593 research outputs found

    Leptonic decay constants for D-mesons from 3-flavour CLS ensembles

    Full text link
    We report on the status of an ongoing effort by the RQCD and ALPHA Collaborations, aimed at determining leptonic decay constants of charmed mesons. Our analysis is based on large-volume ensembles generated within the CLS effort, employing N_f=2+1 non-perturbatively O(a) improved Wilson quarks, tree-level Symanzik-improved gauge action and open boundary conditions. The ensembles cover lattice spacings from a ~ 0.09 fm to a ~ 0.05 fm, with pion masses varied from 420 to 200 MeV. To extrapolate to the physical masses, we follow both the 2m_l+m_s=const. and the m_s=const. lines in parameter space.Comment: 8 pages including figures and tables, latex2e; Proceedings of the 35th International Symposium on Lattice Field Theory (Lattice 2017), 18-24 June 2017, Granada, Spai

    Integration Through Separation - The Role of Lateral Membrane Segregation in Nutrient Uptake

    Get PDF
    Nutrient transporters are prominent and ubiquitous components of the plasma membrane in all cell types. Their expression and regulation are tightly linked to the cells' needs. Environmental factors such as nutrient starvation or osmotic stress prompt an acute remodeling of transporters and the plasma membrane to efficiently maintain homeostasis in cell metabolism. Lateral confinement of nutrient transporters through dynamic segregation within the plasma membrane has recently emerged as an important phenomenon that facilitates spatiotemporal control of nutrient uptake and metabolic regulation. Here, we review recent studies highlighting the mechanisms connecting the function of amino acid permeases with their endocytic turnover and lateral segregation within the plasma membrane. These findings indicate that actively controlled lateral compartmentalization of plasma membrane components constitutes an important level of regulation during acute cellular adaptations.This work was supported by the German Research Foundation (SFB944, SFB1348, and WE2750/4-1 to RW-S) and the Cellsin-Motion Cluster of Excellence (EXC1003-CiM, University of Munster to RW-S). JVB was supported by a postdoctoral fellowship from the Basque Government

    On the magnetic equation of state in (2+1)-flavor QCD

    Full text link
    A first study of critical behavior in the vicinity of the chiral phase transition of (2+1)-flavor QCD is presented. We analyze the quark mass and volume dependence of the chiral condensate and chiral susceptibilities in QCD with two degenerate light quark masses and a strange quark. The strange quark mass (m_s) is chosen close to its physical value; the two degenerate light quark masses (m_l) are varied in a wide range 1/80 \le m_l/m_s \le 2/5, where the smallest light quark mass value corresponds to a pseudo-scalar Goldstone mass of about 75 MeV. All calculations are performed with staggered fermions on lattices with temporal extent Nt=4. We show that numerical results are consistent with O(N) scaling in the chiral limit. We find that in the region of physical light quark mass values, m_l/m_s \simeq 1/20, the temperature and quark mass dependence of the chiral condensate is already dominated by universal properties of QCD that are encoded in the scaling function for the chiral order parameter, the magnetic equation of state. We also provide evidence for the influence of thermal fluctuations of Goldstone modes on the chiral condensate at finite temperature. At temperatures below, but close to the chiral phase transition at vanishing quark mass, this leads to a characteristic dependence of the light quark chiral condensate on the square root of the light quark mass.Comment: 18 pages, 18 EPS-file

    Towards Open Innovation in Embedded Systems

    Get PDF
    By opening up a technology, firms can incorporate external actors to improve their products or to develop new applications on top of it. This phenomenon is discussed in the literature as open innovation (Chesbrough, 2003). An embedded system is an example of a modular and traditionally closed technology where parts of the system can be opened in order to stimulate innovation. In this paper, we want to explore how firms can pursue the opening of their embedded systems and their organization in order to unleash the potential of open innovation. By conducting twelve explorative interviews with experts in the field of embedded systems, we discovered three different forms of embedded systems openness and explored technical, internal and external organizational challenges associated with these three forms of openness

    Towards Mechanised Proofs in Double-Pushout Graph Transformation

    Get PDF

    Conserved Charge Fluctuations from Lattice QCD and the Beam Energy Scan

    Full text link
    We discuss the next-to-leading order Taylor expansion of ratios of cumulants of net-baryon number fluctuations. We focus on the relation between the skewness ratio, SBσB=χ3B/χ1BS_B\sigma_B = \chi_3^B/\chi_1^B, and the kurtosis ratio, κBσB2=χ4B/χ2B\kappa_B\sigma_B^2 =\chi_4^B/\chi_2^B. We show that differences in these two cumulant ratios are small for small values of the baryon chemical potential. The next-to-leading order correction to κBσB2\kappa_B\sigma_B^2 however is approximately three times larger than that for SBσBS_B\sigma_B. The former thus drops much more rapidly with increasing beam energy, sNN\sqrt{s_{NN}}. We argue that these generic patterns are consistent with current data on cumulants of net-proton number fluctuations measured by the STAR Collaboration at sNN≥19.6\sqrt{s_{NN}}\ge 19.6~GeV.Comment: 4 pages, 4 figures, contribution to the Quark Matter 2015 proceeding
    • …
    corecore