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Abstract 

Background:  Myocardial perfusion SPECT (MPS) images often suffer from artefacts 
caused by low-count statistics. Poor-quality images can lead to misinterpretations 
of perfusion defects. Deep learning (DL)-based methods have been proposed to 
overcome the noise artefacts. The aim of this study was to investigate the differences 
among several DL denoising models.

Methods:  Convolution neural network (CNN), residual neural network (RES), UNET and 
conditional generative adversarial neural network (cGAN) were generated and trained 
using ordered subsets expectation maximization (OSEM) reconstructed MPS studies 
acquired with full, half, three-eighths and quarter acquisition time. All DL methods 
were compared against each other and also against images without DL-based denois-
ing. Comparisons were made using half and quarter time acquisition data. The meth-
ods were evaluated in terms of noise level (coefficient of variation of counts, CoV), 
structural similarity index measure (SSIM) in the myocardium of normal patients and 
receiver operating characteristic (ROC) analysis of realistic artificial perfusion defects 
inserted into normal MPS scans. Total perfusion deficit scores were used as observer 
rating for the presence of a perfusion defect.

Results:  All the DL denoising methods tested provided statistically significantly lower 
noise level than OSEM without DL-based denoising with the same acquisition time. 
CoV of the myocardium counts with the different DL noising methods was on average 
7% (CNN), 8% (RES), 7% (UNET) and 14% (cGAN) lower than with OSEM. All DL methods 
also outperformed full time OSEM without DL-based denoising in terms of noise level 
with both half and quarter acquisition time, but this difference was not statistically sig-
nificant. cGAN had the lowest CoV of the DL methods at all noise levels. Image quality 
and polar map uniformity of DL-denoised images were also better than reduced acqui-
sition time OSEM’s. SSIM of the reduced acquisition time OSEM was overall higher than 
with the DL methods. The defect detection performance of full time OSEM measured 
as area under the ROC curve (AUC) was on average 0.97. Half time OSEM, CNN, RES and 
UNET provided equal or nearly equal AUC. However, with quarter time data CNN, RES 
and UNET had an average AUC of 0.93, which was lower than full time OSEM’s AUC, but 
equal to quarter acquisition time OSEM. cGAN did not achieve the defect detection 
performance of the other DL methods. Its average AUC with half time data was 0.94 
and 0.91 with quarter time data.

Conclusions:  DL-based denoising effectively improved noise level with slightly lower 
perfusion defect detection performance than full time reconstruction. cGAN achieved 
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the lowest noise level, but at the same time the poorest defect detection performance 
among the studied DL methods.

Keywords:  Cardiac SPECT, Denoising, Deep learning

Background
Myocardial perfusion SPECT (MPS) is one of the most common imaging modali-
ties to diagnose coronary artery disease. MPS projection images are inherently noisy 
because the amount of radiopharmaceutical that is injected into the patient must be 
limited due to radiation safety concerns. Noise in the projection images progresses to 
the reconstructed images. This leads to artefacts, which can mimic perfusion defects 
in the images and can, in the worst cases, lead to misdiagnosis.

The noise level of MPS has been improved by imaging hardware advances, recon-
struction algorithm development and by using denoising methods. Cardiac-specific 
cameras with solid-state detectors have been developed and successfully deployed 
over the last years. They can be focused to the heart area only and have shown to offer 
much higher sensitivity than conventional gamma cameras [1]. New organ-specific 
equipment can be expensive, and thus, attempts to improve the sensitivity of conven-
tional gamma cameras have been made by use of special collimators [2]. In addition 
to hardware developments, optimized reconstruction algorithms [3] and advanced fil-
tering methods [4] have been utilized to improve the quality of MPS.

Recently, deep learning (DL) methods have entered MPS imaging. They have been 
demonstrated to improve image noise level, quality and even perfusion defect detec-
tion performance [5, 6]. These DL methods are based on training a denoising net-
work with example image pairs consisting of noisy input images and low noise target 
images. Several different network structures have been presented for cardiac SPECT 
[5–7], but comparison studies among different networks are lacking. Therefore, the 
aim of this study was to compare several conventional post-reconstruction convo-
lutional neural networks and to investigate their differences with respect to noise 
reduction and lesion detection performance. Convolution neural network (CNN) [6], 
residual network (RES) [7], UNET [8] and conditional generative adversarial network 
(cGAN) [9] models were implemented. These models were trained using gated clini-
cal MPS studies and different numbers of cardiac gates were summed to generate data 
with different acquisition times and thus different noise levels.

