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Mechanised DPO Theory: Uniqueness of

Derivations and Church-Rosser Theorem

Robert Söldner and Detlef Plump

Department of Computer Science, University of York, York, UK
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Abstract. We demonstrate how to use the proof assistant Isabelle/HOL
to obtain machine-checked proofs of two fundamental theorems in the
double-pushout approach to graph transformation: the uniqueness of
derivations up to isomorphism and the so-called Church-Rosser theorem.
The őrst result involves proving the uniqueness of pushout complements,
őrst established by Rosen in 1975. The second result formalises Ehrig’s
and Kreowski’s proof of 1976 that parallelly independent direct deriva-
tions can be interchanged to obtain derivations ending in a common
graph. We also show how to overcome Isabelle’s limitation that graphs
in locales must have nodes and edges of pre-deőned types.

Keywords: Double-pushout graph transformation · Isabelle/HOL · Unique-
ness of derivations · Church-Rosser theorem

1 Introduction

Formal methods help to mitigate the risk of software defects by rigorously ver-
ifying the correctness of software against their specification. It involves the use
of mathematical techniques to prove that a software implementation meets a set
of specifications and requirements. These methods include techniques such as
model checking, theorem proving, and symbolic interpretation [13].

Interactive theorem provers have been used to rigorously prove mathematical
theorems such as the Four Colour Theorem [9], the Prime Number Theorem [1],
and the Kepler Conjecture [11]. Moreover, specific algorithms and software com-
ponents have been successfully verified against their specifications, such as the
seL4 Microkernel Verification [14] and the development and formal verification
of the CompCert compiler [16]. These achievements demonstrate the potential
of interactive theorem provers in verifying complex theories and systems.

Our research aims to rigorously prove fundamental results in the double-
pushout approach to graph transformations [6], which aligns with our long-term
goal of verifying specific programs in the graph programming language GP2
[21,4] using the Isabelle proof assistant [18]. This paper extends earlier work [24]
and builds the foundations for our long-term goal.

While we are not the first to apply interactive theorem provers to graph
transformation, previous approaches such as Strecker’s [25] do not address the
vast amount of theoretical results available for the double-pushout approach, see
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Section 6 for details. To the best of our knowledge, we are the first to formalise
basic results in double-pushout graph transformation.

As usual in the double-pushout approach, we want to abstract from node
and edge identifiers. Therefore, we introduce type variables, for each graph in-
dependently, that denote the type of the nodes and edges. Using different type
variables for different graphs allows to use Isabelle’s typechecker during devel-
opment to prevent accidental mixing of node or edge identifiers from different
graphs. However, a problem then is that Isabelle does not allow to quantify over
new type variables within locale definitions. This poses a challenge to formalise
the universal property of pushouts and pullbacks. We overcome this problem by
requiring, in locales only, that nodes and edges are natural numbers.

To prove the uniqueness of direct derivations, we break down the proof into
two parts. Firstly, we show the uniqueness of the pushout complement, and
subsequently show that the pushout object is also unique given an isomorphic
pushout complement. In the first part we follow Lack and Sobocinski’s proof
for adhesive categories [15], but replace adhesiveness with the pushout char-
acterisation by the reduced chain condition [8] together with composition and
decomposition lemmata for pushouts and pullbacks.

To prove the Church-Rosser theorem, we follow the original proof of Ehrig
and Kreowski [7] and rely again on the pushout characterisation by the reduced
chain condition. Additionally, we exploit composition and decomposition lem-
mata for pushouts and pullbacks, and also a lemma that allows to switch from
pullbacks to pushouts and vice versa.

We believe that our proofs could be generalised from graphs to adhesive cat-
egories, but this is not our goal. Firstly, we want to avoid the overhead necessary
to deal with an abstract class of categories, such as van Kampen squares. Sec-
ondly, our development addresses both abstract concepts such as pushouts and
pullbacks, and set-theoretic constructions for such concepts. Giving correspond-
ing constructions for all adhesive categories would not be feasible. Our goal is
to lay the foundations for verifying graph programs in the language GP 2, a lan-
guage whose syntax and semantics are built upon the double-pushout approach
to graph transformation. Our ultimate goal is to provide both interactive and
automatic tool support for formal reasoning on programs in graph transforma-
tion languages such as GP 2. An implementation of a proof assistant for GP2
will have to use the concrete definitions of graphs, attributes, rules, derivations
etc. Hence our formalisation focuses on concepts for transforming graphs. We are
not saying that formalising the theory of adhesive categories is not interesting,
but a large part of such an development would be a distraction from our main
goal.

The rest of the paper is structured as follows. The next section is a brief
introduction to Isabelle/HOL and the constructs used in our work. Section 3
describes the basics of DPO graph transformation and our formalisation in Is-
abelle. We show the uniqueness of direct derivations in Section 4, which entails
a proof of the uniqueness of pushout complements. Section 5 introduces the
so-called Church-Rosser theorem which states that parallelly independent di-
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rect derivations can be interchanged to obtain derivations ending in a common
graph. Section 6 provides a brief overview of related work. Finally, in Section 7,
we summarise our findings and discuss future work.

2 Isabelle/HOL

Isabelle is a generic, interactive theorem prover based on the so-called LCF ap-
proach. It is based on a small (meta-logical) proof kernel, which is responsible
for checking all proofs. This concept provides high confidence in the prover’s
soundness. Isabelle/HOL refers to the higher-order logic instantiation, which
is considered to be the most established calculus within the Isabelle distribu-
tion [20]. HOL is strongly typed with support for polymorphic, higher-order
functions [3].

