39 research outputs found

    Integral models for bubble, droplet, and multiphase plume dynamics in stratification and crossflow

    Get PDF
    We present the development and validation of a numerical modeling suite for bubble and droplet dynamics of multiphase plumes in the environment. This modeling suite includes real-fluid equations of state, Lagrangian particle tracking, and two different integral plume models: an Eulerian model for a double-plume integral model in quiescent stratification and a Lagrangian integral model for multiphase plumes in stratified crossflows. Here, we report a particle tracking algorithm for dispersed-phase particles within the Lagrangian integral plume model and a comprehensive validation of the Lagrangian plume model for single- and multiphase buoyant jets. The model utilizes literature values for all entrainment and spreading coefficients and has one remaining calibration parameter (Formula presented.), which reduces the buoyant force of dispersed phase particles as they approach the edge of a Lagrangian plume element, eventually separating from the plume as it bends over in a crossflow. We report the calibrated form (Formula presented.), where b is the plume half-width, and r is the distance of a particle from the plume centerline. We apply the validated modeling suite to simulate two test cases of a subsea oil well blowout in a stratification-dominated crossflow. These tests confirm that errors from overlapping plume elements in the Lagrangian integral model during intrusion formation for a weak crossflow are negligible for predicting intrusion depth and the fate of oil droplets in the plume. The Lagrangian integral model has the added advantages of being able to account for entrainment from an arbitrary crossflow, predict the intrusion of small gas bubbles and oil droplets when appropriate, and track the pathways of individual bubbles and droplets after they separate from the main plume or intrusion layer

    Observations of bubbles in natural seep flares at MC 118 and GC 600 using in situ quantitative imaging

    Get PDF
    Author Posting. © American Geophysical Union, 2016. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 121 (2016): 2203–2230, doi:10.1002/2015JC011452.This paper reports the results of quantitative imaging using a stereoscopic, high-speed camera system at two natural gas seep sites in the northern Gulf of Mexico during the Gulf Integrated Spill Research G07 cruise in July 2014. The cruise was conducted on the E/V Nautilus using the ROV Hercules for in situ observation of the seeps as surrogates for the behavior of hydrocarbon bubbles in subsea blowouts. The seeps originated between 890 and 1190 m depth in Mississippi Canyon block 118 and Green Canyon block 600. The imaging system provided qualitative assessment of bubble behavior (e.g., breakup and coalescence) and verified the formation of clathrate hydrate skins on all bubbles above 1.3 m altitude. Quantitative image analysis yielded the bubble size distributions, rise velocity, total gas flux, and void fraction, with most measurements conducted from the seafloor to an altitude of 200 m. Bubble size distributions fit well to lognormal distributions, with median bubble sizes between 3 and 4.5 mm. Measurements of rise velocity fluctuated between two ranges: fast-rising bubbles following helical-type trajectories and bubbles rising about 40% slower following a zig-zag pattern. Rise speed was uncorrelated with hydrate formation, and bubbles following both speeds were observed at both sites. Ship-mounted multibeam sonar provided the flare rise heights, which corresponded closely with the boundary of the hydrate stability zone for the measured gas compositions. The evolution of bubble size with height agreed well with mass transfer rates predicted by equations for dirty bubbles.Gulf of Mexico Research Initiativ

    Using carbon isotope fractionation to constrain the extent of methane dissolution into the water column surrounding a natural hydrocarbon gas seep in the northern Gulf of Mexico