Denoising easily leads to excessive smoothing of the images [10]. This noise-res-
olution trade-off must be taken into account when DL denoising methods are eval-
uated. DL methods are often studied using metrics like signal-to-noise ratio and 
structural similarity index measure (SSIM), which do take both noise and resolution 
into account. It is, however, difficult to know how well these metrics relate to clini-
cal tasks. Therefore, in this study, perfusion defect detection performance, which is 
resolution dependent, was assessed along with the conventional metrics. A receiver 
operating characteristic (ROC) study based on known perfusion defects added artifi-
cially to clinical MPS data was conducted. This study is our first step in a quest to find 
a clinically meaningful DL method, which would allow significant acquisition time 
reduction without compromising image quality and defect detection.
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Methods
Training data for the deep learning models

Training data for the post-reconstruction deep learning models were obtained by ran-
domly sampling 50 stress and rest gated MPS studies (total of 100 acquisitions) from 
Lahti Central Hospital’s database. The training data included studies reported both as 
normal and abnormal and were supposed to reflect the entire MPS patient material at 
our centre. The ethics committee of Joint Authority for Päijät-Häme Social and Health 
Care has granted approval for this study. The studies were acquired using a 1-day pro-
tocol, whereby a vasodilator-induced stress study was performed in the morning and a 
nitrate-enhanced rest study 3  h later in the afternoon. Weight-based dosing of 99mTc-
tetrofosmin was used. The activity of the stress injection was approximately 250 MBq 
and rest injection 750 MBq. Studies were acquired either with Siemens Symbia T or Sie-
mens Intevo Bold using 90-degree angle between the detectors, 64 projections over 180 
degrees rotation, 128 × 128 matrix, 4.8  mm pixel size, 40  s acquisition per projection 
and 8 cardiac gated frames per R-R interval. The quality of cardiac gating was monitored 
during acquisition time. Only successfully gated studies were used. After each SPECT 
study, a low-dose CT was performed using 130 kV tube voltage, 17 mAs tube current 
and 5.0 mm slice thickness to obtain the attenuation map.

Reduced acquisition time datasets were simulated by summing different numbers of 
cardiac gates. Full time, half time, three-eighths time and quarter time acquisition data 
were generated by summing all, half, three and two cardiac gated frames per projection, 
respectively. The indices (1–8) of the cardiac gates selected for summing for the reduced 
time acquisitions were randomly sampled for each projection.

All the studies were reconstructed using HERMES Medical Solutions’ (Stockholm, 
Sweden) HybridRecon ordered subsets expectation maximization (OSEM) algorithm 
with collimator response, attenuation and Monte Carlo-based scatter modelling [11]. 
The number of subsets was set to 16, number of iterations 5 and 3D Gaussian post-fil-
ter full width at half maximum to 1.25 cm. After reconstruction, images were cropped 
into 32 × 32 × 32 patches with stride of 8. Image cropping increased the size of training 
dataset and reduced the memory requirements of the DL model training. Stress and rest 
patches obtained with half time, three-eighths time and quarter time were all pooled 
together after cropping and then used to train the DL models with the matching full 
time patches. Approximately 50,000 patches were used to train each DL model and only 
one DL model for each DL strategy (CNN, RES, UNET and cGAN) was generated.

