
Vol.:(0123456789)1 3

Annals of Nuclear Medicine (2018) 32:337–347
https://doi.org/10.1007/s12149-018-1252-1

ORIGINAL ARTICLE

Implementation of GPU accelerated SPECT reconstruction with Monte
Carlo-based scatter correction

Tobias Bexelius1 · Antti Sohlberg2

Received: 12 February 2018 / Accepted: 19 March 2018 / Published online: 21 March 2018
© The Japanese Society of Nuclear Medicine 2018

Abstract
Objective Statistical SPECT reconstruction can be very time-consuming especially when compensations for collimator and
detector response, attenuation, and scatter are included in the reconstruction. This work proposes an accelerated SPECT
reconstruction algorithm based on graphics processing unit (GPU) processing.
Methods Ordered subset expectation maximization (OSEM) algorithm with CT-based attenuation modelling, depth-depend-
ent Gaussian convolution-based collimator-detector response modelling, and Monte Carlo-based scatter compensation was
implemented using OpenCL. The OpenCL implementation was compared against the existing multi-threaded OSEM imple-
mentation running on a central processing unit (CPU) in terms of scatter-to-primary ratios, standardized uptake values
(SUVs), and processing speed using mathematical phantoms and clinical multi-bed bone SPECT/CT studies.
Results The difference in scatter-to-primary ratios, visual appearance, and SUVs between GPU and CPU implementations
was minor. On the other hand, at its best, the GPU implementation was noticed to be 24 times faster than the multi-threaded
CPU version on a normal 128 × 128 matrix size 3 bed bone SPECT/CT data set when compensations for collimator and
detector response, attenuation, and scatter were included.
Conclusions GPU SPECT reconstructions show great promise as an every day clinical reconstruction tool.

Keywords SPECT reconstruction · Scatter correction · Monte Carlo · Graphics processing unit (GPU)

Introduction

There are several image-related factors that affect SPECT
image quality of which photon attenuation, Compton scatter,
and collimator-detector response are the most detrimental.
Photon attenuation can cause false defects in SPECT images
and is thus likely to reduce SPECT’s diagnostic accuracy [1,
2]. Compton scattering, on the other hand, lowers contrast
and can cause an overestimation of the activity distribution
[3]. The poor system resolution caused by the collimator and
detector reduces image resolution. Fortunately, the effects of
these factors can be compensated by modelling them dur-
ing statistical SPECT reconstruction and there is compelling

evidence, especially in nuclear cardiology, that these com-
pensations have a significant impact on the SPECT image
quality [4].

Unfortunately, these compensations can add significantly
to the reconstruction time. Reconstruction times can be
shortened using accelerated reconstruction algorithms [5],
fast implementations [6], accelerated compensation methods
[7], or using parallel processing. On the other hand, there
might be a need to shift towards multi-bed studies due to
the recent findings of multi-bed bone SPECT/CT superior-
ity compared to the conventional planar imaging [8] and
one major vendor is promoting the use of larger matrix in
bone SPECT studies [9]. With multi-bed data sets and larger
matrix sizes, it is possible that reconstructions take long time
even with optimized algorithms.

One relatively new method to increase the reconstruc-
tion speed is to implement the reconstruction algorithm for
the graphics processing unit (GPU) [10, 11]. GPU offers
massive parallel computing capabilities at affordable prices,
but it generally requires re-implementation of the algorithm
written for the central processing unit (CPU), because the

 * Antti Sohlberg
 antti.sohlberg@phsotey.fi

1 HERMES Medical Solutions, Skeppsbron 44,
111 30 Stockholm, Sweden

2 Laboratory of Clinical Physiology and Nuclear Medicine,
Joint Authority for Päijät-Häme Social and Health Care,
Keskussairaalankatu 7, 15850 Lahti, Finland

http://orcid.org/0000-0002-0520-3064
http://crossmark.crossref.org/dialog/?doi=10.1007/s12149-018-1252-1&domain=pdf

338 Annals of Nuclear Medicine (2018) 32:337–347

1 3

CPU algorithm usually does not optimally fit the GPU pro-
gramming model and architecture. This paper represents
GPU implementation and validation of our ordered subsets
expectation maximization (OSEM) SPECT reconstruction
algorithm. The Monte Carlo (MC)-based scatter compensa-
tion method that we use presents particular challenges due
to random memory access.

