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Abstract
Objective Statistical SPECT reconstruction can be very time-consuming especially when compensations for collimator and 
detector response, attenuation, and scatter are included in the reconstruction. This work proposes an accelerated SPECT 
reconstruction algorithm based on graphics processing unit (GPU) processing.
Methods Ordered subset expectation maximization (OSEM) algorithm with CT-based attenuation modelling, depth-depend-
ent Gaussian convolution-based collimator-detector response modelling, and Monte Carlo-based scatter compensation was 
implemented using OpenCL. The OpenCL implementation was compared against the existing multi-threaded OSEM imple-
mentation running on a central processing unit (CPU) in terms of scatter-to-primary ratios, standardized uptake values 
(SUVs), and processing speed using mathematical phantoms and clinical multi-bed bone SPECT/CT studies.
Results The difference in scatter-to-primary ratios, visual appearance, and SUVs between GPU and CPU implementations 
was minor. On the other hand, at its best, the GPU implementation was noticed to be 24 times faster than the multi-threaded 
CPU version on a normal 128 × 128 matrix size 3 bed bone SPECT/CT data set when compensations for collimator and 
detector response, attenuation, and scatter were included.
Conclusions GPU SPECT reconstructions show great promise as an every day clinical reconstruction tool.
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Introduction

There are several image-related factors that affect SPECT 
image quality of which photon attenuation, Compton scatter, 
and collimator-detector response are the most detrimental. 
Photon attenuation can cause false defects in SPECT images 
and is thus likely to reduce SPECT’s diagnostic accuracy [1, 
2]. Compton scattering, on the other hand, lowers contrast 
and can cause an overestimation of the activity distribution 
[3]. The poor system resolution caused by the collimator and 
detector reduces image resolution. Fortunately, the effects of 
these factors can be compensated by modelling them dur-
ing statistical SPECT reconstruction and there is compelling 

evidence, especially in nuclear cardiology, that these com-
pensations have a significant impact on the SPECT image 
quality [4].

Unfortunately, these compensations can add significantly 
to the reconstruction time. Reconstruction times can be 
shortened using accelerated reconstruction algorithms [5], 
fast implementations [6], accelerated compensation methods 
[7], or using parallel processing. On the other hand, there 
might be a need to shift towards multi-bed studies due to 
the recent findings of multi-bed bone SPECT/CT superior-
ity compared to the conventional planar imaging [8] and 
one major vendor is promoting the use of larger matrix in 
bone SPECT studies [9]. With multi-bed data sets and larger 
matrix sizes, it is possible that reconstructions take long time 
even with optimized algorithms.

One relatively new method to increase the reconstruc-
tion speed is to implement the reconstruction algorithm for 
the graphics processing unit (GPU) [10, 11]. GPU offers 
massive parallel computing capabilities at affordable prices, 
but it generally requires re-implementation of the algorithm 
written for the central processing unit (CPU), because the 
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CPU algorithm usually does not optimally fit the GPU pro-
gramming model and architecture. This paper represents 
GPU implementation and validation of our ordered subsets 
expectation maximization (OSEM) SPECT reconstruction 
algorithm. The Monte Carlo (MC)-based scatter compensa-
tion method that we use presents particular challenges due 
to random memory access.

Materials and methods

One iteration of the OSEM algorithm generally consists of 
the following four steps:

1. Forward projection of the current image estimate.
2. Division of the measured projections with forward pro-

jected ones.
3. Back projection of the correction factors.
4. Update of the current image estimate with the back pro-

jected correction factors.

The following sections represent the CPU and GPU 
OSEM implementations of the projectors. Both implemen-
tations are part of the HybridRecon-reconstruction package 
(HERMES Medical Solutions, Stockholm, Sweden). The 
CPU implementation has been extensively validated with 

cardiac software phantoms and cardiac patients [7], in quan-
titative multi-center setup with the NEMA-IEC phantom 
(NEMA, Washington, District of Columbia, USA) [12], in 
clinical cardiac patients in half-time imaging setup [13], in 
Lu177 dosimetry setup [14] and against one gamma camera 
manufacturers own reconstruction method [15]. The CPU 
implementation can be considered as our “gold standard” 
in this work.