In Isabelle/HOL, type variables are denoted by a leading apostrophe. For
example, a term f of type ’a is denoted by f :: ’a. Our formalisation is based on lo-
cales, a mechanism for writing and structuring parametric specifications. The lo-
cale’s context comprises a set of parameters (x1 . . . xn), assumptions (A1 . . . Am)
and concluding theorem

∧
x1 . . . xn. JA1; . . . ;AmK =⇒ C. This logical view of-

fers a compelling way of combining and enhancing contexts, resulting in a clear
and maintainable representation. A detailed introduction can be found in [2].

The special syntax JA1; . . . ; An K =⇒ P is syntactic sugar for A1 =⇒ . . .

=⇒ An =⇒ C and can be read as: if A1 and . . . and An hold, C is implied. Fur-
thermore, we use intelligible semi-automated reasoning (Isar) which is Isabelle‘s
language of writing structured proofs [26]. In contrast to apply-scripts, which
execute deduction rules in a linear manner, Isar follows a structured approach
resulting in increased readability and maintainability [18]. A general introduction
to Isabelle/HOL can be found in [18].

3 DPO Graph Transformation in Isabelle

We work with directed labelled graphs where the label alphabet consists of a set
of node labels and a set of edge labels from which a graph can be labelled. In
our Isabelle/HOL formalisation, we do not specify a concrete label alphabet and
leave it unspecified. As a result, stated properties are satisfied for all possible
label alphabets.

Our definition of graphs allows for parallel edges and loops, and we do not
consider variables as labels.

Definition 1 (Graph ). A graph G = (V,E, s, t, l,m) over the alphabet L
is a system where V is the finite set of nodes, E is the finite set of edges,
s, t : E → V functions assigning the source and target to each edge, l : V → LV

and m : E → LE are functions assigning a label to each node and edge. ⊓⊔

We represent this definition in Isabelle/HOL as a record type together with a
locale. A discussion of this approach can be found in earlier work [24].
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record (’v,’e,’l,’m) pre_graph =

nodes :: "’v set"

edges :: "’e set"

source :: "’e ⇒ ’v"

target :: "’e ⇒ ’v"

node_label :: "’v ⇒ ’l"

edge_label :: "’e ⇒ ’m"

In contrast to previous work [24], the locale required the built-in countable

typeclass for the node and edge identifiers to overcome the limitation of Is-
abelle/HOL of introducing new type variables within the definition of a locale.
This approach is similar to the one discussed in [23], in which the authors utilise
Isabelle’s statespace command to establish a local environment comprising ax-
ioms for the conversion of concrete types to natural numbers. Instead, we use
the injective to_nat function through the use of the countable typeclass to
facilitate the conversion of types.

locale graph =

fixes G :: "(’v::countable,’e::countable,’l,’m) pre_graph"

assumes
finite_nodes: "finite VG" and
finite_edges: "finite EG" and
source_integrity: "e ∈ EG =⇒ sG e ∈ VG" and
target_integrity: "e ∈ EG =⇒ tG e ∈ VG"

The injectivity also implies the existence of the inverse, from_nat. We use
this technique to translate arbitrary identifiers for nodes and edges into a generic
representation based on natural numbers.

Definition 2 (Graphs over naturals ). A graph whose nodes and edges are
natural numbers is called a natural graph.

In Isabelle/HOL, we create a type synonym ngraph, which specialises the exist-
ing pre_graph structure to nat, Isabelle’s built-in type of natural numbers, for
both identifiers.

type_synonym (’l,’m) ngraph = "(nat,nat,’l,’m) pre_graph"

The use of Isabelle/HOL’s built-in functions to_nat and from_nat allows
us to convert between both representations. We define the conversion function
to_ngraph from ngraph to the parameterised pre_graph structure as follows:

definition to_ngraph

:: "(’v::countable,’e :: countable,’l,’m) pre_graph

⇒ (’l,’m) ngraph" where
‹to_ngraph G ≡ (|nodes = to_nat ‘ VG

,edges = to_nat ‘ EG
,source = λe. to_nat (sG (from_nat e))

,target = λe. to_nat (tG (from_nat e))

,node_label = λv. lG (from_nat v)

,edge_label = λe. mG (from_nat e)|)›

The node and edge identifiers are mapped using to_nat while for the source
(target) function, we first translate the natural number back into the parame-
terised, then apply the original source (target) function, and finally convert it
back to a natural number.
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A graph morphism f : G→ H is a structure preserving mapping from a source
graph G to a target graph H. It consists of a pair of mappings f = (fV : VG →
VH , fE : VE → VH) for nodes and edges, respectively. We say a morphism f

is injective (surjective), if fV and fE are injective (surjective). A morphism
which is injective and surjective is called bijective. We call G and H isomorphic,
denoted by G ∼= H, if a bijective morphism exists. The morphism composition of
f : F → G and g : G→ H, which we denote by the usual infix notation g ◦ f , is
the pairwise composition of the node and edge mappings g◦f = (gV ◦fV , gE◦fE).
If a morphism is uniquely identified by its source and target, we sometimes omit
the name and write F → G → H to stand for the composition g ◦ f . In our
formalisation, we denote morphism composition using the ◦→ symbol to prevent
a naming clash with Isabelle’s built-in function composition. Different from our
earlier investigation [24], we generalise rules to use injective morphisms instead
of inclusions.