Materials and methods

One iteration of the OSEM algorithm generally consists of
the following four steps:

1. Forward projection of the current image estimate.
2. Division of the measured projections with forward pro-

jected ones.
3. Back projection of the correction factors.
4. Update of the current image estimate with the back pro-

jected correction factors.

The following sections represent the CPU and GPU
OSEM implementations of the projectors. Both implemen-
tations are part of the HybridRecon-reconstruction package
(HERMES Medical Solutions, Stockholm, Sweden). The
CPU implementation has been extensively validated with

cardiac software phantoms and cardiac patients [7], in quan-
titative multi-center setup with the NEMA-IEC phantom
(NEMA, Washington, District of Columbia, USA) [12], in
clinical cardiac patients in half-time imaging setup [13], in
Lu177 dosimetry setup [14] and against one gamma camera
manufacturers own reconstruction method [15]. The CPU
implementation can be considered as our “gold standard”
in this work.

CPU implementation

The forward projector was implemented as rotation-based
[6]. In rotation-based projectors, the projection plane is
kept at fixed position and the reconstructed image is rotated
(Fig. 1). This makes attenuation and collimator and detec-
tor response modelling straightforward, because attenuation
correction factors for each voxel can be calculated simply
by summing the rotated attenuation map along columns.
Collimator and detector response modelling simplifies to
convolution of each coronal plane with a response kernel,
which we assumed to be depth-dependent Gaussian that does
not take collimator scatter or penetration into account. Scat-
ter modelling is performed using MC simulation and it is
accelerated by simulating scatter only during the first two
iterations of the OS-EM algorithm [7].

Fig. 1 Rotating projector (left) rotates the image to match the current
projection angle. Projection is formed by summing along reconstruc-
tion matrix columns (dashed arrow). Attenuation model is easy to add
to the column sums. Collimator and detector response can be done by
convolving each coronal plane (dashed lines) with a depth-dependent
response kernel. In the convolution-based forced detection (right)

photon is forced to scatter (dashed arrows) towards the detector at
each scattering site. The current 3D subprojection map (the overlaid
grid) is updated by the photon weight. After all photons have been
traced, projection is formed in identical manner as with the rotating
projector

339Annals of Nuclear Medicine (2018) 32:337–347

1 3

The MC scatter simulation is initialized by distribut-
ing photons to be traced to voxels according to the emis-
sion map voxel values. Voxel i has a probability of ci/ct,
where ci is the number of counts in the voxel and ct the total
number of counts in the emission map, to emit a photon.
Photons are randomly sampled from the distribution; and
then, the energy, direction, and distance to next interaction
location are sampled and the photon’s weight is initial-
ized to 1. Energy is sampled from current isotope’s energy
spectrum, direction is uniformly sampled from unit sphere,
and distance is calculated based on the Woodcock track-
ing algorithm [16] as − ln(r)/µMAX, where r is a random
number in range [0, 1] and µMAX is the maximum linear
attenuation coefficient in the attenuation map. Attenuation
map is generated from the density map by multiplying it
with tissue’s energy-dependent mass attenuation coefficient
obtained from cross-section tables defined by Berger and
Hubbell [17]. At each interaction site, a random number is
drawn and compared to the probability proportional to µi/µt,
where µi is the current voxel’s linear attenuation coefficient
and µt the maximum attenuation coefficient of the volume.
If the random number is smaller than the attenuation coef-
ficient ratio, forced non-attenuation is performed (photon’s
weight is multiplied by probability of not going through
photo-electric absorption). The photon is also forced to scat-
ter towards the detector according to the convolution-based
forced detection principle [18] and a 3D subprojection map
is updated by the photon’s weight (Fig. 1). In addition to
forced detection, the photon will also go through Compton
scattering where its direction and energy is updated. In case
of a random number larger than the ratio, the photon con-
tinues along its original direction. This process repeats itself
until the photon has scattered a predetermined number of
times (in our case 10), its energy drops under predetermined
limit (in our case under 75% of the acquisition energy win-
dow lower limit) or until it leaves the density map. After all
photons have been simulated, the 3D subprojection map is
forward projected using the above-mentioned projector to
create scatter projections.