    Get PDF
    Author Posting. © American Geophysical Union, 2018. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Using carbon isotope fractionation to constrain the extent of methane dissolution into the water column surrounding a natural hydrocarbon gas seep in the northern gulf of Mexico. Geochemistry Geophysics Geosystems, 19(11), (2018); 4459-4475., doi:10.1029/2018GC007705.A gas bubble seep located in the northern Gulf of Mexico was investigated over several days to determine whether changes in the stable carbon isotopic ratio of methane can be used as a tracer for methane dissolution through the water column. Gas bubble and water samples were collected at the seafloor and throughout the water column for isotopic ratio analysis of methane. Our results show that changes in methane isotopic ratios are consistent with laboratory experiments that measured the isotopic fractionation from methane dissolution. A Rayleigh isotope model was applied to the isotope data to determine the fraction of methane dissolved at each depth. On average, the fraction of methane dissolved surpasses 90% past an altitude of 400 m above the seafloor. Methane dissolution was also investigated using a modified version of the Texas A&M Oil spill (Outfall) Calculator (TAMOC) where changes in methane isotopic ratios could be calculated. The TAMOC model results show that dissolution depends on depth and bubble size, explaining the spread in measured isotopic ratios during our investigations. Both the Rayleigh and TAMOC models show that methane bubbles quickly dissolve following emission from the seafloor. Together, these results show that it is possible to use measurements of natural methane isotopes to constrain the extent of methane dissolution following seafloor emission.This research was made possible by two grants from the Gulf of Mexico Research Initiative: Gulf Integrated Spill Response (GISR) Consortium (awarded to J. D. K. and S. A. S.) and Center for Integrated Modeling and Assessment of the Gulf Ecosystem (C‐IMAGE) II (awarded to S. A. S.). Additional support was provided by the U.S. Department of Energy (DE‐FE0028980; awarded to J. D. K.). Data are publicly available through the Gulf of Mexico Research Initiative Information & Data Cooperative (GRIIDC). Methane concentration and isotopic ratio data can be found at https://data.gulfresearchinitiative.org/data/R1.x137.000:0025, and TAMOC model scripts and results are found at https://data.gulfresearchinitiative.org/data/R1.x137.000:0026. The coversion of methane isotopic ratio data used in this manuscript can be found at https://data.gulfresearchinitiative.org/data/R1.x137.000:0028. We want to thank the captain and crew of the E/V Nautilus and the operators of ROV Hercules and Argus during the GISR G08 cruise and Nicole Raineault for their outstanding support at sea. Acoustically identifying the bubble flare was managed by Andone Lavery, and support for collecting gas and water samples was provided by John Bailey. We also want to thank Sean Sylva for analytical assistance on shore, Inok Jun for helping create the sampling schematics, and David Brink‐Roby for helping create the sample site map.2019-04-2

    The influence of droplet size and biodegradation on the transport of subsurface oil droplets during the Deepwater Horizon: a model sensitivity study

    Get PDF
    A better understanding of oil droplet formation, degradation, and dispersal in deep waters is needed to enhance prediction of the fate and transport of subsurface oil spills. This research evaluates the influence of initial droplet size and rates of biodegradation on the subsurface transport of oil droplets, specifically those from the Deepwater Horizon oil spill. A three-dimensional coupled model was employed with components that included analytical multiphase plume, hydrodynamic and Lagrangian models. Oil droplet biodegradation was simulated based on first order decay rates of alkanes. The initial diameter of droplets (10–300 ÎŒm) spanned a range of sizes expected from dispersant-treated oil. Results indicate that model predictions are sensitive to biodegradation processes, with depth distributions deepening by hundreds of meters, horizontal distributions decreasing by hundreds to thousands of kilometers, and mass decreasing by 92–99% when biodegradation is applied compared to simulations without biodegradation. In addition, there are two- to four-fold changes in the area of the seafloor contacted by oil droplets among scenarios with different biodegradation rates. The spatial distributions of hydrocarbons predicted by the model with biodegradation are similar to those observed in the sediment and water column, although the model predicts hydrocarbons to the northeast and east of the well where no observations were made. This study indicates that improvement in knowledge of droplet sizes and biodegradation processes is important for accurate prediction of subsurface oil spills.National Science Foundation (U.S.) (RAPID: Deepwater Horizon Grant OCE-1048630)National Science Foundation (U.S.) (RAPID: Deepwater Horizon Grant OCE-1044573)National Science Foundation (U.S.) (RAPID: Deepwater Horizon Grant CBET-1045831)Gulf of Mexico Research Initiativ

    Increased sediment oxygen flux in lakes and reservoirs:The impact of hypolimnetic oxygenation