Definition 3 (Rule ). A rule (L ← K → R) consists of graphs L,K and R

over L together with injective morphisms K → L and K → R. ⊓⊔

Another difference is the introduction of a new record type pre_rule to be con-
sistent with our formalisation of graphs and morphisms. The left-hand, interface,
and right-hand side of a rule can be accessed using the corresponding record ac-
cessor functions lhs, interf, and rhs. This approach reduces the amount of
parameters we have to pass, resulting in better readability.

record (’v1,’e1,’v2,’e2,’v3,’e3,’l,’m) pre_rule =

lhs :: "(’v1,’e1,’l,’m) pre_graph"

interf :: "(’v2,’e2,’l,’m) pre_graph"

rhs :: "(’v3,’e3,’l,’m) pre_graph"

The rule locale now relies on the two injective morphisms K → L and
K → R. We populate the countable typeclass restriction to allow conversion
of graphs to graphs over naturals. In order to leverage Isabelle’s typechecker,
each graph in a rule is allowed to have a different type for the node and edge
identifiers.

locale rule =

k: injective_morphism "interf r" "lhs r" b +

r: injective_morphism "interf r" "rhs r" b’

for r :: "(’v1::countable,’e1::countable

,’v2::countable,’e2::countable

,’v3::countable,’e3::countable

,’l,’m) pre_rule" and b b’

In general, this design choice supports the development process, as the type-
checker is rejecting certain terms. For example, we are not able to express mem-
bership of an item x ∈ KV =⇒ x ∈ LV as the type of node identifiers in K

is v2 while L is of type v1. From now on, we omit explicit type and typeclass
restrictions within the shown code examples to enhance readability.

Definition 4 (Dangling condition ). Let b′ : K → L be an injective graph
morphism. An injective graph morphism g : L→ G satisfies the dangling condi-
tion if no edge in EG − gE(EL) is incident to a node in gV (VL − b′V (VK)). ⊓⊔



6 R. Söldner, D. Plump

Definition 5 (Pushout ). Given graph morphisms b : A→ B and c : A→ C,
a graph D together with graph morphisms f : B → D and g : C → D is a pushout
of A→ B and A→ C if the following holds (see Fig. 1a):

1. Commutativity: f ◦ b = g ◦ c, and
2. Universal property: For all graph morphisms p : B → H and t : C → H such

that p ◦ b = t ◦ c, there is a unique morphism u : D → H such that u ◦ f = p

and u ◦ g = t.

We call D the pushout object and C the pushout complement. ⊓⊔

Different from earlier work [24], we use graphs over naturals to formalise the
universal property in order to overcome the mentioned limitation of Isabelle’s
locale mechanism. An important property is that pushouts are unique up to

b

c g

f

p

t

A

B

C

D H

(a) Pushout A→ B → D ← C ← A

b

c g

f

p

t

A

B

C

DH

(b) Pullback D ← C ← A→ B → D

Fig. 1: Pushout and Pullback diagrams

isomorphism, as formalised and proved in [24].

Theorem 1 (Uniqueness of pushouts [6] ). Let b : A→ B and c : A→ C

together with D induce a pushout as depicted in Fig. 1a. A graph H together
with morphisms p : B → H and t : C → H is a pushout of b and c if and only if
there is an isomorphism u : D → H such that u ◦ f = p and u ◦ g = t. ⊓⊔

The transformation of graphs by rules gives rise to direct derivations.

Definition 6 (Direct derivation ). Let G and H be graphs, r = ⟨L← K →
R⟩ and g : L→ G an injective morphism satisfying the dangling condition. Then
G directly derives H by r and g, denoted by G⇒r,g H, as depicted in the double
pushout diagram in Fig. 2. ⊓⊔

Note that the injectivity of the matching morphism g : L → K leads to a DPO
approach that is more expressive than in the case of arbitrary matches [10].

In our earlier work [24], we used the direct_derivation locale to represent
the operational view using gluing and deletion. Instead, here we use the categor-
ical definition relying on pushouts. The operational definition is available within
the direct_derivation_construction locale. We do not repeat its definition
here, as it is not relevant for the current discussion.
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locale direct_derivation =

r: rule r b b’ +

gi: injective_morphism "lhs r" G g +

po1: pushout_diagram "interf r" "lhs r" D G b d g c +

po2: pushout_diagram "interf r" "rhs r" D H b’ d f c’

for r b b’ G g D d c H f c’

begin

g

L K R

HDG

(1) (2)

Fig. 2: Double-pushout diagram

A B E

FDC

(1) (2)

Fig. 3: Composite commutative diagram

A pullback is dual to the concept of pushout.