The back projector was also implemented as rotation-
based. Back projection is performed by accumulating the
correction factors for each reconstruction voxel from the
projection plane using attenuation and collimator and detec-
tor response modelling and then rotating the back projected
image to its correct angle. We omitted scatter modelling
from back projection to increase speed.

The CPU algorithm was parallelized by computing for-
ward projection and back projection for each projection
angle on a separate processor.

GPU implementation

The current CPU implementation needed finer detail multi-
threading to fully utilize the power of the GPU, and thus, the
CPU projectors were rewritten.

The forward projector was implemented as ray-driven,
i.e., projection rays are cast from the center of each pro-
jection pixel and the forward projector is launched as an
OpenCL kernel with one thread per projection pixel (Fig. 2).
OpenCL was used, because it does not limit the implemen-
tation to NVIDIA graphics cards like CUDA. The current
image estimate is stored as a 3D image on the GPU. The
projection pixel value is calculated by stepping the ray one
voxel length at a time and image voxel values and attenua-
tion coefficients obtained from an aligned attenuation map
are interpolated using specialized hardware on the GPU.
Collimator and detector response modelling is performed by
assuming the response to be a 2D depth-dependent Gaussian
function as in the CPU implementation. However, instead
of convolving entire coronal planes with 2D Gaussians, the
projection ray and reconstruction voxel intersection neigh-
borhood is sampled using a 2D Gauss kernel. The kernels
are precalculated and stored on the GPU.

MC-based scatter modelling is difficult to implement
efficiently on GPUs for two main reasons: divergence of
threads and generation of pseudorandom numbers. Most
pseudorandom number generators work in a sequential
manner, using a seed as input and returning a new seed

Fig. 2 Ray-driven projector casts a ray from the center of each projec-
tion pixel. Ray value is accumulated by summing along the projec-
tion ray. The voxel values are sampled at the “x”-locations using a 2D
Gaussian function whose width corresponds to the resolution of the
collimator–detector

340 Annals of Nuclear Medicine (2018) 32:337–347

1 3

for each generated random number. To parallelize the MC
simulation, a random number generator was needed that
could generate random numbers in thousands of threads
independently, with no statistical correlation between each
other. The counter-based Philox-4 × 32_10 algorithm [19]
was used as the random number generator and we used the
technique in [20] to convert the integer random numbers
to floating point values. Since random values are used for
directing each ray through the volume, they will quickly
diverge which would make it impossible for threads to
update the 3D subprojection map in parallel without data
races, since multiple workgroups cannot synchronize their
access to global GPU memory. To mitigate these prob-
lems, we need to continuously sort the rays as they scatter
through the volume.

The GPU simulates thousands of photons in parallel, and
can only synchronize small groups of them at once (except
for simple counting), which is why we start by splitting the
emission map in blocks of 4 × 4 × 8 voxels. The photons are
then distributed by first sampling which block each simu-
lated photon will belong to, and after that by randomly dis-
tributing all photons within each block.

The photons are traced in parallel using same method as
on CPU, using the Woodcock algorithm [16], until each pho-
ton has found their next interaction site or left the volume.
Before doing forced detection, which requires us to syn-
chronize the update of the 3D subprojection map between
all detected photons, we need to sort the photons based on
voxel index. Only a few sorting algorithms may be efficiently
used on GPU, and we have chosen radix sort which is the
current state-of-the-art for sorting on GPU [21]. We run the
radix sort iteratively k times in groups of 4 bits each from
least to most significant bit, except for last 4–7 bits. This
will effectively group the photons in 24k neighborhoods of
16–128 voxels each, which now allows us to perform forced
detection in a synchronized manner for all photons in each
such neighborhood. The sorting algorithm is also where
we remove photons that have either left the volume during
tracing, or whose energy has dropped to under the predeter-
mined level.