Deep learning models

Four different DL-based denoising models were compared. The structure of the mod-
els is shown in Fig. 1 in more detail. The CNN model consisted of 8 layers each with 8 
filters (3 × 3 × 3 filters and rectified linear unit (Relu) as activation function) and skip 
connections between the layers. In RES, the convolution blocks of the CNN model were 
replaced by residual units also shown in Fig.  1. The third model was UNET network. 
In UNET, the reduced acquisition time patch is first mapped to a latent representation 
of the input patch in a series of encoding layers. Each resolution level of the encoding 
path consisted of two convolutional operations followed by Relu (UNET block in Fig. 1). 
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Fig. 1  DL models. The number under the blocks presents the patch size (upper number) and number of 
filters (lower number). Noisy 32 × 32 × 32 patches cropped from reduced acquisition time OSEM images were 
used as model input and model gave denoised 32 × 32 × 32 patches as output. Output patches were later 
combined using weighted averaging to produce images at the original reconstruction matrix size
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Between resolution levels, the spatial size of the patches is halved using maximum pool-
ing (maxpool) operation. The decoding part, which is used to reconstruct the latent rep-
resentation into full acquisition time version of the original patch, has similar resolution 
levels as the encoding path and the patch is up-sampled using transposed convolution 
between the levels. Skip connections were also used with UNET. CNN, RES and UNET 
used L2-norm as cost function.

The fourth model was cGAN, which consists of two networks. First network, called 
generator network, whose structure here is similar to UNET, produces denoised versions 
of the reduced acquisition time inputs. The second network, called the discriminator, 
tries to determine if the input is a generator-denoised patch or a true full time patch. The 
discriminator consisted of 4 convolutional layers, where the image size was reduced with 
4 × 4 × 4 stride 2 convolution, followed by a fully connected layer. Leaky Relu (LRelu) 
was used as an activation function for all other layers except for the last where sigmoid 
function was used. The cost function for cGAN was a combination of L2-norm for the 
generator and binary cross-entropy for the discriminator.

The model parameters (number of layers and filters) for all the models were deter-
mined by testing different layer and filter number combinations using one-fifth of the 
training data. Visual image quality and root mean square error with the full time image 
were used the grade the layer and filter number combinations. The models were gener-
ated and trained using Python (version 3.6.8) and Tensorflow (version 2.4). Adam opti-
mizer was applied using the default settings. One hundred epochs with a batch size of 32 
were used.

When the DL models were later applied to test data also the test data were cropped 
into 32 × 32 × 32 patches with stride of 8. The overlapping 32 × 32 × 32 patches were 
combined after denoising using weighted averaging, where the value of each patch voxel 
was weighted by the inverse distance of the patch voxel from the patch centre before it 
was added to the final denoised image. Similar approach was used in [12].

Testing data for performance assessment

Test data for the DL models were obtained by searching Lahti Central Hospital’s data-
base for stress and rest MPS cases, which the reporting physicians had reported as nor-
mal without any visible SPECT perfusion defects. These studies were also not part of 
the DL training data. Forty-three stress and rest studies were selected. These data were 
acquired using the same cameras and parameters as the training data. These normal 
studies were divided into two sets. The first set consisted of 20 studies (20 stress studies 
and 20 rest studies), which were used to assess the noise level and SSIM and were also 
used to form studies with known artificial defects. The second set consisted of 23 stud-
ies (23 stress studies and 23 rest studies), which were used to build normal databases to 
assess perfusion detection performance.

For noise level and SSIM assessment, the cardiac gates for the 20 normal studies were 
summed and full, half and quarter time acquisition data were generated as explained ear-
lier. (Three-eighths time acquisition time data were not used for testing.) All the generated 
studies were reconstructed using HERMES Medical Solution’s HybridRecon with the same 
settings that were applied during model training. The four DL-based models were used to 
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denoise the half and quarter time images after reconstruction. Full time, half time and quar-
ter time OSEM without denoising was used as a reference for the DL models.

Perfusion defect detection performance assessment required studies with known defects. 
Test cases with artificial defects were generated by first reconstructing the 20 stress and rest 
normal studies using HERMES Medical Solution’s HybridRecon with the same settings that 
were applied during the DL model training. The studies were then reoriented into short-
axis slices and one defect volume of interest (VOI) per normal study with variable size and 
location was manually drawn on the short-axis images. The defect VOIs were then con-
verted into binary masks and counts in the mask area in the corresponding reoriented nor-
mal studies were reduced by 40% and 70%. Total of 40 lesion studies (20 studies, 1 lesion per 
study and 2 defect percentage levels) were generated for both stress and rest. The lesions 
were projected and inserted into full time, half time and quarter time acquisition data with 
an approach similar to the one presented by Narayanan [13]. Finally, the normal full time, 
half time and quarter time studies and full time, half time and quarter time studies with 
artificial defects were reconstructed with OSEM using the same settings as previously, post-
processed using the 4 DL methods and reoriented into short-axis slices for further analysis.