CPU implementation

The forward projector was implemented as rotation-based 
[6]. In rotation-based projectors, the projection plane is 
kept at fixed position and the reconstructed image is rotated 
(Fig. 1). This makes attenuation and collimator and detec-
tor response modelling straightforward, because attenuation 
correction factors for each voxel can be calculated simply 
by summing the rotated attenuation map along columns. 
Collimator and detector response modelling simplifies to 
convolution of each coronal plane with a response kernel, 
which we assumed to be depth-dependent Gaussian that does 
not take collimator scatter or penetration into account. Scat-
ter modelling is performed using MC simulation and it is 
accelerated by simulating scatter only during the first two 
iterations of the OS-EM algorithm [7].

Fig. 1  Rotating projector (left) rotates the image to match the current 
projection angle. Projection is formed by summing along reconstruc-
tion matrix columns (dashed arrow). Attenuation model is easy to add 
to the column sums. Collimator and detector response can be done by 
convolving each coronal plane (dashed lines) with a depth-dependent 
response kernel. In the convolution-based forced detection (right) 

photon is forced to scatter (dashed arrows) towards the detector at 
each scattering site. The current 3D subprojection map (the overlaid 
grid) is updated by the photon weight. After all photons have been 
traced, projection is formed in identical manner as with the rotating 
projector
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The MC scatter simulation is initialized by distribut-
ing photons to be traced to voxels according to the emis-
sion map voxel values. Voxel i has a probability of ci/ct, 
where ci is the number of counts in the voxel and ct the total 
number of counts in the emission map, to emit a photon. 
Photons are randomly sampled from the distribution; and 
then, the energy, direction, and distance to next interaction 
location are sampled and the photon’s weight is initial-
ized to 1. Energy is sampled from current isotope’s energy 
spectrum, direction is uniformly sampled from unit sphere, 
and distance is calculated based on the Woodcock track-
ing algorithm [16] as − ln(r)/µMAX, where r is a random 
number in range [0, 1] and µMAX is the maximum linear 
attenuation coefficient in the attenuation map. Attenuation 
map is generated from the density map by multiplying it 
with tissue’s energy-dependent mass attenuation coefficient 
obtained from cross-section tables defined by Berger and 
Hubbell [17]. At each interaction site, a random number is 
drawn and compared to the probability proportional to µi/µt, 
where µi is the current voxel’s linear attenuation coefficient 
and µt the maximum attenuation coefficient of the volume. 
If the random number is smaller than the attenuation coef-
ficient ratio, forced non-attenuation is performed (photon’s 
weight is multiplied by probability of not going through 
photo-electric absorption). The photon is also forced to scat-
ter towards the detector according to the convolution-based 
forced detection principle [18] and a 3D subprojection map 
is updated by the photon’s weight (Fig. 1). In addition to 
forced detection, the photon will also go through Compton 
scattering where its direction and energy is updated. In case 
of a random number larger than the ratio, the photon con-
tinues along its original direction. This process repeats itself 
until the photon has scattered a predetermined number of 
times (in our case 10), its energy drops under predetermined 
limit (in our case under 75% of the acquisition energy win-
dow lower limit) or until it leaves the density map. After all 
photons have been simulated, the 3D subprojection map is 
forward projected using the above-mentioned projector to 
create scatter projections.

The back projector was also implemented as rotation-
based. Back projection is performed by accumulating the 
correction factors for each reconstruction voxel from the 
projection plane using attenuation and collimator and detec-
tor response modelling and then rotating the back projected 
image to its correct angle. We omitted scatter modelling 
from back projection to increase speed.

The CPU algorithm was parallelized by computing for-
ward projection and back projection for each projection 
angle on a separate processor.

GPU implementation

The current CPU implementation needed finer detail multi-
threading to fully utilize the power of the GPU, and thus, the 
CPU projectors were rewritten.

The forward projector was implemented as ray-driven, 
i.e., projection rays are cast from the center of each pro-
jection pixel and the forward projector is launched as an 
OpenCL kernel with one thread per projection pixel (Fig. 2). 
OpenCL was used, because it does not limit the implemen-
tation to NVIDIA graphics cards like CUDA. The current 
image estimate is stored as a 3D image on the GPU. The 
projection pixel value is calculated by stepping the ray one 
voxel length at a time and image voxel values and attenua-
tion coefficients obtained from an aligned attenuation map 
are interpolated using specialized hardware on the GPU. 
Collimator and detector response modelling is performed by 
assuming the response to be a 2D depth-dependent Gaussian 
function as in the CPU implementation. However, instead 
of convolving entire coronal planes with 2D Gaussians, the 
projection ray and reconstruction voxel intersection neigh-
borhood is sampled using a 2D Gauss kernel. The kernels 
are precalculated and stored on the GPU.