When doing the forced detection in the CPU forward pro-
jector, the limited energy resolution of the detector is taken
into account by sampling the detected photon energy from
a Gaussian distribution with a width corresponding to the
energy resolution of the detector. This sampling was done
using the Box–Muller transformation, which has to iterate
until a certain condition is met and does not lend itself well
to GPUs. Instead of using the Box–Muller transformation
on GPU, we analytically calculate the probability of a pho-
ton with certain energy to be detected in the current energy
window on a detector with certain energy resolution. This
requires us to calculate the cumulative distribution function

of the Gaussian energy resolution function, using the method
suggested by [22].

We continue to iterate the whole scattering process a
predetermined number of times (in our case 10, just as on
CPU), each time checking how many photons were still alive
at last iteration to avoid doing unnecessary work. When all
iterations are done, the 3D subprojection map is forward
projected using the ray-driven projector explained above.

Just as for forward projection, back projection was imple-
mented as ray-driven and launched as an OpenCL kernel
with one thread per projection pixel on the projection plane,
stepping through the reconstruction volume starting from
the projection plane. Back projection takes the same steps
through the volume as the forward projection and can thus
reuse the same precalculated Gauss kernels which were gen-
erated prior to forward projection. As the back projector
iterates through the reconstructed volume, each thread uses
the precalculated Gauss kernels to sample the prefetched
input projection from local GPU memory, and attenuates
it using the thread’s accumulated density, and writes the
resulting value for each step to a temporary volume that is
aligned with the current projection angle, so that each thread
touches its own column of the volume. This volume is stored
as a buffer in the GPU global memory. After the threads have
stepped through and filled the volume in the back projection
OpenCL kernel, the resulting buffer is copied into a tempo-
rary 3D image, which is rotated with hardware-based linear
interpolation and added to the final set of correction factor,
which are used to update the image.

XCAT phantom study

The already validated CPU and newly developed GPU
reconstruction algorithms were compared with mathematical
phantoms and patient images. The XCAT phantom [23] was
used to compare the CPU and GPU forward projectors. In
the first phantom study a Tc99m point source was placed in
the XCAT phantom’s density map according to Fig. 3. The
following densities were used for lung, soft tissue, and bone:
0.49, 1.0, and 1.5 g/cm3. In the second study, the XCAT
phantom was used to model Tc99m-HDP bone uptake with
the following relative activities for bone, kidneys, and soft
tissue: 700, 250, and 40 (Fig. 3). The CPU and GPU projec-
tors were used to generate anterior projections of the two
XCAT phantom setups. Siemens Symbia T gamma camera
detector (3/8″ NaI crystal, 3.9 mm intrinsic resolution and
9.9% energy resolution) and LEHR collimator (2.405 cm
hole length and 0.111 cm hole diameter) were used in the
simulations with 128 × 128 matrix size, 5.0 mm pixel size,
and 250 mm radius of rotation. The number of simulated
photons was set to 1,015,808 due to the GPU implementa-
tion, which groups voxels into 4 × 4 × 8 voxel blocks and thus
exactly 1,000,000 could not be used. The projectors were

341Annals of Nuclear Medicine (2018) 32:337–347

1 3

Fig. 3 Transverse slice of XCAT density map (left) and emission map (right) used to validate the CPU and GPU forward projectors. Point source
location is marked by an arrow

Fig. 4 Profiles through CPU
and GPU primary (top) and
scatter (bottom) projections of
the XCAT point source study

342 Annals of Nuclear Medicine (2018) 32:337–347

1 3

compared by calculating the scatter-to-primary count ratios
of the projections and by visually analyzing the profiles
taken over the projections of primary and scattered counts.

Patient studies

Five three bed bone SPECT/CT studies were performed

Fig. 5 XCAT bone study pri-
mary (top) and scatter (bottom)
projections generated with CPU
(left) and GPU (right). The
horizontal black line shows the
location of the profiles shown
in Fig. 6

343Annals of Nuclear Medicine (2018) 32:337–347

1 3

with Tc99m-HDP using a Siemens Symbia T and recon-
structed with the CPU and GPU algorithms. Studies were
acquired using 128 × 128 matrix size, 4.8 mm pixel size,
64 projection angles over 360 degree rotation, and body
contour orbit. Reconstructions were run using CPU and
GPU OSEM algorithms with 16 subsets and 5 iterations,
and with attenuation, collimator response, and scatter
compensations. The MC-based scatter compensation was
used with 122,880 simulated photons per projection due to
GPU implementation, which did not allow exactly 100,000
photons to be used, and simulating scatter only during
the first 2 OSEM iterations. The reconstruction methods
were analyzed by comparing mean SUVs (10 mm diam-
eter spherical VOI) at ten different locations within each
patient randomly extracted from the spine area. VOIs were
drawn in HybridViewer (HERMES Medical Solutions,
Stockholm, Sweden).

