13 research outputs found

    Detection and phylogenetic analysis of adenoviruses occurring in a single anole species

    Get PDF
    Adenoviruses (AdVs) infect a wide range of hosts, and they have undergone recent and ancient host transfers multiple times. In reptiles, AdVs have been found in many captive individuals, and have been implicated in morbidity and mortality in several species. Yet the pathogenicity, transmission, phylogenetic distribution, and source of AdVs in the environment are still unknown. We therefore chose to opportunistically sample deceased captive Anolis sagrei individuals that were collected from different populations in the Bahamas and the Cayman Islands, as well as fecal samples from one island population, to explore the disease dynamics and diversity of adenovirus infecting A. sagrei populations. We found that adenovirus infection was present in our captive colony at low prevalence (26%), and was likely not the primary cause of observed morbidity and mortality. Among the 10 individuals (out of 38 sampled) which tested positive for adenovirus, we identified four adenovirus clades, several of which are distantly related, despite the close relationships of the A. sagrei host populations. These results suggest that while adenovirus may not be highly prevalent in the wild, it is present at low levels across much of the range of A. sagrei. It may undergo frequent host switching across both deep and shallow host divergences

    Genetic variability and ontogeny predict microbiome structure in a disease-challenged montane amphibian

    Get PDF
    Amphibian populations worldwide are at risk of extinction from infectious diseases, including chytridiomycosis caused by the fungal pathogen Batrachochytrium dendrobatidis (Bd). Amphibian cutaneous microbiomes interact with Bd and can confer protective benefits to the host. The composition of the microbiome itself is influenced by many environment- and host-related factors. However, little is known about the interacting effects of host population structure, genetic variation and developmental stage on microbiome composition and Bd prevalence across multiple sites. Here we explore these questions in Amietia hymenopus, a disease-affected frog in southern Africa. We use microsatellite genotyping and 16S amplicon sequencing to show that the microbiome associated with tadpole mouthparts is structured spatially, and is influenced by host genotype and developmental stage. We observed strong genetic structure in host populations based on rivers and geographic distances, but this did not correspond to spatial patterns in microbiome composition. These results indicate that demographic and host genetic factors affect microbiome composition within sites, but different factors are responsible for host population structure and microbiome structure at the between-site level. Our results help to elucidate complex within- and among- population drivers of microbiome structure in amphibian populations. That there is a genetic basis to microbiome composition in amphibians could help to inform amphibian conservation efforts against infectious diseases

    Skin Microbiomes of California Terrestrial Salamanders Are Influenced by Habitat More Than Host Phylogeny

    No full text
    A multitude of microorganisms live on and within plant and animal hosts, yet the ecology and evolution of these microbial communities remains poorly understood in many taxa. This study examined the extent to which environmental factors and host taxonomic identity explain microbiome variation within two salamander genera, Ensatina and Batrachoseps, in the family Plethodontidae. In particular, we assessed whether microbiome differentiation paralleled host genetic distance at three levels of taxonomy: genus and high and low clade levels within Ensatina eschscholtzii. We predicted that more genetically related host populations would have more similar microbiomes than more distantly related host populations. We found that salamander microbiomes possess bacterial species that are most likely acquired from their surrounding soil environment, but the relative representation of those bacterial species is significantly different on the skin of salamanders compared to soil. We found differences in skin microbiome alpha diversity among Ensatina higher and lower clade groups, as well as differences between Ensatina and Batrachoseps. We also found that relative microbiome composition (beta diversity) did vary between Ensatina lower clades, but differences were driven by only a few clades and not correlated to clade genetic distances. We conclude this difference was likely a result of Ensatina lower clades being associated with geographic location and habitat type, as salamander identity at higher taxonomic levels (genus and Ensatina higher clades) was a weak predictor of microbiome composition. These results lead us to conclude that environmental factors are likely playing a more significant role in salamander cutaneous microbiome assemblages than host-specific traits

    FEMALE SIGNAL VARIATION IN THE ANOLIS LEMURINUS GROUP

    No full text

    Cambios fenotípicos en áreas urbanas en el lagarto tropical Anolis cristatellus

    No full text
    Urbanization is an increasingly important dimension of global change, and urban areas likely impose significant natural selection on the species that reside within them. Although many species of plants and animals can survive in urban areas, so far relatively little research has investigated whether such populations have adapted (in an evolutionary sense) to their newfound milieu. Even less of this work has taken place in tropical regions, many of which have experienced dramatic growth and intensification of urbanization in recent decades. In the present study, we focus on the neotropical lizard, Anolis cristatellus . We tested whether lizard ecology and morphology differ between urban and natural areas in three of the most populous municipalities on the island of Puerto Rico. We found that environmental conditions including temperature, humidity, and substrate availability differ dramatically between neighboring urban and natural areas. We also found that lizards in urban areas use artificial substrates a large proportion of the time, and that these substrates tend to be broader than substrates in natural forest. Finally, our morphological data showed that lizards in urban areas have longer limbs relative to their body size, as well as more subdigital scales called lamellae, when compared to lizards from nearby forested habitats. This shift in phenotype is exactly in the direction predicted based on habitat differences between our urban and natural study sites, combined with our results on how substrates are being used by lizards in these areas. Findings from a common?garden rearing experiment using individuals from one of our three pairs of populations provide evidence that trait differences between urban and natural sites may be genetically based. Taken together, our data suggest that anoles in urban areas are under significant differential natural selection and may be evolutionarily adapting to their human?modified environments

