
Environmental Fluid Mechanics

Part I: Mass Transfer and Diffusion

Engineering – Lectures

By

Scott A. Socolofsky &

Gerhard H. Jirka

2nd Edition, 2002

Institut für Hydromechanik

Universität Karlsruhe

76128-Karlsruhe

Germany



2



Environmental Fluid Mechanics Part I:
Mass Transfer and Diffusion

Lecturer: Scott A. Socolofsky, Ph.D.

Office Hours: Wednesday 1:00-2:00 pm

Zi. 125 Altes Bauingenieurgebäude, Tel. 0721/608-7245
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Preface

Environmental Fluid Mechanics (EFM) is the study of motions and transport processes

in earth’s hydrosphere and atmosphere on a local or regional scale (up to 100 km). At

larger scales, the Coriolis force due to earth’s rotation must be considered, and this is the

topic of Geophysical Fluid Dynamics. Sticking purely to EFM in this book, we will be

concerned with the interaction of flow, mass and heat with man-made facilities and with

the local environment.

This text is organized in two parts and is designed to accompany a series of lectures in a

two-semester course in Environmental Fluid Mechanics. The first part, Mass Transfer and

Diffusion, treats passive diffusion by introducing the transport equation and its application

in a range of unstratified water bodies. The second part, Stratified Flow and Buoyant

Mixing, covers the dynamics of stratified fluids and transport under active diffusion.

The text is designed to compliment existing text books in water and air quality and

in transport. Most of the mathematics are written out in enough detail that all the

equations should be derivable (and checkable!) by the reader. This second edition adds

several example problems to each chapter and expands the homework problem sections at

the end of each chapter. Solutions to odd-numbered homework problems have also been

added to Appendix ??.

This book was compiled from several sources. In particular, the lecture notes developed

by Gerhard H. Jirka for courses offered at Cornell University and the University of Karl-

sruhe, lecture notes developed my Scott A. Socolofsky for courses taught at the University

of Karlsruhe, and notes taken by Scott A. Socolofsky in various fluid mechanics courses

offered at the Massachusetts Institute of Technology (MIT), the University of Colorado,

and the University of Stuttgart, including courses taught by Heidi Nepf, Chiang C. Mei,

Eric Adams, Ole Madsen, Ain Sonin, Harihar Rajaram, Joe Ryan, and Helmut Kobus.

Many thanks goes to these mentors who have taught this enjoyable subject.

Comments and questions (and corrections!) on this script can always be addressed per

E-Mail to the address: socolofs@ifh.uka.de.

Karlsruhe, Scott A. Socolofsky

October 2002 Gerhard H. Jirka
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1. Concepts, Definitions, and the Diffusion

Equation

Environmental fluid mechanics is the study of fluid mechanical processes that affect the

fate and transport of substances through the hydrosphere and atmosphere at the local or

regional scale1 (up to 100 km). In general, the substances of interest are mass, momentum

and heat. More specifically, mass can represent any of a wide variety of passive and reactive

tracers, such as dissolved oxygen, salinity, heavy metals, nutrients, and many others. Part I

of this textbook, “Mass Transfer and Diffusion,” discusses the passive process affecting the

fate and transport of species in a homogeneous natural environment. Part II, “Stratified

Flow and Buoyant Mixing,” incorporates the effects of buoyancy and stratification to deal

with active mixing problems.

This chapter introduces the concept of mass transfer (transport) and focuses on the

physics of diffusion. Because the concept of diffusion is fundamental to this part of the

course, we single it out here and derive its mathematical representation from first princi-

ples to the solution of the governing partial differential equation. The mathematical rigor

of this section is deemed appropriate so that the student gains a fundamental and com-

plete understanding of diffusion and the diffusion equation. This foundation will make the

complicated processes discussed in the remaining chapters tractable and will start to build

the engineering intuition needed to solve problems in environmental fluid mechanics.

1.1 Concepts and definitions

Stated simply, Environmental Fluid Mechanics is the study of natural processes that

change concentrations.