Results

XCAT phantom study

The scatter-to-primary ratio for the XCAT point source
study reprojected with CPU was 0.856 and with GPU
0.859, whereas the corresponding values were 0.343 and
0.341 for the bone study. Figure 4 shows horizontal pro-
files through the primary and scatter projections of the
point source study. The primary projection profiles over-
lap completely and scatter projection profiles also look
very similar. Figure 5 shows CPU and GPU primary and
scatter projections of the XCAT bone study. Visually, the
projections look identical. As in the point source study, the
primary projection profiles overlap completely and scatter
projection profiles look similar.

Fig. 6 Profiles through CPU
and GPU primary (top) and
scatter (bottom) projections of
the XCAT bone study

344 Annals of Nuclear Medicine (2018) 32:337–347

1 3

Patient studies

The SUVs of the CPU and GPU reconstruction are compared
in Fig. 7. The SUVs were well correlated (correlation coeffi-
cient = 0.91), but the GPU SUVs were slightly higher (aver-
age difference 0.25) than the CPU SUVs. This difference
was noticed to be statistically significant (p value < 0.05).
The Bland–Altman plot is shown in Fig. 8. The lower and
upper limits of agreement were − 1.24 and 0.74. Example
maximum intensity projection (MIP) images reconstructed
with CPU and GPU are shown in Fig. 9, and visually, they
appear to be identical. Average reconstruction times of the
patient studies are shown in Table 1 and the effect of the

attenuation, collimator response and scatter compensation
on the reconstruction time is shown in Fig. 10.

Discussion

The reconstruction times of SPECT images using state-of-
the art compensation methods can be long. In this paper,
we presented a GPU implementation of an OSEM-based
SPECT reconstruction algorithm with attenuation, colli-
mator response and MC-based scatter compensation. The
implementation was validated using phantom and patient
studies. We had to completely rewrite the projectors of the
OSEM algorithm in order to fully utilize GPUs computing

Fig. 7 Correlation between
CPU and GPU SUVs. The
dashed line presents the best fit

Fig. 8 Bland–Altman plot of
CPU and GPU SUVs. The mean
difference (average of CPU
SUV–GPU SUV) is shown
as solid line and the limits of
agreement (− 1.96 standard
deviation and + 1.96 standard
deviation) are shown as dashed
lines

345Annals of Nuclear Medicine (2018) 32:337–347

1 3

power, and thus, the results of the CPU and GPU reconstruc-
tion algorithms were not expected to be identical.

Despite the rewrite, the CPU and GPU forward projec-
tions match well (Figs. 4, 5, 6) and the scatter-to-primary
ratios are close to each other. In patient studies, GPU SUVs
were noticed to be slightly, but statistically significantly,
higher than the CPU SUVs (Figs. 7, 8). This is probably
due to GPU algorithm’s ray-driven projector, which does not
include extra interpolation like our rotating projector used in
the CPU implementation, leading to better resolution. Visu-
ally (Fig. 9), it is, however, impossible to separate images
reconstructed with GPU from CPU images.

The reconstruction time is heavily dependent of the type
of the graphics card, as shown in Table 1 and Fig. 10. The
lowest speedup factor is achieved with the K-card, which is
the oldest of the tested cards. The newer M-card is approxi-
mately twice as fast as the K-card and the latest Geforce
is more than 10 times faster than the K5000. Interestingly
K5000 performs worse than CPU in MC-based scatter
compensation (K5000 reconstruction time increases 39.9 s
when scatter compensation is added to attenuation and col-
limator response compensation, whereas, with CPU, the

time increases only by 34 s, see Fig. 10). MC-based scatter
compensation is also the most demanding part on the other
graphics cards too. The better performance of the newer
cards is based on improved architecture, more cores, higher
clock rate, and higher memory bandwidth.