Perfusion defect detection performance assessment was performed using the total perfu-
sion deficit (TPD) score [14]. TPD is based on comparison to a normal database. The car-
diac gates of the acquisition data for the second normal patient set were summed, and full, 
half and quarter time acquisition data were generated as explained earlier, reconstructed 
using OSEM, post-processed using the DL models and reoriented into short-axis slices. Six 
normal databases without DL denoising (stress and rest, full time, half time and quarter 
time) and four databases per DL denoising method (stress and rest, half time and quar-
ter time) were generated using the Quantitative Perfusion SPECT (QPS) package (Cedars 
Sinai, Los Angeles, USA).

Assessment of noise level and SSIM

The left myocardium of the images was outlined with an approach similar to Germano 
[15]. Coefficient of variation (CoV = 100% × standard deviation/mean) of the segmented 
left myocardium counts was used as a measure of noise level for the different methods and 
acquisition times (Fig. 2). SSIM was calculated as

where subscripts f and r refer to full time OSEM and reduced acquisition time OSEM or 
DL methods, μ is mean in the myocardium region, and σ is variance or covariance. SSIM 

(1)SSIM =
2µf µr

µ
2
f + µ2

r

2σfr

σ
2
f + σ 2

r

,

Fig. 2  Outlined left myocardium. CoV of counts inside the outline was as a measure of noise. SSIM was also 
calculated using the outlined myocardium
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measures the similarity between two images. The maximum value of SSIM is 1.0, which 
indicates that two images are identical. Paired t test was used to compare the statisti-
cal significance of the CoV and SSIM differences between DL methods and full/reduced 
acquisition time OSEM without denoising.

Assessment of perfusion defect detection performance

TPD was calculated for each normal and defect study for each processing method 
(OSEM, CNN, RES, UNET and cGAN) at each noise level (full time, half time and quar-
ter time) at stress and rest using QPS. TPD scores were used as observer rating for the 
presence of a perfusion defect. ROC curve analysis was performed based on the ratings 
and the knowledge of the presence of a defect. Area under the ROC curve (AUC) was 
used to measure  perfusion defect detection performance. ROC curves and AUCs were 
calculated with MedCalc software (MedCalc Software Ltd, Ostend, Belgium). The sta-
tistical significance of the AUC differences between DL methods and full/reduced time 
OSEM without denoising was tested using the method presented by DeLong [16].

Results
Assessment of noise level and SSIM

Tables 1 and 2 show the CoV for full time OSEM, reduced acquisition time OSEM and 
DL methods with different acquisition times at stress and rest. The DL methods clearly 
reduce CoV when compared to reduced acquisition time OSEM without DL-based 
denoising. This difference is statistically significant (p < 0.05) with both acquisition times 
and stress/rest cases for all DL methods. CNN, RES, UNET and cGAN CoV values with 
half and quarter acquisition time are even lower than full time OSEM values. The poor 
performance of OSEM in high noise cases can be seen even more clearly in Figs. 3 and 
4, which show example short-axis slices for half and quarter time images for one exam-
ple patient with normal perfusion. Especially the quarter time OSEM without DL-based 

Table 1  Coefficient of variation (mean ± standard deviation) of myocardium counts for different 
methods and acquisition times at stress