These processes can be categorized into two broad groups: transport and transforma-

tion. Transport refers to those processes which move substances through the hydrosphere

and atmosphere by physical means. As an analogy to the postal service, transport is the

process by which a letter goes from one location to another. The postal truck is the anal-

ogy for our fluid, and the letter itself is the analogy for our chemical species. The two

primary modes of transport in environmental fluid mechanics are advection (transport

associated with the flow of a fluid) and diffusion (transport associated with random mo-

tions within a fluid). Transformation refers to those processes that change a substance

1 At larger scales we must account for the Earth’s rotation through the Coriolis effect, and this is the subject of
geophysical fluid dynamics.
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of interest into another substance. Keeping with our analogy, transformation is the pa-

per recycling factory that turns our letter into a shoe box. The two primary modes of

transformation are physical (transformations caused by physical laws, such as radioactive

decay) and chemical (transformations caused by chemical or biological reactions, such as

dissolution).

The glossary at the end of this text provides a list of important terms and their

definitions in environmental fluid mechanics (with the associated German term).

1.1.1 Expressing Concentration

The fundamental quantity of interest in environmental fluid mechanics is concentration. In

common usage, the term concentration expresses a measure of the amount of a substance

within a mixture.

Mathematically, the concentration C is the ratio of the mass of a substance Mi to the

total volume of a mixture V expressed

C =
Mi

V
. (1.1)

The units of concentration are [M/L3], commonly reported in mg/l, kg/m3, lb/gal, etc.

For one- and two-dimensional problems, concentration can also be expressed as the mass

per unit segment length [M/L] or per unit area, [M/L2].

A related quantity, the mass fraction χ is the ratio of the mass of a substance Mi to

the total mass of a mixture M , written

χ =
Mi

M
. (1.2)

Mass fraction is unitless, but is often expressed using mixed units, such as mg/kg, parts

per million (ppm), or parts per billion (ppb).

A popular concentration measure used by chemists is the molar concentration θ. Molar

concentration is defined as the ratio of the number of moles of a substance Ni to the total

volume of the mixture

θ =
Ni

V
. (1.3)

The units of molar concentration are [number of molecules/L3]; typical examples are mol/l

and µmol/l. To work with molar concentration, recall that the atomic weight of an atom

is reported in the Periodic Table in units of g/mol and that a mole is 6.022·1023 molecules.

The measure chosen to express concentration is essentially a matter of taste. Always

use caution and confirm that the units chosen for concentration are consistent with the

equations used to predict fate and transport. A common source of confusion arises from

the fact that mass fraction and concentration are often used interchangeably in dilute

aqueous systems. This comes about because the density of pure water at 4◦C is 1 g/cm3,

making values for concentration in mg/l and mass fraction in ppm identical. Extreme

caution should be used in other solutions, as in seawater or the atmosphere, where ppm

and mg/l are not identical. The conclusion to be drawn is: always check your units!
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1.1.2 Dimensional analysis

A very powerful analytical technique that we will use throughout this course is dimensional

analysis. The concept behind dimensional analysis is that if we can define the parameters

that a process depends on, then we should be able to use these parameters, usually in the

form of dimensionless variables, to describe that process at all scales (not just the scales

we measure in the laboratory or the field).

Dimensional analysis as a method is based on the Buckingham π-theorem (see e.g.

Fischer et al. 1979). Consider a process that can be described by m dimensional variables.

This full set of variables contains n different physical dimensions (length, time, mass, tem-

perature, etc.). The Buckingham π-theorem states that there are, then, m−n independent

non-dimensional groups that can be formed from these governing variables (Fischer et al.

1979). When forming the dimensionless groups, we try to keep the dependent variable (the

one we want to predict) in only one of the dimensionless groups (i.e. try not to repeat the

use of the dependent variable).

Once we have the m − n dimensionless variables, the Buckingham π-theorem further

tells us that the variables can be related according to

π1 = f(π2, πi, ..., πm−n) (1.4)

where πi is the ith dimensionless variable. As we will see, this method is a powerful way

to find engineering solutions to very complex physical problems.

As an example, consider how we might predict when a fluid flow becomes turbulent.

Here, our dependent variable is a quality (turbulent or laminar) and does not have a

dimension. The variables it depends on are the velocity u, the flow disturbances, charac-

terized by a typical length scale L, and the fluid properties, as described by its density ρ,

temperature T , and viscosity µ. First, we must recognize that ρ and µ are functions of T ;

thus, all three of these variables cannot be treated as independent. The most compact and

traditional approach is to retain ρ and µ in the form of the kinematic viscosity ν = µ/ρ.

Thus, we have m = 3 dimensional variables (u, L, and ν) in n = 2 physical dimensions

(length and time).

The next step is to form the dimensionless group π1 = f(u, L, ν). This can be done by

assuming each variable has a different exponent and writing separate equations for each

dimension. That is

π1 = uaLbνc, (1.5)

and we want each dimension to cancel out, giving us two equations

T gives: 0 = −a − c

L gives: 0 = a + b + 2c.