Definition 7 (Pullback ). Given graph morphism f : B → D and g : C → D,
a graph A together with graph morphisms b : A→ B and c : A→ C is a pullback
of C → D ← B if the following holds (see Fig. 1b):

1. Commutativity: f ◦ b = g ◦ c, and
2. Universal property: For all graph morphisms p : H → B and t : H → C such

that f ◦ p = g ◦ t, there is a unique morphism u : H → A such that b ◦ u = p

and c ◦ u = t. ⊓⊔

Definition 8 (Pullback construction [6] ). Let f : B → D and g : C → D

be graph morphisms. Then the following defines a graph A (see Fig. 1b), the
pullback object of f and g:

1. A = {⟨x, y⟩ ∈ B × C | f(x) = g(y)} for nodes and edges, respectively
2. sA(⟨x, y⟩) = ⟨sB(x), sc(y)⟩ for ⟨x, y⟩ ∈ EB × EC

3. lA(⟨x, y⟩) = lB(x) for ⟨x, y⟩ ∈ VB × VC

4. b : A→ B and c : A→ C are defined by b(⟨x, y⟩) = x and c(⟨x, y⟩) = y ⊓⊔

We formalise the pullback construction in the pullback_construction locale,
assuming morphisms f : B → D and g : C → D. Our definition of the pullback
object A is as follows:

abbreviation V where
‹V ≡ {(x,y). x ∈ VB ∧ y ∈ VC ∧ fV x = gV y}›

abbreviation E where
‹E ≡ {(x,y). x ∈ EB ∧ y ∈ EC ∧ fE x = gE y}›

fun s where ‹s (x,y) = (sB x, sC y)›

fun t where ‹t (x,y) = (tB x, tC y)›

fun l where ‹l (x,_) = lB x›

fun m where ‹m (x,_) = mB x›

definition A where
‹A ≡ (|nodes = V, edges = E, source = s, target = t

,node_label = l, edge_label = m |)›
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The next lemma shows that this construction leads to a graph that is indeed
the pullback object of Fig. 1b.

Lemma 1 (Correctness of pullback construction ). Let f : B → D and
g : C → D be graph morphisms and let graph A and graph morphisms b and c be
defined as in Def. 8. Then the square in Fig. 1b is a pullback diagram.

We use the sublocale command, instead of interpretation, to make these
facts persistent in the current context via the pb identifier.

sublocale pb: pullback_diagram A B C D b c f g

Similar to pushouts, pullbacks are unique up to isomorphism.

Theorem 2 (Uniqueness of pullbacks ). Let f : B → D and g : C → D

together with A induce a pullback as depicted in Fig. 1b. A graph H together
with morphisms p : H → B and t : H → C is a pullback of f and g if and only
if there is an isomorphism u : H → U such that b ◦ u = p and c ◦ u = t.

The proof is dual to the uniqueness of the pushout (cf. Theorem 1) and we omit
it due to space limitations. Essential properties for the forthcoming proofs in
Section 4 and Section 5 are the composition and decomposition of pushouts and
pullbacks.

Lemma 2 (Pushout/Pullback composition and decomposition). Given
the commutative diagram in Fig. 3, then the following statements are true:

1. If (1) and (2) are pushouts, so is (1) + (2)
2. If (1) and (1) + (2) are pushouts, so is (2)
3. If (1) and (2) are pullbacks, so is (1) + (2)
4. If (2) and (1) + (2) are pullbacks, so is (1) ⊓⊔

For example, item 3 of Lemma 2 is expressed in Isabelle/HOL as follows:

lemma pullback_composition:

assumes
1: ‹pullback_diagram A B C D f g g’ f’› and
2: ‹pullback_diagram B E D F e g’ e’’ e’›

shows ‹pullback_diagram A E C F (e ◦→ f) g e’’ (e’ ◦→ f’)›

The proof is analogous to [6, Fact 2.27]. In the next section, we show that
direct derivations have a unique (up to isomorphism) result.

4 Uniqueness of Direct Derivations

The uniqueness of direct derivations is an important property when reasoning
about rule applications. This section does not rely on the adhesiveness of the
category of graphs, instead we base our proof on the characterisation of graph
pushouts in [8]. Before stating the theorem, we introduce additional facts, mainly
about pushouts and pullbacks, which are used within the proof of Theorem 4.

In general, pushouts along injective morphisms are also pullbacks.
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K

K U

D
′

K

L D

G

id h

id

d′

b

k

l

m

b
d

g c

Fig. 4: Commutative cube based on direct derivation [15]

Lemma 3 (Injective pushouts are pullbacks [6] ). A pushout diagram as
depicted in Fig. 1a is also a pullback if A→ B is injective.

The proof relies on the pullback construction (cf. Def. 8) and the fact that pull-
backs are unique (cf. Theorem 2). Furthermore, pushouts and pullbacks preserve
injectivity (surjectivity) in the sense that the opposite morphisms of the corre-
sponding diagram (see Fig. 1) is also injective (surjective).

Lemma 4 (Preservation of injective and surjective morphisms [6] ).
Given a pushout diagram in Fig. 1a, if A → B is injective (surjective), so is
C → D. Given a pullback diagram in Fig. 1b, if C → D is injective (surjective),
so is A→ B.

Certain forms of commutative diagrams give raise to pullbacks. This property is
used in the proof of the uniqueness of the pushout complement (cf. Theorem 4).

Lemma 5 (Special pullbacks [6] ). The commutative diagram in Fig. 6 is
a pullback if m is injective.

Definition 9 (Reduced chain-condition [8]). The commutative diagram in
Fig. 5 satisfies the reduced chain-condition, if for all b′ ∈ B and c′ ∈ C with
f(b′) = g(c′) there is a ∈ A such that b(a) = b′ and c(a) = c′.

We show that pullbacks satisfy the reduced chain-condition.

Lemma 6 (Pullbacks satisfy the reduced chain-condition ). Each pull-
back diagram as depicted in Fig. 1b satisfies the reduced chain-condition.