Acquisition time Method

CoV [%]

p value versus full time OSEM

p value versus reduced time OSEM

OSEM CNN RES UNET cGAN

Full 24.8 ± 5.2 – – – –

– – – – –

– – – – –

Half 25.2 ± 5.3 23.4 ± 5.0 23.2 ± 5.2 23.5 ± 5.3 21.7 ± 5.4

0.1161 0.0081 0.0010 0.0014 0.0010

– 0.0002 < 0.0001 < 0.0001 0.0003

Quarter 26.5 ± 4.2 24.1 ± 4.2 23.9 ± 4 24.1 ± 4.5 22.6 ± 4.5

0.0037 0.2259 0.0744 0.1514 0.0139

– 0.0002 0.0003 0.0006 0.0008
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denoising image shows artefacts which could be falsely interpreted as perfusion defects. 
Images processed with the DL have more uniform appearance overall. Tables  3 and 4 
present SSIM for reduced acquisition time OSEM and DL methods. OSEM provides 
overall higher SSIM values than DL methods. This is mainly due to the blurring caused 
by the DL filtering operations.

Assessment of perfusion defect detection performance

Perfusion defect detection performance was assessed using the AUC of ROC curve 
obtained with the different DL methods. All the lesions from different patients, loca-
tions and with different depths were pooled and single AUC value for each processing 
method at each noise level at stress and rest is presented. The AUC values are shown in 
Tables 5 and 6. DL methods offer comparable, or in some cases even higher, AUC values 
than reduced acquisition time OSEM without denoising but these differences were not 

Table 2  Coefficient of variation (mean ± standard deviation) of myocardium counts for different 
methods and acquisition times at rest

Acquisition time Method

CoV [%]

p value versus full time OSEM

p value versus reduced time OSEM

OSEM CNN RES UNET cGAN

Full 21.7 ± 4.0 – – – –

– – – – –

– – – – –

Half 22.1 ± 4.4 20.7 ± 3.8 20.4 ± 3.8 20.7 ± 4.3 19.0 ± 3.4 

0.1560 0.0184 0.0037 0.0237 0.0011

– 0.0006 0.0002  < 0.0001 0.0011

Quarter 22.8 ± 3.9 21.1 ± 3.5 20.8 ± 3.5 21.1 ± 4.0 19.5 ± 3.0 

0.0028 0.3314 0.1004 0.2465 0.0068

– 0.0008 < 0.0001 0.0003 0.0004

Fig. 3  Example half time short-axis slices and polar plot (rightmost column) of a normal stress study
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significant, indicating similar performance. Full time OSEM had higher AUC than DL 
methods. This difference was statistically significant only for CNN, UNET and cGAN 
in case of rest quarter time study. Example images with artificial perfusion deficit are 
shown in Fig.  5. The perfusion defect is clearly seen in all images, but the DL images 
have more uniform appearance than reduced acquisition time OSEM without denois-
ing. The TPD values for this study were 11%, 13%, 10%, 12%, 10% and 12% for full time 

Fig. 4  Example quarter time short-axis slices and polar plot (rightmost column) of a normal stress study

Table 3  Structural similarity index measure (mean ± standard deviation) of myocardium area for 
different methods and acquisition times at stress

Acquisition time Method

SSIM

p value versus reduced time OSEM

OSEM CNN RES UNET cGAN

Half 0.964 ± 0.015 0.944 ± 0.020 0.948 ± 0.020 0.952 ± 0.017 0.923 ± 0.052

0.0019 0.0037 0.0060 0.0389

Quarter 0.909 ± 0.025 0.911 ± 0.027 0.912 ± 0.025 0.915 ± 0.024 0.890 ± 0.036

0.7755 0.6148 0.3348 0.1058

Table 4  Structural similarity index measure (mean ± standard deviation) of myocardium area for 
different methods and acquisition times at rest

Acquisition time Method

SSIM

p value versus reduced time OSEM

OSEM CNN RES UNET cGAN

Half 0.978 ± 0.014 0.950 ± 0.021 0.955 ± 0.018 0.960 ± 0.018 0.936 ± 0.037

0.0013 0.0005 0.0003 0.0024

Quarter 0.957 ± 0.019 0.941 ± 0.019 0.944 ± 0.014 0.948 ± 0.013 0.921 ± 0.031

0.0191 0.0046 0.0363 0.0008
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OSEM, quarter time OSEM, quarter time CNN, quarter time RES, quarter time UNET 
and quarter time cGAN.