MC-based scatter modelling is difficult to implement 
efficiently on GPUs for two main reasons: divergence of 
threads and generation of pseudorandom numbers. Most 
pseudorandom number generators work in a sequential 
manner, using a seed as input and returning a new seed 

Fig. 2  Ray-driven projector casts a ray from the center of each projec-
tion pixel. Ray value is accumulated by summing along the projec-
tion ray. The voxel values are sampled at the “x”-locations using a 2D 
Gaussian function whose width corresponds to the resolution of the 
collimator–detector
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for each generated random number. To parallelize the MC 
simulation, a random number generator was needed that 
could generate random numbers in thousands of threads 
independently, with no statistical correlation between each 
other. The counter-based Philox-4 × 32_10 algorithm [19] 
was used as the random number generator and we used the 
technique in [20] to convert the integer random numbers 
to floating point values. Since random values are used for 
directing each ray through the volume, they will quickly 
diverge which would make it impossible for threads to 
update the 3D subprojection map in parallel without data 
races, since multiple workgroups cannot synchronize their 
access to global GPU memory. To mitigate these prob-
lems, we need to continuously sort the rays as they scatter 
through the volume.

The GPU simulates thousands of photons in parallel, and 
can only synchronize small groups of them at once (except 
for simple counting), which is why we start by splitting the 
emission map in blocks of 4 × 4 × 8 voxels. The photons are 
then distributed by first sampling which block each simu-
lated photon will belong to, and after that by randomly dis-
tributing all photons within each block.

The photons are traced in parallel using same method as 
on CPU, using the Woodcock algorithm [16], until each pho-
ton has found their next interaction site or left the volume. 
Before doing forced detection, which requires us to syn-
chronize the update of the 3D subprojection map between 
all detected photons, we need to sort the photons based on 
voxel index. Only a few sorting algorithms may be efficiently 
used on GPU, and we have chosen radix sort which is the 
current state-of-the-art for sorting on GPU [21]. We run the 
radix sort iteratively k times in groups of 4 bits each from 
least to most significant bit, except for last 4–7 bits. This 
will effectively group the photons in  24k neighborhoods of 
16–128 voxels each, which now allows us to perform forced 
detection in a synchronized manner for all photons in each 
such neighborhood. The sorting algorithm is also where 
we remove photons that have either left the volume during 
tracing, or whose energy has dropped to under the predeter-
mined level.

When doing the forced detection in the CPU forward pro-
jector, the limited energy resolution of the detector is taken 
into account by sampling the detected photon energy from 
a Gaussian distribution with a width corresponding to the 
energy resolution of the detector. This sampling was done 
using the Box–Muller transformation, which has to iterate 
until a certain condition is met and does not lend itself well 
to GPUs. Instead of using the Box–Muller transformation 
on GPU, we analytically calculate the probability of a pho-
ton with certain energy to be detected in the current energy 
window on a detector with certain energy resolution. This 
requires us to calculate the cumulative distribution function 

of the Gaussian energy resolution function, using the method 
suggested by [22].

We continue to iterate the whole scattering process a 
predetermined number of times (in our case 10, just as on 
CPU), each time checking how many photons were still alive 
at last iteration to avoid doing unnecessary work. When all 
iterations are done, the 3D subprojection map is forward 
projected using the ray-driven projector explained above.

Just as for forward projection, back projection was imple-
mented as ray-driven and launched as an OpenCL kernel 
with one thread per projection pixel on the projection plane, 
stepping through the reconstruction volume starting from 
the projection plane. Back projection takes the same steps 
through the volume as the forward projection and can thus 
reuse the same precalculated Gauss kernels which were gen-
erated prior to forward projection. As the back projector 
iterates through the reconstructed volume, each thread uses 
the precalculated Gauss kernels to sample the prefetched 
input projection from local GPU memory, and attenuates 
it using the thread’s accumulated density, and writes the 
resulting value for each step to a temporary volume that is 
aligned with the current projection angle, so that each thread 
touches its own column of the volume. This volume is stored 
as a buffer in the GPU global memory. After the threads have 
stepped through and filled the volume in the back projection 
OpenCL kernel, the resulting buffer is copied into a tempo-
rary 3D image, which is rotated with hardware-based linear 
interpolation and added to the final set of correction factor, 
which are used to update the image.