We state this lemma in Isabelle as follows:

lemma reduced_chain_condition_nodes:

fixes x y

assumes ‹x ∈ VB› ‹y ∈ VC› ‹fV x = gV y›

shows ‹∃ a ∈ VA. (bV a = x ∧ cV a = y)›
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Our proof relies on the pullback construction (cf. Def. 8) and the fact, that
pullbacks are unique (cf. Theorem 2).

Definition 10 (Jointly surjective). Given injective graph morphisms f : B →
D and g : C → D. f and g are jointly surjective, if each item in D has a preimage
in B or C.

Theorem 3 (Pushout characterization [8] ). The commutative diagram
in Fig. 5 is a pushout, if the following conditions are true:

1. The morphisms b, c, f, g are injective.
2. The diagram satisfies the reduced chain-condition.
3. The morphisms g, f are jointly surjective.

g

b

f

c

C

A

D

B

Fig. 5: Commutative diagram

id

id m

m

C

C

C

DH

Fig. 6: Special pullback diagram

The following theorem implies the uniqueness of the pushout complement,
which is known to hold if the morphism K → L in the applied rule is injective,
even if the matching morphism L → G is non-injective [22]. In our case, both
morphisms are injective.

Theorem 4 (Uniqueness of direct derivations ). Let (1)+(2) and (3)+(4)
be direct derivations as depicted in Fig. 9. Then D ∼= D′ and H ∼= H ′.

This theorem is stated in Isabelle/HOL within the locale direct_derivation.
Within the assumes part, the second direct derivation, which we call dd2, is
introduced.

theorem uniqueness_direct_derivation:

assumes
dd2: ‹direct_derivation r b b’ G g D’ d’ m H’ f’ m’›

shows ‹(∃ u. bijective_morphism D D’ u) ∧
(∃ u. bijective_morphism H H’ u)›

The uniqueness proof of direct derivations (see Fig.9) is performed in two
phases. Firstly, we show the uniqueness of the pushout complement, which was
first shown by Rosen [22]. Subsequently, we show that given a bijection between
D and D′, the pushout object is also unique up to isomorphism.
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Proof (Theorem 4). The first phase of our proof closely follows Lack and Sobocin-
ski [15], except for the final step, where the authors rely on adhesiveness. We
finish the proof by relying on the pushout characterization (cf. Theorem 3).
Given the two pushout diagrams (1) and (3) in Fig. 9 with injective K → D

and K → D′. To show the existence of a bijection between D and D′, we con-
struct the commutative cube in Fig. 4 with (1) as the bottom face and (3) as
the front-left face, and show that l and k are bijections. For the latter, we show
that the back-right and top faces are pushouts. (In [15], this is shown by adhe-
siveness, while we argue with the pushout characterization of Theorem 3.) The
front-right face is a pullback construction (cf. Def. 8) which we tell Isabelle by
interpretation of the pullback_construction locale.

interpret fr: pullback_construction D G D’ c m ..

We use Isabelle’s shorthand notation .. for the standard tactic, to discharge
the proof obligations which follow from the assumptions. Note that the pullback
object together with the two morphisms is specified within the locale. Subsequent
code will reference the pullback object by fr.A, the morphism l by fr.b and k by
fr.c (see Fig. 4). (The identifiers within locales are given by the definition. As
a result, the pullback object of the front-right face is referred to as A rather than
the interpretation parameter K.) From Lemma 5, in our formalization referenced
by fun_algrtr_4_7_2, we know that the back-left face is a pullback.

interpret bl: pullback_diagram "interf r" "interf r"

"interf r" "lhs r" idM idM b b

using fun_algrtr_4_7_2[OF r.k.injective_morphism_axioms]

by assumption

To show that the back-right face is a pullback, we start with the front-left
face. As the front left face is a pushout and m is injective, n′ is too (cf. Lemma 4).
Since pushouts along injective morphisms are also pullbacks (cf. Lemma 3), the
front-left face is also a pullback. Using the pullback composition (cf. Lemma 2),
the back face is pullback.

interpret backside: pullback_diagram "interf r" D’ "interf r" G

‹d’ ◦→ idM› idM m ‹g ◦→ b›

using pullback_composition[OF bl.pullback_diagram_axioms

dd2.pb1.flip_diagram]

by assumption

We define h : K → U using both, the d and d′ morphisms as h x = (d x, d′ x)
and subsequently prove the morphism properties.

define h where
‹h ≡ (|node_map = λv. (dV v, d’V v)

,edge_map = λe. (dE e, d’E e)|)›

We follow by showing that the top and bottom face commutes, i.e., d′ ◦ id =
k ◦ h and g ◦ b = c ◦ d, respectively. This establishes the fact, that the right-side
of the cube is a pullback. Using the pullback decomposition (cf. Lemma 2), the
back-right face is a pullback. To approach the top-face, we start by showing
it is a pullback, and subsequently it is also a pushout. Since m is injective,
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from Lemma 3 we know the bottom-face is also a pullback. Using the pullback
composition (cf. Lemma 2), the bottom and back-left face is a pullback. By
commutativity of the bottom face g ◦ b = c ◦ d and back-right face l ◦ h = d ◦ id,
the front-right and top face is a pullback. By the pullback decomposition (cf.
Lemma 2) we can show that the top face is a pullback. We show this pullback is
also a pushout by using the pushout characterization (cf. Theorem 3). Therefore,
we need to show that h is injective, which follows from the construction above
of h.