Figures 6 and 7 present example subtraction images where stress half time and quarter 
time OSEM, CNN, RES, UNET and cGAN images were subtracted from full time stress 
image. The Compare tool of QPS-package using the Worsening-option was used to gen-
erate the images. The differences between full and reduced acquisition time OSEM look 
deeper overall than the differences between full time OSEM and DL denoising. When 
acquisition time is reduced to quarter of the original time, the extent of the differences 
increases for both reduced acquisition time OSEM and DL methods when compared to 
differences seen in half time images.

Table 5  Area under the ROC curve (AUC ± standard error) obtained with different methods and 
acquisition times at stress

Acquisition time Method

AUC​

p value versus full time OSEM

p value versus reduced time OSEM

OSEM CNN RES UNET cGAN

Full 0.97 ± 0.02 – – – –

– – – – –

– – – – –

Half 0.97 ± 0.02 0.97 ± 0.02 0.96 ± 0.02 0.96 ± 0.02 0.95 ± 0.03

0.8760 0.9678 0.4779 0.5318 0.3108

– 0.9300 0.5658 0.6586 0.4207

Quarter 0.93 ± 0.03 0.94 ± 0.03 0.95 ± 0.02 0.93 ± 0.03 0.91 ± 0.04

0.0673 0.1574 0.3483 0.1539 0.0624

– 0.4438 0.2722 0.6999 0.5816

Table 6  Area under the ROC curve (AUC ± standard error) obtained with different methods and 
acquisition times at rest

Acquisition time Method

AUC​

p value versus full time OSEM

p value versus reduced time OSEM

OSEM CNN RES UNET cGAN

Full 0.96 ± 0.02 – – – –

– – – – –

– – – – –

Half 0.97 ± 0.02 0.94 ± 0.03 0.95 ± 0.02 0.95 ± 0.03 0.93 ± 0.03

0.7092 0.2773 0.5688 0.3711 0.2358

– 0.1354 0.2857 0.1083 0.1205

Quarter 0.94 ± 0.04 0.92 ± 0.04 0.93 ± 0.03 0.91 ± 0.04 0.92 ± 0.04

0.0674 0.0275 0.0554 0.0236 0.0267

– 0.2889 0.8767 0.2331 0.3744
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Discussion
Four DL-based denoising methods were compared to full and reduced acquisition time 
OSEM without denoising. Tables 1 and 2 and Figs. 3 and 4 show that DL methods can 
achieve substantial noise reduction and improved image quality of myocardial perfusion 
SPECT studies obtained with reduced acquisition time. This noise reduction happens 

Fig. 5  Example quarter time long axis slices and polar plot (rightmost column) of a rest study with 70% deep 
defect

Fig. 6  Example difference images obtained with half acquisition time in stress. Full time OSEM image (left 
column) is shown as reference. The three top rows present short-axis slices at apex, mid-myocardium and 
base. The bottom two rows show mid-horizontal long axis and mid-vertical long axis images
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partly at the expense of perfusion defect detection performance. The area under the 
ROC curve obtained using the DL methods is comparable to that of reduced acquisition 
time OSEM without denoising, but poorer than full time OSEM’s. The defects are visu-
ally quite clear (Fig. 5).

Differences amongst the more conventional models (CNN, RES and UNET) were 
small. All the conventional methods performed in a similar manner in terms of noise 
reduction, perfusion defect detection and image quality with the reduced acquisition 
time data (Tables 1, 2 and 5, 6, Figs. 3, 4 and 5). Interestingly, the noise reduction per-
formance of cGAN was somewhat better than the performance of other DL methods. 
Contrary findings have been presented in earlier studies with PET [12, 17], where cGAN 
did not outperform UNET. The drawback of cGAN is the computationally heavy training 
process due to more complicated network structure. cGAN also had overall lower AUC 
values than CNN, RES and UNET (Tables 5 and 6).

