15 research outputs found

    Addressing chemical pollution in biodiversity research

    Get PDF
    Climate change, biodiversity loss, and chemical pollution are planetary-scale emergencies requiring urgent mitigation actions. As these "triple crises" are deeply interlinked, they need to be tackled in an integrative manner. However, while climate change and biodiversity are often studied together, chemical pollution as a global change factor contributing to worldwide biodiversity loss has received much less attention in biodiversity research so far. Here, we review evidence showing that the multifaceted effects of anthropogenic chemicals in the environment are posing a growing threat to biodiversity and ecosystems. Therefore, failure to account for pollution effects may significantly undermine the success of biodiversity protection efforts. We argue that progress in understanding and counteracting the negative impact of chemical pollution on biodiversity requires collective efforts of scientists from different disciplines, including but not limited to ecology, ecotoxicology, and environmental chemistry. Importantly, recent developments in these fields have now enabled comprehensive studies that could efficiently address the manifold interactions between chemicals and ecosystems. Based on their experience with intricate studies of biodiversity, ecologists are well equipped to embrace the additional challenge of chemical complexity through interdisciplinary collaborations. This offers a unique opportunity to jointly advance a seminal frontier in pollution ecology and facilitate the development of innovative solutions for environmental protection

    Conflicts of Interest in the Assessment of Chemicals, Waste, and Pollution

    Get PDF
    Pollution by chemicals and waste impacts human and ecosystem health on regional, national, and global scales, resulting, together with climate change and biodiversity loss, in a triple planetary crisis. Consequently, in 2022, countries agreed to establish an intergovernmental science–policy panel (SPP) on chemicals, waste, and pollution prevention, complementary to the existing intergovernmental science–policy bodies on climate change and biodiversity. To ensure the SPP’s success, it is imperative to protect it from conflicts of interest (COI). Here, we (i) define and review the implications of COI, and its relevance for the management of chemicals, waste, and pollution; (ii) summarize established tactics to manufacture doubt in favor of vested interests, i.e., to counter scientific evidence and/or to promote misleading narratives favorable to financial interests; and (iii) illustrate these with selected examples. This analysis leads to a review of arguments for and against chemical industry representation in the SPP’s work. We further (iv) rebut an assertion voiced by some that the chemical industry should be directly involved in the panel’s work because it possesses data on chemicals essential for the panel’s activities. Finally, (v) we present steps that should be taken to prevent the detrimental impacts of COI in the work of the SPP. In particular, we propose to include an independent auditor’s role in the SPP to ensure that participation and processes follow clear COI rules. Among others, the auditor should evaluate the content of the assessments produced to ensure unbiased representation of information that underpins the SPP’s activities

    Status Update and Interim Results from the Asymptomatic Carotid Surgery Trial-2 (ACST-2)

    Get PDF
    Objectives: ACST-2 is currently the largest trial ever conducted to compare carotid artery stenting (CAS) with carotid endarterectomy (CEA) in patients with severe asymptomatic carotid stenosis requiring revascularization. Methods: Patients are entered into ACST-2 when revascularization is felt to be clearly indicated, when CEA and CAS are both possible, but where there is substantial uncertainty as to which is most appropriate. Trial surgeons and interventionalists are expected to use their usual techniques and CE-approved devices. We report baseline characteristics and blinded combined interim results for 30-day mortality and major morbidity for 986 patients in the ongoing trial up to September 2012. Results: A total of 986 patients (687 men, 299 women), mean age 68.7 years (SD ± 8.1) were randomized equally to CEA or CAS. Most (96%) had ipsilateral stenosis of 70-99% (median 80%) with contralateral stenoses of 50-99% in 30% and contralateral occlusion in 8%. Patients were on appropriate medical treatment. For 691 patients undergoing intervention with at least 1-month follow-up and Rankin scoring at 6 months for any stroke, the overall serious cardiovascular event rate of periprocedural (within 30 days) disabling stroke, fatal myocardial infarction, and death at 30 days was 1.0%. Conclusions: Early ACST-2 results suggest contemporary carotid intervention for asymptomatic stenosis has a low risk of serious morbidity and mortality, on par with other recent trials. The trial continues to recruit, to monitor periprocedural events and all types of stroke, aiming to randomize up to 5,000 patients to determine any differential outcomes between interventions. Clinical trial: ISRCTN21144362. © 2013 European Society for Vascular Surgery. Published by Elsevier Ltd. All rights reserved

    Stocks and Flows of PBDEs in Products from Use to Waste in the U.S. and Canada from 1970 to 2020