From the T-equation, we have a = −c, and from the L-equation we get b = −c. Since the

system is under-defined, we are free to choose the value of c. To get the most simplified

form, choose c = 1, leaving us with a = b = −1. Thus, we have
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π1 =
ν

uL
. (1.6)

This non-dimensional combination is just the inverse of the well-known Reynolds number

Re; thus, we have shown through dimensional analysis, that the turbulent state of the

fluid should depend on the Reynolds number

Re =
uL

ν
, (1.7)

which is a classical result in fluid mechanics.

1.2 Diffusion

A fundamental transport process in environmental fluid mechanics is diffusion. Diffusion

differs from advection in that it is random in nature (does not necessarily follow a fluid

particle). A well-known example is the diffusion of perfume in an empty room. If a bottle

of perfume is opened and allowed to evaporate into the air, soon the whole room will be

scented. We know also from experience that the scent will be stronger near the source

and weaker as we move away, but fragrance molecules will have wondered throughout the

room due to random molecular and turbulent motions. Thus, diffusion has two primary

properties: it is random in nature, and transport is from regions of high concentration to

low concentration, with an equilibrium state of uniform concentration.

1.2.1 Fickian diffusion

We just observed in our perfume example that regions of high concentration tend to spread

into regions of low concentration under the action of diffusion. Here, we want to derive a

mathematical expression that predicts this spreading-out process, and we will follow an

argument presented in Fischer et al. (1979).

To derive a diffusive flux equation, consider two rows of molecules side-by-side and

centered at x = 0, as shown in Figure 1.1(a.). Each of these molecules moves about

randomly in response to the temperature (in a random process called Brownian motion).

Here, for didactic purposes, we will consider only one component of their three-dimensional

motion: motion right or left along the x-axis. We further define the mass of particles on

the left as Ml, the mass of particles on the right as Mr, and the probability (transfer rate

per time) that a particles moves across x = 0 as k, with units [T−1].

After some time δt an average of half of the particles have taken steps to the right and

half have taken steps to the left, as depicted through Figure 1.1(b.) and (c.). Looking at

the particle histograms also in Figure 1.1, we see that in this random process, maximum

concentrations decrease, while the total region containing particles increases (the cloud

spreads out).

Mathematically, the average flux of particles from the left-hand column to the right is

kMl, and the average flux of particles from the right-hand column to the left is −kMr,

where the minus sign is used to distinguish direction. Thus, the net flux of particles qx is
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(a.) Initial (b.)  Random
motionsdistribution

(c.)  Final
distribution

n

x

n

x0 0

...

Fig. 1.1. Schematic of the one-dimensional molecular (Brownian) motion of a group of molecules illustrating the
Fickian diffusion model. The upper part of the figure shows the particles themselves; the lower part of the figure
gives the corresponding histogram of particle location, which is analogous to concentration.

qx = k(Ml − Mr). (1.8)

For the one-dimensional case, concentration is mass per unit line segment, and we can

write (1.8) in terms of concentrations using

Cl = Ml/(δxδyδz) (1.9)

Cr = Mr/(δxδyδz) (1.10)

where δx is the width, δy is the breadth, and δz is the height of each column. Physically,

δx is the average step along the x-axis taken by a molecule in the time δt. For the

one-dimensional case, we want qx to represent the flux in the x-direction per unit area

perpendicular to x; hence, we will take δyδz = 1. Next, we note that a finite difference

approximation for dC/dx is

dC

dx
=

Cr − Cl

xr − xl

=
Mr − Ml

δx(xr − xl)
, (1.11)

which gives us a second expression for (Ml − Mr), namely,

(Ml − Mr) = −δx(xr − xl)
dC

dx
. (1.12)

Substituting (1.12) into (1.8) yields

qx = −k(δx)2dC

dx
. (1.13)

(1.13) contains two unknowns, k and δx. Fischer et al. (1979) argue that since q cannot

depend on an arbitrary δx, we must assume that k(δx)2 is a constant, which we will
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Example Box 1.1:
Diffusive flux at the air-water interface.

The time-average oxygen profile C(z) in the lam-
inar sub-layer at the surface of a lake is

C(z) = Csat − (Csat − Cl)erf

(

z

δ
√

2

)

where Csat is the saturation oxygen concentration
in the water, Cl is the oxygen concentration in the
body of the lake, δ is the concentration boundary
layer thickness, and z is defined positive downward.
Turbulence in the body of the lake is responsible for
keeping δ constant. Find an expression for the total
rate of mass flux of oxygen into the lake.