    Data from: Phenotypic shifts in urban areas in the tropical lizard Anolis cristatellus

    No full text
    Urbanization is an important dimension of global change, and urban areas impose significant natural selection on species within them. Although many species persist in urban areas, little research has investigated whether populations have adapted to urbanization. Even less work has considered tropical regions, which have recently experienced dramatic urban growth. In the present study we focused on the neotropical lizard, Anolis cristatellus. We tested whether lizard ecology and morphology differ between urban and natural areas in Puerto Rico. We found that environmental conditions differ dramatically between urban and natural areas. We also found that lizards in urban areas frequently use artificial substrates, and that these substrates are broader than substrates in natural forest. Finally our morphological data showed that lizards in urban areas have longer limbs and more subdigital lamellae compared to lizards from forested habitats. This shift in phenotype is in the direction predicted based on habitat differences between urban and natural sites, combined with results on how lizards use substrates in these areas. Findings from common garden rearing provide evidence that trait differences may be genetically based. Our data suggest anoles in urban areas are under significant natural selection and may be adapting to human-modified environments

    Table_3.XLSX

    No full text
    <p>A multitude of microorganisms live on and within plant and animal hosts, yet the ecology and evolution of these microbial communities remains poorly understood in many taxa. This study examined the extent to which environmental factors and host taxonomic identity explain microbiome variation within two salamander genera, Ensatina and Batrachoseps, in the family Plethodontidae. In particular, we assessed whether microbiome differentiation paralleled host genetic distance at three levels of taxonomy: genus and high and low clade levels within Ensatina eschscholtzii. We predicted that more genetically related host populations would have more similar microbiomes than more distantly related host populations. We found that salamander microbiomes possess bacterial species that are most likely acquired from their surrounding soil environment, but the relative representation of those bacterial species is significantly different on the skin of salamanders compared to soil. We found differences in skin microbiome alpha diversity among Ensatina higher and lower clade groups, as well as differences between Ensatina and Batrachoseps. We also found that relative microbiome composition (beta diversity) did vary between Ensatina lower clades, but differences were driven by only a few clades and not correlated to clade genetic distances. We conclude this difference was likely a result of Ensatina lower clades being associated with geographic location and habitat type, as salamander identity at higher taxonomic levels (genus and Ensatina higher clades) was a weak predictor of microbiome composition. These results lead us to conclude that environmental factors are likely playing a more significant role in salamander cutaneous microbiome assemblages than host-specific traits.</p

    Table_5.XLSX

    No full text
    <p>A multitude of microorganisms live on and within plant and animal hosts, yet the ecology and evolution of these microbial communities remains poorly understood in many taxa. This study examined the extent to which environmental factors and host taxonomic identity explain microbiome variation within two salamander genera, Ensatina and Batrachoseps, in the family Plethodontidae. In particular, we assessed whether microbiome differentiation paralleled host genetic distance at three levels of taxonomy: genus and high and low clade levels within Ensatina eschscholtzii. We predicted that more genetically related host populations would have more similar microbiomes than more distantly related host populations. We found that salamander microbiomes possess bacterial species that are most likely acquired from their surrounding soil environment, but the relative representation of those bacterial species is significantly different on the skin of salamanders compared to soil. We found differences in skin microbiome alpha diversity among Ensatina higher and lower clade groups, as well as differences between Ensatina and Batrachoseps. We also found that relative microbiome composition (beta diversity) did vary between Ensatina lower clades, but differences were driven by only a few clades and not correlated to clade genetic distances. We conclude this difference was likely a result of Ensatina lower clades being associated with geographic location and habitat type, as salamander identity at higher taxonomic levels (genus and Ensatina higher clades) was a weak predictor of microbiome composition. These results lead us to conclude that environmental factors are likely playing a more significant role in salamander cutaneous microbiome assemblages than host-specific traits.</p

    Table_2.XLSX

    No full text
    <p>A multitude of microorganisms live on and within plant and animal hosts, yet the ecology and evolution of these microbial communities remains poorly understood in many taxa. This study examined the extent to which environmental factors and host taxonomic identity explain microbiome variation within two salamander genera, Ensatina and Batrachoseps, in the family Plethodontidae. In particular, we assessed whether microbiome differentiation paralleled host genetic distance at three levels of taxonomy: genus and high and low clade levels within Ensatina eschscholtzii. We predicted that more genetically related host populations would have more similar microbiomes than more distantly related host populations. We found that salamander microbiomes possess bacterial species that are most likely acquired from their surrounding soil environment, but the relative representation of those bacterial species is significantly different on the skin of salamanders compared to soil. We found differences in skin microbiome alpha diversity among Ensatina higher and lower clade groups, as well as differences between Ensatina and Batrachoseps. We also found that relative microbiome composition (beta diversity) did vary between Ensatina lower clades, but differences were driven by only a few clades and not correlated to clade genetic distances. We conclude this difference was likely a result of Ensatina lower clades being associated with geographic location and habitat type, as salamander identity at higher taxonomic levels (genus and Ensatina higher clades) was a weak predictor of microbiome composition. These results lead us to conclude that environmental factors are likely playing a more significant role in salamander cutaneous microbiome assemblages than host-specific traits.</p
    corecore