interpret h: injective_morphism "interf r" fr.A h

proof
show ‹inj_on hV Vinterf r›

using d_inj.inj_nodes

by (simp add: h_def inj_on_def)

next
show ‹inj_on hE Einterf r›

using d_inj.inj_edges

by (simp add: h_def inj_on_def)

qed

Joint surjectivity of k and d′ follows from the pullback construction and the
reduced-chain condition (cf. Lemma 9) of the front-left and top face. Note, that
the reduced-chain condition holds for all pullbacks. Finally, we need to show that
k and l are bijections. Since the top face is a pushout and the C → C morphism
is a bijection, by Lemma 4, so is k.

interpret k_bij: bijective_morphism fr.A D’ fr.c

using top.b_bij_imp_g_bij[OF r.k.G.idm.bijective_morphism_axioms]

by assumption

To show l is a bijection, we show that the back-right face is a pushout by
using the pushout characterization. The bijectivity of l follows from the fact
pushouts preserve bijections. We follow by defining the morphism u : D → D′

as the composition of the l−1 and k. The inverse of l is obtained by using a
lemma within our formalization of bijective morphisms, stating the existence of
the inverse (ex_inv) using the obtain keyword:

obtain linv where linv:‹bijective_morphism D fr.A linv›

and ‹
∧
v. v ∈ VD=⇒ fr.b ◦→linvV v = v›

‹
∧
e. e ∈ ED=⇒ fr.b ◦→linvE e = e›

and ‹
∧
v. v ∈ Vfr.A=⇒ linv ◦→ fr.b V v = v›

‹
∧
e. e ∈ Efr.A=⇒ linv ◦→ fr.b E e= e›

by (metis l_bij.ex_inv)

We finish the first phase by defining the morphism u : D → D′ as k ◦ l−1

and subsequently prove that morphism composition preserves bijections (using
the already proven bij_comp_is_bij lemma).

define u where ‹u ≡ fr.c ◦→ linv›

interpret u: bijective_morphism D D’ u

using bij_comp_bij_is_bij[OF linv k_bij.bijective_morphism_axioms]

by (simp add: u_def)
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b′

d c′

f

f′

m′
◦ u

u′K

R

D

H H
′

Fig. 7: Construction of u′

b′

d′ m′

f′

f

c′ ◦ u−1

u′′K

R

D
′

H
′ H

Fig. 8: Construction of u′′

The second phase is to show the existence of an isomorphism H → H ′. We
start by obtaining u′ : H → H ′ and u′′ : H ′ → H and show they are inverses.
We use the universal property of the pushout depicted in Fig. 7, which requires
us to show commutativity: f ′ ◦ b′ = m′ ◦ u ◦ d. So we substitute u ◦ d = d′ into
the commutativity equation of pushout (4) (f ′ ◦ b′ = m′ ◦ d′) in Fig. 9. We get

u ◦ d = d′ as follows: u ◦ d
(1)
= k ◦ l−1 ◦ d

(2)
= k ◦ l−1 ◦ l ◦ h

(3)
= k ◦ h

(4)
= d′. Here, (1)

is justified by the definition of u, (2) by the definition of l and h (which makes
the back-right face in Fig. 4 commute), (3) by inverse cancellation, and finally
(4) by the definitions of k and h (similarly to step (2)). We obtain u′′ : H ′ → H

by using the universal property of the pushout depicted in Fig. 8. We show
the commutativity f ◦ b = c′ ◦ u−1 ◦ d′ by substituting u−1 ◦ d′ = d into the

commutativity equation of pushout (2) (f ◦ b′ = c′ ◦ d) in Fig. 9: u−1 ◦ d′
(5)
=

u−1 ◦u◦d
(6)
= d. Here, (5) is justified by the above proven equation u◦d = d′, and

(6) follows from cancellation of inverses. The final steps are to show u′ ◦ u′′ = id

and u′′ ◦ u′ = id. To show the first equation, we start with f ′ = u′ ◦ u′′ ◦ f ′ and
m′ = u′ ◦ u′′ ◦ m′, which we get from the definitions of u′ and u′′. Using the
universal property of pushout (4) in Fig. 9 together with H ′, f ′,m′, we conclude
that the identity is the unique morphism H ′ → H ′ that makes the triangles
commute. If u′◦u′′ makes the triangles commute as well, it is equal to the identity

morphism. The first triangle commutes because u′ ◦ u′′ ◦ f ′
(7)
= u′ ◦ f

(8)
= f ′. Here,

(7) and (8) are justified by the corresponding construction of u′ and u′′ (see the
triangles in Fig. 7 and Fig. 8). For the second triangle, we start by using the
commutativity of the bottom triangle in Fig. 7 and composing to the right with
u−1: u′◦c′◦u−1 = m′◦u◦u−1. By cancellation of inverses we get u′◦c′◦u−1 = m′

and by substituting c′ ◦ u−1 using the commutativity of the bottom triangle in
Fig. 8, we prove that u′ ◦ u′′ ◦ m′ = m′. Showing that u′′ ◦ u′ = id follows
analogously and is omitted to save space. ⊓⊔

With the uniqueness of direct derivations (cf. Theorem 4), we get the uniqueness
of the pushout complement.

Corollary 1 (Uniqueness of pushout complements ). Given a pushout
as depicted in Fig. 1a where A→ B is injective. Then the graph D is unique up
to isomorphism.
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g

g

L K R

HDG

(1) (2)

D
′

H
′G

(3) (4)

Fig. 9: Uniqueness of direct derivations

p1,m1 p2,m2

p1,m
1′

p2,m
2′

G

H2H1

G
′

Fig. 10: Church-Rosser Theorem

We omit the proof to conserve space. The upcoming section introduces the so-
called Church-Rosser Theorem, which states that parallell independent direct
derivations have the diamond property.