GPU reconstruction has been studied more in PET [11,
24, 25] than in SPECT. It is difficult to directly compare
the speedup factors obtained with GPU, because they
depend on the CPU implementation. In our case, CPU
code is already multi-threaded and optimized, and thus,
our GPU speedup factors are lower than for example by

Fig. 9 Anterior MIP projections
obtained with CPU (left) and
GPU (right)

Table 1 Average reconstruction times (average of all 5 patients and
5 individual reconstruction algorithm runs per patient) and speedup
factors relative to CPU for CPU (4 cores on Xeon E5-1650 v4
@3.60 GHz) and three different type of graphics cards

CPU Quadro K5000 Quadro M2000 Geforce
GTX
1080Ti

Time 91.8 s 43.6 s 17.9 s 3.8 s
Speedup factor × 1 × 2 × 5 × 24

346 Annals of Nuclear Medicine (2018) 32:337–347

1 3

Pedemonde et al., who reported speedup factor of 75 for
128 × 128 matrix size [10]. On the other hand, our GPU
reconstruction times are close to theirs indicating success-
ful implementation.

In conclusion, SPECT reconstruction with MC-based
scatter compensation can be accelerated with GPU, so
that multi-bed reconstructions can be run in less than 4 s
approaching real-time processing.

Acknowledgements Tobias Bexelius works for HERMES Medi-
cal Solutions and Antti Sohlberg has a consulting agreement with
HERMES Medical Solutions.

References

 1. Narayanan MV, King MA, Pretorius PH, Dahlberg ST, Spencer
F, Simon E, et al. Human-observer receiver-operating-character-
istic evaluation of attenuation, scatter, and resolution compen-
sation strategies for (99 m)Tc myocardial perfusion imaging. J
Nucl Med. 2003;44:1725–34.

 2. Niu X, Yang Y, Jin M, Wernick MN, King MA. Effects of
motion, attenuation, and scatter corrections on gated cardiac
SPECT reconstruction. Med Phys. 2011;38:6571–84.

 3. Zaidi H, Koral KF. Scatter modelling and compensation in emis-
sion tomography. Eur J Nucl Med Mol Imaging. 2004;31:761
– 82.

 4. Frey EC, Gilland KL, Tsui BM. Application of task-based
measures of image quality to optimization and evaluation of
three-dimensional reconstruction-based compensation meth-
ods in myocardial perfusion SPECT. IEEE Trans Med Imaging.
2002;21:1040–50.

 5. Hudson HM, Larkin RS. Accelerated image reconstruction
using ordered subsets of projection data. IEEE Trans Med Imag.
1994;13:601–9.

 6. Di Bella EVR, Barclay AB, Eisner RL, Schafer RW. A comparison
of rotation-based methods for iterative reconstruction algorithms.
IEEE Trans Nucl Sci. 1996;43:3370–6.

 7. Sohlberg A, Watabe H, Iida H. Acceleration of Monte Carlo-
based scatter compensation for cardiac SPECT. Phys Med Biol.
2008;53:N277–N285.

 8. Jambor I, Kuisma A, Ramadan S, Huovinen R, Sandell M,
Kajander S. et. al. Prospective evaluation of planar bone scintig-
raphy, SPECT, SPECT/CT, 18F-NaF PET/CT and whole body
1.5T MRI, including DWI, for the detection of bone metastases in
high risk breast and prostate cancer patients: SKELETA clinical
trial. Acta Oncol. 2016;55:59–67.

 9. Delcroix O, Robin P, Gouillou M, Le Duc-Pennec A, Alavi Z, Le
Roux PY, et al. New SPECT/CT reconstruction algorithm: reli-
ability and accuracy in clinical routine for non-oncologic bone
diseases. EJNMMI Res. 2018;8:14.