    No full text
    The time-dependent stock of PBDEs contained in in-use products (excluding building materials and large vehicles) was estimated for the U.S. and Canada from 1970 to 2020 based on product consumption patterns, PBDE contents, and product lifespan. The stocks of penta- and octaBDE peaked in in-use products at 17 000 (95% confidence interval: 6000–70 000) and 4000 (1000–50 000) tonnes in 2004, respectively, and for decaBDE at 140 000 (40 000–300 000) tonnes in 2008. Products dominating PBDE usage were polyurethane foam used in furniture (65% of pentaBDE), casings of electrical and electronic equipment or EEE (80% of octaBDE), and EEE and automotive seating (35% of decaBDE for each category). The largest flow of PBDEs in products, excluding automotive sector, to the waste phase occurred between 2005 and 2008 at ∼10 000 tonnes per year. Total consumption of penta-, octa-, and decaBDE from 1970 to 2020 in products considered was estimated at ∼46 000, ∼25 000, and ∼380 000 tonnes, respectively. Per capita usage was estimated at 10–250, 10–150, and 200–2000 g·capita<sup>–1</sup>·y<sup>–1</sup> for penta-, octa-, and decaBDE, respectively, over the time span. Considering only the first use (no reuse and/or storage) of PBDE-containing products, approximately 60% of the stock of PBDEs in 2014 or ∼70 000 tonnes, of which 95% is decaBDE, will remain in the use phase in 2020. Total emissions to air of all PBDEs from the in-use product stock was estimated at 70–700 tonnes between 1970 and 2020, with annual emissions of 0.4–4 tonnes·y<sup>–1</sup> for each of penta- and octaBDE and 0.35–3.5 tonnes·y<sup>–1</sup> for decaBDE in 2014

    We need a global science-policy body on chemicals and waste

    No full text
    Many countries and regional political unions have regulatory and policy frameworks for managing chemicals and waste associated with human activities to minimize harms to human health and the environment. These frameworks are complemented and expanded by joint international action, particularly related to pollutants that undergo long-range transport via air, water, and biota; move across national borders through international trade of resources, products, and waste; or are present in many countries (1). Some progress has been made, but the Global Chemicals Outlook (GCO-II) from the United Nations Environment Programme (UNEP) (1) has called for “strengthen[ing] the science-policy interface and the use of science in monitoring progress, priority-setting, and policy-making throughout the life cycle of chemicals and waste.” With the UN Environment Assembly (UNEA) soon meeting to discuss how to strengthen the science-policy interface on chemicals and waste (2), we analyze the landscape and outline recommendations for establishing an overarching body on chemicals and waste. The world has seen a tremendous increase in the amount and variety of chemicals in use, with continuous growth expected; global chemical sales reached over US$5.6 trillion in 2017 and are projected to almost double by 2030 (1). Similar trends are also true for waste generation; for example, global plastic waste entering the ocean is estimated to increase from 4.8 to 12.7 million tonnes in 2010 to some 100 to 250 million tonnes by 2025 (1). When chemicals and waste are poorly managed, not only are valuable resources lost, but chemical pollution can cause a wide range of adverse effects on human and ecosystem health at local, regional, and global levels. The latest Global Burden of Disease study estimated that exposure to lead and occupational exposure to 12 chemicals or groups of chemicals (a tiny fraction of the more than 100,000 chemicals in use) contributed to over 1.3 million premature human deaths in 2017 (3). Chemical pollution has also caused stratospheric ozone depletion, and it plays an important role in climate change (e.g., synthetic halogenated gases contributed over 10% of the global radiative forcing in 2011) (4) and ecosystem degradation (e.g., through the application of hazardous pesticides) (1).Peer reviewe

    Addressing chemical pollution in biodiversity research

    No full text
    Climate change, biodiversity loss and chemical pollution are planetary-scale emergencies requiring urgent mitigation actions. As these "triple crises" are deeply interlinked, they need to be tackled in an integrative manner. However, while climate change and biodiversity are often studied together, chemical pollution as a global change factor contributing to worldwide biodiversity loss has received much less attention in biodiversity research so far. Here, we review evidence showing that the multifaceted effects of anthropogenic chemicals in the environment are posing a growing threat to biodiversity and ecosystems. Therefore, failure to account for pollution effects may significantly undermine the success of biodiversity protection efforts. We argue that progress in understanding and counteracting the negative impact of chemical pollution on biodiversity requires collective efforts of scientists from different disciplines, including but not limited to ecology, ecotoxicology and environmental chemistry. Importantly, recent developments in these fields have now enabled comprehensive studies that could efficiently address the manifold interactions between chemicals and ecosystems. Based on their experience with intricate studies of biodiversity, ecologists are well equipped to embrace the additional challenge of chemical complexity through interdisciplinary collaborations. This offers a unique opportunity to jointly advance a seminal frontier in pollution ecology and facilitate the development of innovative solutions for environmental protection

    Key Principles for the Intergovernmental Science–Policy Panel on Chemicals and Waste

    Get PDF
    In 2021, the United Nations Environment Programme (UNEP) recognized chemical pollution as a planetary crisis tantamount to climate change and biodiversity decline. (1) In an important next step, the international community agreed in March 2022 on establishing an independent, intergovernmental science–policy panel on chemicals, waste, and pollution prevention (hereafter termed “the Panel”). (2) This Panel will take its place among two other intergovernmental bodies, the Intergovernmental Panel on Climate Change (IPCC) (3) and the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES). (4) Now is a crucial time for establishing the Panel, following a process facilitated by UNEP to negotiate the Panel’s scope, functions, and institutional design, with the ambition to formally establish the Panel in 2024. As a group of international scientists working on chemical pollution, we applaud this milestone of progress to initiate the establishment of a panel for chemicals, waste, and pollution prevention. At the beginning of the negotiating process, we would like to highlight the following 10 critical aspects for consideration in determining the settings of the Panel
    corecore