75% for BS and 87% for RBS, and the corresponding specificity was 79% for BS and 39% for RBS. The average region-level sensitivity of two readers was 64% for BS and 69% for RBS, and the corresponding specificity was 96% for BS and 87% for RBS. Conclusion Whole-body bone SPECT/CT can be reprojected into more familiar anterior and posterior planar images with excellent sensitivity for bone metastases, making additional acquisition of planar BS unnecessary.Peer reviewe

    Quantitative bone SPECT/CT reconstruction utilizing anatomical information

    Get PDF
    Background Bone SPECT/CT has been shown to offer superior sensitivity and specificity compared to conventional whole-body planar scanning. Furthermore, bone SPECT/CT allows quantitative imaging, which is challenging with planar methods. In order to gain better quantitative accuracy, Bayesian reconstruction algorithms, including both image derived and anatomically guided priors, have been utilized in reconstruction in PET/CT scanning, but they have not been widely used in SPECT/CT studies. Therefore, the aim of this work was to evaluate the performance of CT-guided reconstruction in quantitative bone SPECT. Methods Three Bayesian reconstruction methods were evaluated against the conventional ordered subsets expectation maximization (OSEM) reconstruction method. One of the studied Bayesian methods was the relative difference prior (RDP), which has recently gained popularity in PET reconstruction. The other two methods, anatomically guided smoothing prior (AMAP-S) and anatomically guided relative difference prior (AMAP-R), utilized anatomical information from the CT scan. The reconstruction methods were evaluated in terms of quantitative accuracy with artificial lesions inserted in clinical patient studies and with 20 real clinical patients. Maximum and mean standardized uptake values (SUVs) of the lesions were defined. Results The analyses showed that all studied Bayesian methods performed better than OSEM and the anatomical priors also outperformed RDP. The average relative error in mean SUV for the artificial lesion study for OSEM, RDP, AMAP-S, and AMAP-R was - 53%, - 35%, - 15%, and - 10%, when the CT study had matching lesions. In the patient study, the RDP method gave 16 +/- 9% higher maximum SUV values than OSEM, while AMAP-S and AMAP-R offered increases of 36 +/- 8% and 36 +/- 9%, respectively. Mean SUV increased for RDP, AMAP-S, and AMAP-R by 18 +/- 9%, 26 +/- 5%, and 33 +/- 5% when compared to OSEM. Conclusions The Bayesian methods with anatomical prior, especially the relative difference prior-based method (AMAP-R), outperformed OSEM and reconstruction without anatomical prior in terms of quantitative accuracy.Peer reviewe

    Comparison of deep learning-based denoising methods in cardiac SPECT

    No full text
    Abstract Background Myocardial perfusion SPECT (MPS) images often suffer from artefacts caused by low-count statistics. Poor-quality images can lead to misinterpretations of perfusion defects. Deep learning (DL)-based methods have been proposed to overcome the noise artefacts. The aim of this study was to investigate the differences among several DL denoising models. Methods Convolution neural network (CNN), residual neural network (RES), UNET and conditional generative adversarial neural network (cGAN) were generated and trained using ordered subsets expectation maximization (OSEM) reconstructed MPS studies acquired with full, half, three-eighths and quarter acquisition time. All DL methods were compared against each other and also against images without DL-based denoising. Comparisons were made using half and quarter time acquisition data. The methods were evaluated in terms of noise level (coefficient of variation of counts, CoV), structural similarity index measure (SSIM) in the myocardium of normal patients and receiver operating characteristic (ROC) analysis of realistic artificial perfusion defects inserted into normal MPS scans. Total perfusion deficit scores were used as observer rating for the presence of a perfusion defect. Results All the DL denoising methods tested provided statistically significantly lower noise level than OSEM without DL-based denoising with the same acquisition time. CoV of the myocardium counts with the different DL noising methods was on average 7% (CNN), 8% (RES), 7% (UNET) and 14% (cGAN) lower than with OSEM. All DL methods also outperformed full time OSEM without DL-based denoising in terms of noise level with both half and quarter acquisition time, but this difference was not statistically significant. cGAN had the lowest CoV of the DL methods at all noise levels. Image quality and polar map uniformity of DL-denoised images were also better than reduced acquisition time OSEM’s. SSIM of the reduced acquisition time OSEM was overall higher than with the DL methods. The defect detection performance of full time OSEM measured as area under the ROC curve (AUC) was on average 0.97. Half time OSEM, CNN, RES and UNET provided equal or nearly equal AUC. However, with quarter time data CNN, RES and UNET had an average AUC of 0.93, which was lower than full time OSEM’s AUC, but equal to quarter acquisition time OSEM. cGAN did not achieve the defect detection performance of the other DL methods. Its average AUC with half time data was 0.94 and 0.91 with quarter time data. Conclusions DL-based denoising effectively improved noise level with slightly lower perfusion defect detection performance than full time reconstruction. cGAN achieved the lowest noise level, but at the same time the poorest defect detection performance among the studied DL methods

    Optimisation of Simultaneous Tl-201/Tc-99m Dual Isotope Reconstruction with Monte-Carlo-Based Scatter Correction

    Get PDF
    Simultaneous Tl-201/Tc-99m dual isotope myocardial perfusion SPECT is seriously hampered by down-scatter from Tc-99m into the Tl-201 energy window. This paper presents and optimises the ordered-subsets-expectation-maximisation-(OS-EM-) based reconstruction algorithm, which corrects the down-scatter using an efficient Monte Carlo (MC) simulator. The algorithm starts by first reconstructing the Tc-99m image with attenuation, collimator response, and MC-based scatter correction. The reconstructed Tc-99m image is then used as an input for an efficient MC-based down-scatter simulation of Tc-99m photons into the Tl-201 window. This down-scatter estimate is finally used in the Tl-201 reconstruction to correct the crosstalk between the two isotopes. The mathematical 4D NCAT phantom and physical cardiac phantoms were used to optimise the number of OS-EM iterations where the scatter estimate is updated and the number of MC simulated photons. The results showed that two scatter update iterations and 105 simulated photons are enough for the Tc-99m and Tl-201 reconstructions, whereas 106 simulated photons are needed to generate good quality down-scatter estimates. With these parameters, the entire Tl-201/Tc-99m dual isotope reconstruction can be accomplished in less than 3 minutes
    corecore