    Get PDF
    Hypolimnetic oxygenation is an increasingly common lake management strategy for mitigating hypoxia/anoxia and associated deleterious effects on water quality. A common effect of oxygenation is increased oxygen consumption in the hypolimnion and predicting the magnitude of this increase is the crux of effective oxygenation system design. Simultaneous measurements of sediment oxygen flux (JO2) and turbulence in the bottom boundary layer of two oxygenated lakes were used to investigate the impact of oxygenation on JO2. Oxygenation increased JO2 in both lakes by increasing the bulk oxygen concentration, which in turn steepens the diffusive gradient across the diffusive boundary layer. At high flow rates, the diffusive boundary layer thickness decreased as well. A transect along one of the lakes showed JO2 to be spatially quite variable, with near-field and far-field JO2 differing by a factor of 4. Using these in situ measurements, physical models of interfacial flux were compared to microprofile-derived JO2 to determine which models adequately predict JO2 in oxygenated lakes. Models based on friction velocity, turbulence dissipation rate, and the integral scale of turbulence agreed with microprofile-derived JO2 in both lakes. These models could potentially be used to predict oxygenation-induced oxygen flux and improve oxygenation system design methods for a broad range of reservoir systems

    Investigations of Aerobic Methane Oxidation in Two Marine Seep Environments: Part 1—Chemical Kinetics

    Get PDF
    Microbial aerobic oxidation is known to be a significant sink of marine methane (CH4), contributing to the relatively minor atmospheric release of this greenhouse gas over vast stretches of the ocean. However, the chemical kinetics of aerobic CH4 oxidation are not well established, making it difficult to predict and assess the extent that CH4 is oxidized in seawater following seafloor release. Here we investigate the kinetics of aerobic CH4 oxidation using mesocosm incubations of fresh seawater samples collected from seep fields in Hudson Canyon, U.S. Atlantic Margin and MC118, Gulf of Mexico to gain a fundamental chemical understanding of this CH4 sink. The goals of this investigation were to determine the response or lag time following CH4 release until more rapid oxidation begins, the reaction order, and the stoichiometry of reactants utilized (i.e., CH4, oxygen, nitrate, phosphate, trace metals) during CH4 oxidation. The results for both Hudson Canyon and MC118 environments show that CH4 oxidation rates sharply increased within less than one month following the CH4 inoculation of seawater. However, the exact temporal characteristics of this more rapid CH4 oxidation varied based on location, possibly dependent on the local circulation and biogeochemical conditions at the point of seawater collection. The data further suggest that methane oxidation behaves as a first‐order kinetic process and that the reaction rate constant remains constant once rapid CH4 oxidation begins

    Investigations of Aerobic Methane Oxidation in Two Marine Seep Environments: Part 2—Isotopic Kinetics

    Get PDF
    During aerobic oxidation of methane (CH4) in seawater, a process which mitigates atmospheric emissions, the 12C‐isotopologue reacts with a slightly greater rate constant than the 13C‐isotopologue, leaving the residual CH4 isotopically fractionated. Prior studies have attempted to exploit this systematic isotopic fractionation from methane oxidation to quantify the extent that a CH4 pool has been oxidized in seawater. However, cultivation‐based studies have suggested that isotopic fractionation fundamentally changes as a microbial population blooms in response to an influx of reactive substrates. Using a systematic mesocosm incubation study with recently collected seawater, here we investigate the fundamental isotopic kinetics of aerobic CH4 oxidation during a microbial bloom. As detailed in a companion paper, seawater samples were collected from seep fields in Hudson Canyon, U.S. Atlantic Margin, and atop Woolsey Mound (also known as Sleeping Dragon) which is part of lease block MC118 in the northern Gulf of Mexico, and used in these investigations. The results from both Hudson Canyon and MC118 show that in these natural environments isotopic fraction for CH4 oxidation follows a first‐order kinetic process. The results also show that the isotopic fractionation factor remains constant during this methanotrophic bloom once rapid CH4 oxidation begins and that the magnitude of the fractionation factor appears correlated with the first‐order reaction rate constant. These findings greatly simplify the use of natural stable isotope changes in CH4 to assess the extent that CH4 is oxidized in seawater following seafloor release
    corecore