Fick’s law tells us that the concentration gradient
in the oxygen profile will result in a diffusive flux
of oxygen into the lake. Since the concentration is
uniform in x and y, we have from (1.14) the diffusive
flux

qz = −D
dC

dz
.

The derivative of the concentration gradient is

dC

dz
= −(Csat − Cl)

d

dz

[

erf

(

z

δ
√

2

)]

= − 2√
π
· (Csat − Cl)

δ
√

2
e
−

(

z

δ
√

2

)

2

At the surface of the lake, z is zero and the diffusive
flux is

qz = (Csat − Cl)
D
√

2

δ
√

π
.

The units of qz are in [M/(L2·T)]. To get the total
mass flux rate, we must multiply by a surface area,
in this case the surface of the lake Al. Thus, the total
rate of mass flux of oxygen into the lake is

ṁ = Al(Csat − Cl)
D
√

2

δ
√

π
.

For Cl < Csat the mass flux is positive, indicating
flux down, into the lake. More sophisticated models
for gas transfer that develop predictive expressions
for δ are discussed later in Chapter 5.

call the diffusion coefficient, D. Substituting, we obtain the one-dimensional diffusive flux

equation

qx = −D
dC

dx
. (1.14)

It is important to note that diffusive flux is a vector quantity and, since concentration is

expressed in units of [M/L3], it has units of [M/(L2T)]. To compute the total mass flux

rate ṁ, in units [M/T], the diffusive flux must be integrated over a surface area. For the

one-dimensional case we would have ṁ = Aqx.

Generalizing to three dimensions, we can write the diffusive flux vector at a point by

adding the other two dimensions, yielding (in various types of notation)

q = −D

(

∂C

∂x
,
∂C

∂y
,
∂C

∂z

)

= −D∇C

= −D
∂C

∂xi

. (1.15)

Diffusion processes that obey this relationship are called Fickian diffusion, and (1.15)

is called Fick’s law. To obtain the total mass flux rate we must integrate the normal

component of q over a surface area, as in

ṁ =
∫∫

A
q · ndA (1.16)

where n is the unit vector normal to the surface A.
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Table 1.1. Molecular diffusion coefficients for typical solutes in water at standard pressure and at two tempera-
tures (20◦C and 10◦C).a

Solute name Chemical symbol Diffusion coefficientb Diffusion coefficientc

(10−4 cm2/s) (10−4 cm2/s)

hydrogen ion H+ 0.85 0.70

hydroxide ion OH− 0.48 0.37

oxygen O2 0.20 0.15

carbon dioxide CO2 0.17 0.12

bicarbonate HCO−

3 0.11 0.08

carbonate CO2−
3 0.08 0.06

methane CH4 0.16 0.12

ammonium NH+
4 0.18 0.14

ammonia NH3 0.20 0.15

nitrate NO−

3 0.17 0.13

phosphoric acid H3PO4 0.08 0.06

dihydrogen phosphate H2PO−

4 0.08 0.06

hydrogen phosphate HPO2−
4 0.07 0.05

phosphate PO3−
4 0.05 0.04

hydrogen sulfide H2S 0.17 0.13

hydrogen sulfide ion HS− 0.16 0.13

sulfate SO2−
4 0.10 0.07

silica H4SiO4 0.10 0.07

calcium ion Ca2+ 0.07 0.05

magnesium ion Mg2+ 0.06 0.05

iron ion Fe2+ 0.06 0.05

manganese ion Mn2+ 0.06 0.05

a Taken from http://www.talknet.de/∼alke.spreckelsen/roger/thermo/difcoef.html

b for water at 20◦C with salinity of 0.5 ppt.
c for water at 10◦C with salinity of 0.5 ppt.

1.2.2 Diffusion coefficients

From the definition D = k(δx)2, we see that D has units L2/T . Since we derived Fick’s

law for molecules moving in Brownian motion, D is a molecular diffusion coefficient, which

we will sometimes call Dm to be specific. The intensity (energy and freedom of motion)

of these Brownian motions controls the value of D. Thus, D depends on the phase (solid,

liquid or gas), temperature, and molecule size. For dilute solutes in water, D is generally

of order 2·10−9 m2/s; whereas, for dispersed gases in air, D is of order 2 · 10−5 m2/s, a

difference of 104.