XCAT phantom study

The already validated CPU and newly developed GPU 
reconstruction algorithms were compared with mathematical 
phantoms and patient images. The XCAT phantom [23] was 
used to compare the CPU and GPU forward projectors. In 
the first phantom study a Tc99m point source was placed in 
the XCAT phantom’s density map according to Fig. 3. The 
following densities were used for lung, soft tissue, and bone: 
0.49, 1.0, and 1.5 g/cm3. In the second study, the XCAT 
phantom was used to model Tc99m-HDP bone uptake with 
the following relative activities for bone, kidneys, and soft 
tissue: 700, 250, and 40 (Fig. 3). The CPU and GPU projec-
tors were used to generate anterior projections of the two 
XCAT phantom setups. Siemens Symbia T gamma camera 
detector (3/8″ NaI crystal, 3.9 mm intrinsic resolution and 
9.9% energy resolution) and LEHR collimator (2.405 cm 
hole length and 0.111 cm hole diameter) were used in the 
simulations with 128 × 128 matrix size, 5.0 mm pixel size, 
and 250 mm radius of rotation. The number of simulated 
photons was set to 1,015,808 due to the GPU implementa-
tion, which groups voxels into 4 × 4 × 8 voxel blocks and thus 
exactly 1,000,000 could not be used. The projectors were 
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Fig. 3  Transverse slice of XCAT density map (left) and emission map (right) used to validate the CPU and GPU forward projectors. Point source 
location is marked by an arrow

Fig. 4  Profiles through CPU 
and GPU primary (top) and 
scatter (bottom) projections of 
the XCAT point source study
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compared by calculating the scatter-to-primary count ratios 
of the projections and by visually analyzing the profiles 
taken over the projections of primary and scattered counts.

Patient studies

Five three bed bone SPECT/CT studies were performed 

Fig. 5  XCAT bone study pri-
mary (top) and scatter (bottom) 
projections generated with CPU 
(left) and GPU (right). The 
horizontal black line shows the 
location of the profiles shown 
in Fig. 6
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with Tc99m-HDP using a Siemens Symbia T and recon-
structed with the CPU and GPU algorithms. Studies were 
acquired using 128 × 128 matrix size, 4.8 mm pixel size, 
64 projection angles over 360 degree rotation, and body 
contour orbit. Reconstructions were run using CPU and 
GPU OSEM algorithms with 16 subsets and 5 iterations, 
and with attenuation, collimator response, and scatter 
compensations. The MC-based scatter compensation was 
used with 122,880 simulated photons per projection due to 
GPU implementation, which did not allow exactly 100,000 
photons to be used, and simulating scatter only during 
the first 2 OSEM iterations. The reconstruction methods 
were analyzed by comparing mean SUVs (10 mm diam-
eter spherical VOI) at ten different locations within each 
patient randomly extracted from the spine area. VOIs were 
drawn in HybridViewer (HERMES Medical Solutions, 
Stockholm, Sweden).

Results

XCAT phantom study

The scatter-to-primary ratio for the XCAT point source 
study reprojected with CPU was 0.856 and with GPU 
0.859, whereas the corresponding values were 0.343 and 
0.341 for the bone study. Figure 4 shows horizontal pro-
files through the primary and scatter projections of the 
point source study. The primary projection profiles over-
lap completely and scatter projection profiles also look 
very similar. Figure 5 shows CPU and GPU primary and 
scatter projections of the XCAT bone study. Visually, the 
projections look identical. As in the point source study, the 
primary projection profiles overlap completely and scatter 
projection profiles look similar.

