866 research outputs found

    Affinities of the family Sollasellidae (Porifera, Demospongiae). I. Morphological evidence

    Get PDF
    Comparison of Sollasella digitata Lendenfeld, 1888, up until the present assigned to its own family Sollasellidae Lendenfeld, 1887 in the order Hadromerida, and Raspailopsis cervicornis Burton, 1959, assigned to Raspailiidae Nardo, 1833 in the order Poecilosclerida, leads to the conclusion that both should be considered congeneric and are best assigned to a single genus Sollasella. This conclusion is based on examination of habit and skeletal characters of the type material of S. digitata and both type and freshly collected material of S. cervicornis. The conclusion is strengthened by the discovery of a new species, Sollasella moretonensis n.sp. collected in North Australia (primarily in the northeastern coast, but also an isolated record from the northwestern Australian coast), which possesses in addition to the characteristic surface pattern and skeletal structure, genuine echinating acanthostyles. The redefined genus Sollasella shares axial / extra-axial arrangement of the skeleton, special surface brushes of oxeas surrounding a single protruding style, and vestigial occurrence of acanthostyles with many Raspailia s.l. Nevertheless, it is retained as a separate genus, on account of its peculiar polygonal arrangement of surface pores. The distribution of the genus is disjunctive including both (southeast, northeast and northwest) Australian and Western Indian Ocean localities, but so far no intermediate records. Based on this morphological evidence, it is proposed – pending publication of corroborating molecular evidence to be presented in a follow-up study – to reassign Sollasella and the family Sollasellidae to the poecilosclerid family Raspailiidae

    SCIAMACHY Level 1 data: calibration concept and in-flight calibration

    Get PDF
    The calibration of SCIAMACHY was thoroughly checked since the instrument was launched on-board ENVISAT in February 2002. While SCIAMACHY's functional performance is excellent since launch, a number of technical difficulties have appeared, that required adjustments to the calibration. The problems can be separated into three types: (1) Those caused by the instrument and/or platform environment. Among these are the high water content in the satellite structure and/or MLI layer. This results in the deposition of ice on the detectors in channels 7 and 8 which seriously affects the retrievals in the IR, mostly because of the continuous change of the slit function caused by scattering of the light through the ice layer. Additionally a light leak in channel 7 severely hampers any retrieval from this channel. (2) Problems due to errors in the on-ground calibration and/or data processing affecting for example the radiometric calibration. A new approach based on a mixture of on-ground and in-flight data is shortly described here. (3) Problems caused by principal limitations of the calibration concept, e.g. the possible appearance of spectral structures after the polarisation correction due to unavoidable errors in the determination of atmospheric polarisation. In this paper we give a complete overview of the calibration and problems that still have to be solved. We will also give an indication of the effect of calibration problems on retrievals where possible. Since the operational processing chain is currently being updated and no newly processed data are available at this point in time, for some calibration issues only a rough estimate of the effect on Level 2 products can be given. However, it is the intention of this paper to serve as a future reference for detailed studies into specific calibration issues

    SCIAMACHY Level 1 data: calibration concept and in-flight calibration

    Get PDF
    The calibration of SCIAMACHY was thoroughly checked since the instrument was launched on-board ENVISAT in February 2002. While SCIAMACHY's functional performance is excellent since launch, a number of technical difficulties have appeared, that required adjustments to the calibration. The problems can be separated into three types: (1) Those caused by the instrument and/or platform environment. Among these are the high water content in the satellite structure and/or MLI layer. This results in the deposition of ice on the detectors in channels 7 and 8 which seriously affects the retrievals in the IR, mostly because of the continuous change of the slit function caused by scattering of the light through the ice layer. Additionally a light leak in channel 7 severely hampers any retrieval from this channel. (2) Problems due to errors in the on-ground calibration and/or data processing affecting for example the radiometric calibration. A new approach based on a mixture of onground and in-flight data is shortly described here. (3) Problems caused by principal limitations of the calibration concept, e.g. the possible appearance of spectral structures after the polarisation correction due to unavoidable errors in the determination of atmospheric polarisation. In this paper we give a complete overview of the calibration and problems that still have to be solved. We will also give an indication of the effect of calibration problems on retrievals where possible. Since the operational processing chain is currently being updated and no newly processed data are available at this point in time, for some calibration issues only a rough estimate of the effect on Level 2 products can be given. However, it is the intention of this paper to serve as a future reference for detailed studies into specific calibration issues

    Random Resonators and Prelocalized Modes in Disordered Dielectric Films

    Full text link
    Areal density of disorder-induced resonators with a high quality factor, Q≫1Q\gg 1, in a film with fluctuating refraction index is calculated theoretically. We demonstrate that for a given kl>1kl>1, where kk is the light wave vector, and ll is the transport mean free path, when {\em on average} the light propagation is diffusive, the likelihood for finding a random resonator increases dramatically with increasing the correlation radius of the disorder. Parameters of {\em most probable} resonators as functions of QQ and klkl are found.Comment: 6 pages including 2 figure

    Phylogenetic Relationships of the Marine Haplosclerida (Phylum Porifera) Employing Ribosomal (28S rRNA) and Mitochondrial (cox1, nad1) Gene Sequence Data

    Get PDF
    The systematics of the poriferan Order Haplosclerida (Class Demospongiae) has been under scrutiny for a number of years without resolution. Molecular data suggests that the order needs revision at all taxonomic levels. Here, we provide a comprehensive view of the phylogenetic relationships of the marine Haplosclerida using many species from across the order, and three gene regions. Gene trees generated using 28S rRNA, nad1 and cox1 gene data, under maximum likelihood and Bayesian approaches, are highly congruent and suggest the presence of four clades. Clade A is comprised primarily of species of Haliclona and Callyspongia, and clade B is comprised of H. simulans and H. vansoesti (Family Chalinidae), Amphimedon queenslandica (Family Niphatidae) and Tabulocalyx (Family Phloeodictyidae), Clade C is comprised primarily of members of the Families Petrosiidae and Niphatidae, while Clade D is comprised of Aka species. The polyphletic nature of the suborders, families and genera described in other studies is also found here

    Compared to conventional, ecological intensive management promotes beneficial proteolytic soil microbial communities for agro-ecosystem functioning under climate change-induced rain regimes

    Get PDF
    Projected climate change and rainfall variability will affect soil microbial communities, biogeochemical cycling and agriculture. Nitrogen (N) is the most limiting nutrient in agroecosystems and its cycling and availability is highly dependent on microbial driven processes. In agroecosystems, hydrolysis of organic nitrogen (N) is an important step in controlling soil N availability. We analyzed the effect of management (ecological intensive vs. conventional intensive) on N-cycling processes and involved microbial communities under climate change-induced rain regimes. Terrestrial model ecosystems originating from agroecosystems across Europe were subjected to four different rain regimes for 263 days. Using structural equation modelling we identified direct impacts of rain regimes on N-cycling processes, whereas N-related microbial communities were more resistant. In addition to rain regimes, management indirectly affected N-cycling processes via modifications of N-related microbial community composition. Ecological intensive management promoted a beneficial N-related microbial community composition involved in N-cycling processes under climate change-induced rain regimes. Exploratory analyses identified phosphorus-associated litter properties as possible drivers for the observed management effects on N-related microbial community composition. This work provides novel insights into mechanisms controlling agro-ecosystem functioning under climate change
    • …
    corecore