The DL methods presented in this work still suffer from resolution-noise trade-off 
which manifests as blurring of the myocardium seen as low SSIM values in Tables 3 and 
4, lower AUC values than full time OSEM in Tables 5 and 6 and visually in Figs. 3 and 
4. The DL networks were trained in this study using 32 × 32 × 32 patches that covered 
the entire reconstruction area. In addition, training data were obtained by pooling all 
acquisition times at stress and rest and only one model for each DL strategy was gener-
ated. This contradicts the approach selected by Ramon [6] and Liu [18], who extracted 

Fig. 7  Example difference images obtained with quarter acquisition time in stress. Full time OSEM image (left 
column) is shown as reference. The three top rows present short-axis slices at apex, mid-myocardium and 
base. The bottom two rows show mid-horizontal long axis and mid-vertical long axis images
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patches only in the myocardium area and Ramon also trained acquisition time-specific 
networks. Acquisition time-specific networks were shown to have better performance 
than the one-size-fits-all approach used in this study [6]. Extracting myocardium cen-
tred and acquisition time-specific patches might also reduce image blurring.

The blurring caused by our patch and acquisition time pooling approach probably also 
reduced the differences between the studied DL models. The structure of the models 
varied considerably. CNN and RES operate at the same resolution level as the original 
noisy and the denoised image during all stages, whereas UNET and cGAN include pool-
ing and resampling steps, which can affect image resolution. The resolution loss is dif-
ficult to see visually in images 3, 4, 5, 6 or 7 but UNET and cGAN AUCs in Tables 5 and 
6 are overall slightly lower than AUCs for CNN and RES. The skip connections used in 
UNET and cGAN might improve resolution of the denoised images. UNET and cGAN 
could benefit from minor model update where maximum pooling is switched to strided 
convolution and upsampling to bilinear interpolation [19].

Post-processing-based denoising used in this work is not the only DL denoising option 
available. Sun et al. [20] compared pre-reconstruction and post-reconstruction denois-
ing. They used cGAN-type denoising model and noticed that pre-reconstruction-based 
denoising outperformed post-reconstruction denoising in terms of image quality of 
mathematical phantoms. Pre-reconstruction denoising can, however, affect the Pois-
son-nature of the acquisition data, which might compromise the performance of the 
maximum likelihood type reconstruction conventionally used in emission tomography. 
Second interesting alternative to post-reconstruction denoising is to include DL-based 
denoising into statistical reconstruction [21]. Several different approaches to incorpo-
rate DL into statistical reconstruction exist. One of the most straight-forward methods 
is to use an already trained network as a prior for maximum a posterior type reconstruc-
tion [22]. Most of the work combining DL and reconstruction has been conducted in 
the field of PET, but the methods are directly extendable to SPECT. This is a topic for a 
future study.

This study was limited by the relatively low number of training and testing cases and 
the fact that cases were obtained at single institute, using two very similar gamma cam-
era systems and that low noise level studies with artificial defects were simulated not 
acquired. It would be interesting to investigate how well the DL models used in this work 
generalize to other institutes and scanners. Efforts were, however, made to increase the 
generalizability by randomly extracting the training material from our institutes data-
base and by pooling the different acquisition time data as mentioned previously. These 
approaches increase the variability in patients with different cardiac conditions with 
MPS data acquired with variable noise levels. In addition, clinically meaningful metrics 
and software were used to evaluate the DL methods. Unfortunately, this approach makes 
comparison studies labour-intensive. For example, normal databases have to be manu-
ally built for each method at each acquisition time and the manual extraction of the TPD 
results for all the methods is very time consuming. Low noise levels were simulated by 
summing different numbers of cardiac gates, because acquiring the same patients with 
different acquisition times is practically impossible. The cameras used in this study do 
not provide list-mode data either, which would be ideal for resampling studies at differ-
ent noise levels. Our approach has its’ limitations, but by randomizing the order which 
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gates were summed we could minimize, e.g. the effects of cardiac motion. Data resam-
pling method similar to ours was recently published and shown to be able to provide 
reduced acquisition time cardiac SPECT data [23].

Conclusion
DL-based denoising effectively improved noise level with slightly lower perfusion defect 
detection performance than full time reconstruction. cGAN achieved the lowest noise 
level performance among the studied DL methods. Further studies are needed to com-
pare different models in evaluation of real-life perfusion defects and artefacts.
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