Fig. 10 Time spend on attenuation, collimator response, and scatter compensation on CPU and the three graphics cards. The total height of the
bar corresponds to the total reconstruction time

347Annals of Nuclear Medicine (2018) 32:337–347

1 3

 10. Pedemonte S, Bousse A, Erlandsson K, Modat M, Arridge S, Hut-
ton BF, et al. GPU accelerated rotation-based emission tomogra-
phy reconstruction. IEEE Nuclear Science Symposium Confer-
ence Record 2010;2657–2661.

 11. Ha S, Matej S, Ispiryan M, Mueller K. GPU-accelerated for-
ward and back-projections with spatially varying kernels for
3D DIRECT TOF PET reconstruction. IEEE Trans Nucl Sci.
2013;60:166–73.

 12. Kangasmaa TS, Constable C, Hippeläinen E, Sohlberg AO. Mul-
ticenter evaluation of single-photon emission computed tomogra-
phy quantification with third-party reconstruction software. Nucl
Med Commun. 2016;37:983–7.

 13. Kangasmaa TS, Kuikka JT, Vanninen EJ, Mussalo HM, Laitinen
TP, Sohlberg AO. Half-time myocardial perfusion SPECT imag-
ing with attenuation and Monte Carlo-based scatter correction.
Nucl Med Commun. 2011;32:1040–5.

 14. Hippeläinen E, Tenhunen M, Mäenpää H, Sohlberg A. Quantita-
tive accuracy of Lu-177 SPECT reconstruction using different
compensation methods: phantom and patient studies. EJNMMI
Res. 2016;6:16.

 15. Woliner-van der Weg W, Deden LN, Meeuwis AP, Koenrades M,
Peeters LH, Kuipers H, Laanstra GJ, Gotthardt M, Slump CH,
Visser EP. A 3D-printed anatomical pancreas and kidney phan-
tom for optimizing SPECT/CT reconstruction settings in beta cell
imaging using 111In-exendin. EJNMMI Phys. 2016;3:29.

 16. Woodcock E, Murphy T, Hemmings P, Longworth S. Techniques
used in the GEM code for Monte Carlo neutronics calculations in
reactors and other systems of complex geometry. Proc Conf Appl
Comput Methods Reactor Probl. 1965;557:2.

 17. Berger M, Hubbell J. XCOM. Photon cross sections on a personal
computer. Natl Bur Stand Washington, DC (USA). Cent Radiat
Res. 1987.

 18. De Jong HWAM., Slijpen ETP, Beekman FJ. Acceleration of
Monte Carlo SPECT simulation using convolution-based forced
detection. IEEE Trans Nucl Sci. 2001;48:58–64.

 19. Salmon JK, Moraes MA, Dror RO, Shaw DE. Parallel random
numbers: as easy as 1, 2, 3. In: Proceedings of 2011 International
Conference for High Performance Computing, Networking, Stor-
age and Analysis 2011;1–12.

 20. Doornik JA. Conversion of high-period random numbers to float-
ing point. ACM Trans Model Comput Simul. 2007;17:3.

 21. Satish N, Harris M, Garland M. Designing efficient sorting algo-
rithms for manycore GPUs. In: Proceedings of the 2009 IEEE
International Symposium on Parallel and Distributed Processing.
2009. pp. 1–10.

 22. Zelen M, Severo NC. Probability functions. Handb Math Funct
1964 5;925–995.

 23. Segars WP, Sturgeon G, Mendonca S, Grimes J, Tsui BMW. 4D
XCAT phantom for multimodality imaging research. Med Phys.
2010;37:4902–15.

 24. Pratx G, Chinn G, Olcott PD, Levin CS. Fast, accurate and shift-
varying line projections for iterative reconstruction using the
GPU. IEEE Trans Med Imag 2009;28:435–445.

 25. Despres P, Jia X. A review of GPU-based medical image recon-
struction. Phys Med. 2017;42:76–92.

	Implementation of GPU accelerated SPECT reconstruction with Monte Carlo-based scatter correction
	Abstract
	Objective
	Methods
	Results
	Conclusions

	Introduction
	Materials and methods
	CPU implementation
	GPU implementation
	XCAT phantom study
	Patient studies

	Results
	XCAT phantom study
	Patient studies

	Discussion
	Acknowledgements
	References