Fig. 6  Profiles through CPU 
and GPU primary (top) and 
scatter (bottom) projections of 
the XCAT bone study
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Patient studies

The SUVs of the CPU and GPU reconstruction are compared 
in Fig. 7. The SUVs were well correlated (correlation coeffi-
cient = 0.91), but the GPU SUVs were slightly higher (aver-
age difference 0.25) than the CPU SUVs. This difference 
was noticed to be statistically significant (p value < 0.05). 
The Bland–Altman plot is shown in Fig. 8. The lower and 
upper limits of agreement were − 1.24 and 0.74. Example 
maximum intensity projection (MIP) images reconstructed 
with CPU and GPU are shown in Fig. 9, and visually, they 
appear to be identical. Average reconstruction times of the 
patient studies are shown in Table 1 and the effect of the 

attenuation, collimator response and scatter compensation 
on the reconstruction time is shown in Fig. 10.

Discussion

The reconstruction times of SPECT images using state-of-
the art compensation methods can be long. In this paper, 
we presented a GPU implementation of an OSEM-based 
SPECT reconstruction algorithm with attenuation, colli-
mator response and MC-based scatter compensation. The 
implementation was validated using phantom and patient 
studies. We had to completely rewrite the projectors of the 
OSEM algorithm in order to fully utilize GPUs computing 

Fig. 7  Correlation between 
CPU and GPU SUVs. The 
dashed line presents the best fit

Fig. 8  Bland–Altman plot of 
CPU and GPU SUVs. The mean 
difference (average of CPU 
SUV–GPU SUV) is shown 
as solid line and the limits of 
agreement (− 1.96 standard 
deviation and + 1.96 standard 
deviation) are shown as dashed 
lines



345Annals of Nuclear Medicine (2018) 32:337–347 

1 3

power, and thus, the results of the CPU and GPU reconstruc-
tion algorithms were not expected to be identical.

Despite the rewrite, the CPU and GPU forward projec-
tions match well (Figs. 4, 5, 6) and the scatter-to-primary 
ratios are close to each other. In patient studies, GPU SUVs 
were noticed to be slightly, but statistically significantly, 
higher than the CPU SUVs (Figs. 7, 8). This is probably 
due to GPU algorithm’s ray-driven projector, which does not 
include extra interpolation like our rotating projector used in 
the CPU implementation, leading to better resolution. Visu-
ally (Fig. 9), it is, however, impossible to separate images 
reconstructed with GPU from CPU images.

The reconstruction time is heavily dependent of the type 
of the graphics card, as shown in Table 1 and Fig. 10. The 
lowest speedup factor is achieved with the K-card, which is 
the oldest of the tested cards. The newer M-card is approxi-
mately twice as fast as the K-card and the latest Geforce 
is more than 10 times faster than the K5000. Interestingly 
K5000 performs worse than CPU in MC-based scatter 
compensation (K5000 reconstruction time increases 39.9 s 
when scatter compensation is added to attenuation and col-
limator response compensation, whereas, with CPU, the 

time increases only by 34 s, see Fig. 10). MC-based scatter 
compensation is also the most demanding part on the other 
graphics cards too. The better performance of the newer 
cards is based on improved architecture, more cores, higher 
clock rate, and higher memory bandwidth.

GPU reconstruction has been studied more in PET [11, 
24, 25] than in SPECT. It is difficult to directly compare 
the speedup factors obtained with GPU, because they 
depend on the CPU implementation. In our case, CPU 
code is already multi-threaded and optimized, and thus, 
our GPU speedup factors are lower than for example by 

Fig. 9  Anterior MIP projections 
obtained with CPU (left) and 
GPU (right)

Table 1  Average reconstruction times (average of all 5 patients and 
5 individual reconstruction algorithm runs per patient) and speedup 
factors relative to CPU for CPU (4 cores on Xeon E5-1650 v4 
@3.60 GHz) and three different type of graphics cards

CPU Quadro K5000 Quadro M2000 Geforce 
GTX 
1080Ti

Time 91.8 s 43.6 s 17.9 s 3.8 s
Speedup factor × 1 × 2 × 5 × 24
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Pedemonde et al., who reported speedup factor of 75 for 
128 × 128 matrix size [10]. On the other hand, our GPU 
reconstruction times are close to theirs indicating success-
ful implementation.

In conclusion, SPECT reconstruction with MC-based 
scatter compensation can be accelerated with GPU, so 
that multi-bed reconstructions can be run in less than 4 s 
approaching real-time processing.
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