5 Church-Rosser Theorem

The Church-Rosser Theorem refers to the idea that two graph transformation
rules can be applied independently of each other, either sequentially or in parallel,
without changing the final result. We follow the independence characterization
of direct derivations given in [6].

Definition 11 (Parallel independence [6] ). The two direct derivations
G ⇒p1,m1

H1 and G ⇒p2,m2
H2 in Fig. 11 are parallel independent if there

exists morphisms L1 → D2 and L→D1 such that L1 → D2 → G = L1 → G and
L2 → D1 → G = L2 → G. ⊓⊔

m1 m2

R1 K1 L1

G

L2 K2 R2

H2D2H1 D1

(2) (1) (3) (4)

Fig. 11: Parallel independence

locale parallel_independence =

p1: direct_derivation r1 b1 b1’ G g1 D1 m1 c1 H1 f1 h1 +

p2: direct_derivation r2 b2 b2’ G g2 D2 m2 c2 H2 f2 h2

for r1 b1 b1’ G g1 D1 m1 c1 H1 f1 h1

r2 b2 b2’ g2 D2 m2 c2 H2 f2 h2 +

assumes
i: ‹∃ i. morphism (lhs r1) D2 i

∧ (∀ v ∈ Vlhs r1
. c2 ◦→ iV v = g1V v)

∧ (∀ e ∈ Elhs r1
. c2 ◦→ iE e = g1E e)› and

j: ‹∃ j. morphism (lhs r2) D1 j

∧ (∀ v ∈ Vlhs r2
. c1 ◦→ jV v = g2V v)

∧ (∀ e ∈ Elhs r2
. c1 ◦→ jE e = g2E e)›
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Theorem 5 (Church-Rosser Theorem [7] ). Given two parallel indepen-
dent direct derivations G ⇒p1,m1

H1 and G ⇒p2,m2
H2, there is a graph G′

together with direct derivations H1 ⇒p2,m
′

2
G′ and H2 ⇒p1,m

′

1
G′.

Actually, we have shown more, namely that G ⇒p1,m1
H1 ⇒p2,m

′

2
G′ and

G ⇒p2,m2
H2 ⇒p1,m

′

1
G′ are sequentially independent. We express this theo-

rem in Isabelle/HOL within the parallel_independence locale as follows:

theorem (in parallel_independence) church_rosser:

shows ‹∃ g’ D’ m’ c’ H f’ h’ g’’ D’’ m’’ c’’ H f’’ h’’.

direct_derivation r2 b2 b2’ H2 g’ D’ m’ c’ H f’ h’

∧ direct_derivation r1 b1 b1’ H1 g’’ D’’ m’’ c’’ H f’’ h’’›

Proof (Theorem 5). We closely follow the original proof by Ehrig and Kre-
owksi [7] where in a first stage, the pushouts (1) - (4) of Fig. 11 are vertically
decomposed into pushouts (11) + (11), (21) + (22), (31) + (32), and (41) + (42),
as depicted in Fig. 12. In a second stage, these pushouts are rearranged as in
Fig. 13 and the new pushout (5) is constructed. Subsequently, we prove the two
vertical pushouts (11) and (12). The pushouts (31) and (32) follow analogously
and are not shown to conserve space.

We start by constructing the pullback (12) which we bind to the symbol c12,
allowing later references, using our pullback_construction locale.

interpret "c12": pullback_construction D1 G D2 c1 c2 ..

The existence of K1 → D follows from the universal property, and D → D2

from the construction of the pullback (12):

obtain j1 where ‹morphism (interf r1) c12.A j1›

and ‹
∧
v. v∈Vinterf r1

=⇒ c12.b ◦→ j1
V v = m1V v›

‹
∧
e. e∈Einterf r1

=⇒ c12.b ◦→ j1
E e = m1E e›

and ‹
∧
v. v∈Vinterf r1

=⇒ c12.c ◦→ j1
V v = i1 ◦→ b1

V v›

‹
∧
e. e∈Einterf r1

=⇒ c12.c ◦→ j1
E e = i1 ◦→ b1

E e›

using c12.pb.universal_property_exist_gen[OF p1.r.k.G.graph_axioms

wf_b1i1.morphism_axioms p1.po1.c.morphism_axioms a b]

by fast

From the fact that (1) = (11) + (12), we know (11) + (12) is a pushout and
since K1 → L1 is injective, it is also a pullback (cf. Lemma 3). By pullback
decomposition (cf. Lemma 2), (11) is a pullback. We use the pushout charac-
terization (cf. Theorem 3) to show it is also a pushout, which requires us to
show injectivity of all morphisms, reduced-chain condition, and joint surjectiv-
ity of D → D2 and L1 → D2. The injectivity of K1 → L1 is given, D → D2

follows from pushout (1) and the injectivity of K1 → L1 (cf. Lemma 4). To
show the injectivity of L1 → D2, we use the parallel independence (cf. Def. 11)
L1 → D2 → G = L1 → G and the injectivity of L1 → G.To show injectivity of
K1 → D, we use the triangle L1 → D2 → G = L1 → G obtained by the univer-
sal property of pullback (12) and the injectivity of both, L1 → G and D2 → G.
The reduced-chain condition follows by Lemma 6. To show the joint surjectivity
of D → D2 and L1 → D2 (that is each x in D2 has a preimage in either D or
L1). Let y be the image of x in G. We apply the joint surjectivity of pushout
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(11) + (12) to y, that is y has a preimage in either D1 or L1. In the former case
(y has a preimage z in D1): from the pullback construction (cf. Def. 8), we get
the common preimage of z and x in D which shows the former case. In the latter
case, y has a preimage in L1 via D2. Since D2 → G is injective, that preimage is
mapped via x which means, x has a preimage in L1. This shows the latter case.