Table 1.1 gives a detailed accounting of D for a range of solutes in water with low

salinity (0.5 ppt). We see from the table that for a given temperature, D can range over

about ±101 in response to molecular size (large molecules have smaller D). The table also

shows the sensitivity of D to temperature; for a 10◦C change in water temperature, D
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qx,in qx,out

x

-y

z

δx
δy

δz

Fig. 1.2. Differential control volume for derivation of the diffusion equation.

can change by a factor of ±2. These observations can be summarized by the insight that

faster and less confined motions result in higher diffusion coefficients.

1.2.3 Diffusion equation

Although Fick’s law gives us an expression for the flux of mass due to the process of

diffusion, we still require an equation that predicts the change in concentration of the

diffusing mass over time at a point. In this section we will see that such an equation can

be derived using the law of conservation of mass.

To derive the diffusion equation, consider the control volume (CV) depicted in Fig-

ure 1.2. The change in mass M of dissolved tracer in this CV over time is given by the

mass conservation law

∂M

∂t
=
∑

ṁin −
∑

ṁout. (1.17)

To compute the diffusive mass fluxes in and out of the CV, we use Fick’s law, which for

the x-direction gives

qx,in = −D
∂C

∂x

∣

∣

∣

∣

∣

1

(1.18)

qx,out = −D
∂C

∂x

∣

∣

∣

∣

∣

2

(1.19)

where the locations 1 and 2 are the inflow and outflow faces in the figure. To obtain total

mass flux ṁ we multiply qx by the CV surface area A = δyδz. Thus, we can write the net

flux in the x-direction as

δṁ|x = −Dδyδz

(

∂C

∂x

∣

∣

∣

∣

∣

1

− ∂C

∂x

∣

∣

∣

∣

∣

2

)

(1.20)

which is the x-direction contribution to the right-hand-side of (1.17).
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To continue we must find a method to evaluate ∂C/∂x at point 2. For this, we use

linear Taylor series expansion, an important tool for linearly approximating functions.

The general form of Taylor series expansion is

f(x) = f(x0) +
∂f

∂x

∣

∣

∣

∣

∣

x0

δx + HOTs, (1.21)

where HOTs stands for “higher order terms.” Substituting ∂C/∂x for f(x) in the Taylor

series expansion yields

∂C

∂x

∣

∣

∣

∣

∣

2

=
∂C

∂x

∣

∣

∣

∣

∣

1

+
∂

∂x

(

∂C

∂x

∣

∣

∣

∣

∣

1

)

δx + HOTs. (1.22)

For linear Taylor series expansion, we ignore the HOTs. Substituting this expression into

the net flux equation (1.20) and dropping the subscript 1, gives

δṁ|x = Dδyδz
∂2C

∂x2
δx. (1.23)

Similarly, in the y- and z-directions, the net fluxes through the control volume are

δṁ|y = Dδxδz
∂2C

∂y2
δy (1.24)

δṁ|z = Dδxδy
∂2C

∂z2
δz. (1.25)

Before substituting these results into (1.17), we also convert M to concentration by rec-

ognizing M = Cδxδyδz. After substitution of the concentration C and net fluxes δṁ into

(1.17), we obtain the three-dimensional diffusion equation (in various types of notation)

∂C

∂t
= D

(

∂2C

∂x2
+

∂2C

∂y2
+

∂2C

∂z2

)

= D∇2C

= D
∂C

∂x2
i

, (1.26)

which is a fundamental equation in environmental fluid mechanics. For the last line in

(1.26), we have used the Einsteinian notation of repeated indices as a short-hand for the

∇2 operator.

1.2.4 One-dimensional diffusion equation

In the one-dimensional case, concentration gradients in the y- and z-direction are zero,

and we have the one-dimensional diffusion equation

∂C

∂t
= D

∂2C

∂x2
. (1.27)

We pause here to consider (1.27) and to point out a few key observations. First, (1.27) is

first-order in time. Thus, we must supply and impose one initial condition for its solution,

and its solutions will be unsteady, or transient, meaning they will vary with time. To
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A M

-x x

Fig. 1.3. Definitions sketch for one-dimensional pure diffusion in an infinite pipe.

solve for the steady, invariant solution of (1.27), we must set ∂C/∂t = 0 and we no longer

require an initial condition; the steady form of (1.27) is the well-known Laplace equation.