m1 m2

R1 K1 L1

G

L2 K2 R2

H2D2

D2 D

(21) (11) (31) (41)

D D1D1

D1H1

D2

(22) (12) (32) (42)

Fig. 12: Vertical pushout decomposition of Fig. 11

The pushouts (21), (41) are constructed using the gluing locale (see [24] for
a detailed description).

interpret "c21": gluing "interf r1" c12.A "rhs r1" j1 b1’ ..
interpret "c41": gluing "interf r2" c12.A "rhs r2" j2 b2’ ..

The existence of D2 → H1 and D1 → H2 follows from the universal property
of pushout (21) and (41), respectively. Pushouts (22) and (42) are obtained using
the pushout decomposition (see Lemma 2). This finishes the first stage of the
proof. The second stage rearranges the pushouts, as depicted in Fig. 13, such

m′

2
m1

L1 K1 R1

H1

L2 K2 R2

G
′

D2

D2 D

(11) (21) (31) (41)

D D1D1

D1G

D2

(12) (22) (22) (5)

m′

1
m2

L2 K2 R2

H2

L1 K1 R1

G
′

D1

D1 D

(31) (41) (11) (21)

D D2D2

D2G

D1

(32) (42) (42) (5)

Fig. 13: Rearranged pushouts of Fig. 12
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that we obtain two direct derivations H1 ⇒p2,m
′

2
G′ and H2 ⇒p1,m

′

1
G′. Here,

we compose the pushouts from stage 1 (see Lemma 2). Exemplary, the pushouts
(31) and (22) are composed in Isabelle/HOL.

interpret "31+22": pushout_diagram "interf r2" c21.H "lhs r2" H1

"c21.c ◦→ j2" b2 s1 "h1 ◦→ i2"

using pushout_composition[OF

"31.flip_diagram" "22.flip_diagram" ] by assumption

The final pushout (5) is constructed and the pushouts are rearranged and
vertically composed as depicted in Fig. 13. Isabelle is able to discharge the goal
at this point automatically as we instantiated all required locales. This finishes
the second stage of the proof.

6 Related Work

Isabelle/HOL was used by Strecker for interactive reasoning about graph trans-
formations [25]. A major difference to our work is that he introduces a form of
graph transformation that does not fit with any of the established approaches
such as the double-pushout approach. As a consequence, his framework can-
not draw on existing theory. Another difference is that [25] focuses on verifying
first-order properties of some form of graph programs while the current paper is
concerned with formalising and proving fundamental results of the DPO theory.
Strecker’s formalisation fixes node and edge identifiers as natural numbers, while
we keep them abstract. Similar to our development, Isabelle’s locale mechanism
is employed.

Our formalisation of graphs follows the work of Noschinski [19], where records
are used to group components and locales to enforce properties such as the well-
formedness of graphs or morphisms. The main objective of [19] is to formalise
and prove fundamental results of classical graph theory, such as Kuratowski’s
theorem.

da Costa Cavalheiro et al. [5] use the Event-B specification method and its
associated theorem prover to reason about double-pushout and single-pushout
graph transformations, where rules can have attributes and negative application
conditions. Event-B is based on first-order logic and typed set theory. Different
from our approach, [5] gives only a non-formalised proof for the equivalence
between the abstract definition of pushouts and the set-theoretic construction.
In contrast, we formalise both the abstract and the operational view and prove
their correspondence using Isabelle/HOL. As Event-B is based on first-order
logic, the properties that can be expressed and verified are quite limited. For it
is known that non-local properties of finite graphs cannot be specified in first-
order logic [17]. This restriction does not apply to our formalisation as we can
make full use of higher-order logic.

7 Conclusion

In this paper, we formalise and prove in Isabelle/HOL two fundamental results
in the theory of double-pushout graph transformation, namely the uniqueness
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of direct derivations and the so-called Church-Rosser theorem. Furthermore,
we describe an approach to overcome the restriction of introducing new type
variables within locale definitions.

Drawing on our experience so far, we plan to simplify the formalisation by
reducing the number of type variables needed. The idea is to employ a single
global type variable for both node and edge identifiers within graphs and mor-
phisms. As a consequence, each graph in our commutative diagrams (such as
pushouts or pullbacks) would share this ID-type whereas currently, each occur-
ring graph may have a different ID-type. This would significantly decrease the
number of parameters in our formalisation, and would also eliminate the need
to work around Isabelle’s restriction on introducing new type variables within
locales. To implement this idea, we will need to revise our pushout and pullback
constructions.

Our next objective is to extend the current approach to encompass attributed
DPO graph transformation in the sense of [12]. Ultimately, we want to build
a GP 2 proof assistant within Isabelle/HOL that allows to interactively verify
individual graph programs. Such a tool may use, for example, the proof calculus
presented in [27].

Acknowledgements We are grateful to Brian Courthoute and Annegret Habel
for discussions on the topics of this paper.
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