Second, (1.27) is second-order in space. Thus, we can impose two boundary conditions,

and its solution will vary in space. Third, the form of (1.27) is exactly the same as the heat

equation, where D is replaced by the heat transfer coefficient κ. This observation agrees

well with our intuition since we know that heat conducts (diffuses) away from hot sources

toward cold regions (just as concentration diffuses from high concentration toward low

concentration). This observation is also useful since many solutions to the heat equation

are already known.

1.3 Similarity solution to the one-dimensional diffusion equation

Because (1.26) is of such fundamental importance in environmental fluid mechanics, we

demonstrate here one of its solutions for the one-dimensional case in detail. There are

multiple methods that can be used to solve (1.26), but we will follow the methodology of

Fischer et al. (1979) and choose the so-called similarity method in order to demonstrate

the usefulness of dimensional analysis as presented in Section 1.1.2.

Consider the one-dimensional problem of a narrow, infinite pipe (radius a) as depicted

in Figure 1.3. A mass of tracer M is injected uniformly across the cross-section of area

A = πa2 at the point x = 0 at time t = 0. The initial width of the tracer is infinitesimally

small. We seek a solution for the spread of tracer in time due to molecular diffusion alone.

As this is a one-dimensional (∂C/∂y = 0 and ∂C/∂z = 0) unsteady diffusion problem,

(1.27) is the governing equation, and we require two boundary conditions and an initial

condition. As boundary conditions, we impose that the concentration at ±∞ remain zero

C(±∞, t) = 0. (1.28)

The initial condition is that the dye tracer is injected uniformly across the cross-section

over an infinitesimally small width in the x-direction. To specify such an initial condition,

we use the Dirac delta function

C(x, 0) = (M/A)δ(x) (1.29)

where δ(x) is zero everywhere accept at x = 0, where it is infinite, but the integral of the

delta function from −∞ to ∞ is 1. Thus, the total injected mass is given by
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Table 1.2. Dimensional variables for one-dimensional pipe diffusion.

Variable Dimensions

dependent variable C M/L3

independent variables M/A M/L2

D L2/T

x L

t T

M =
∫

V
C(x, t)dV (1.30)

=
∫ ∞

−∞

∫ a

0
(M/A)δ(x)2πrdrdx. (1.31)

To use dimensional analysis, we must consider all the parameters that control the

solution. Table 1.2 summarizes the dependent and independent variables for our problem.

There are m = 5 parameters and n = 3 dimensions; thus, we can form two dimensionless

groups

π1 =
C

M/(A
√

Dt)
(1.32)

π2 =
x√
Dt

(1.33)

From dimensional analysis we have that π1 = f(π2), which implies for the solution of C

C =
M

A
√

Dt
f

(

x√
Dt

)

(1.34)

where f is a yet-unknown function with argument π2. (1.34) is called a similarity solution

because C has the same shape in x at all times t (see also Example Box 1.3). Now we

need to find f in order to know what that shape is. Before we find the solution formally,

compare (1.34) with the actual solution given by (1.53). Through this comparison, we see

that dimensional analysis can go a long way toward finding solutions to physical problems.

The function f can be found in two primary ways. First, experiments can be conducted

and then a smooth curve can be fit to the data using the coordinates π1 and π2. Second,

(1.34) can be used as the solution to a differential equation and f solved for analytically.

This is what we will do here. The power of a similarity solution is that it turns a partial

differential equation (PDE) into an ordinary differential equation (ODE), which is the

goal of any solution method for PDEs.

The similarity solution (1.34) is really just a coordinate transformation. We will call

our new similarity variable η = x/
√

Dt. To substitute (1.34) into the diffusion equation,

we will need the two derivatives

∂η

∂t
= − η

2t
(1.35)
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∂η

∂x
=

1√
Dt

. (1.36)

We first use the chain rule to compute ∂C/∂t as follows

∂C

∂t
=

∂

∂t

[

M

A
√

Dt
f(η)

]

=
∂

∂t

[

M

A
√

Dt

]

f(η) +
M

A
√

Dt

∂f

∂η

∂η

∂t

=
M

A
√

Dt

(

−1

2

)

1

t
f(η) +

M

A
√

Dt

∂f

∂η

(

− η

2t

)

= − M

2At
√

Dt

(

f + η
∂f

∂η

)

. (1.37)

Similarly, we use the chain rule to compute ∂2C/∂x2 as follows

∂2C

∂x2
=

∂

∂x

[

∂

∂x

(

M

A
√

Dt
f(η)

)]

=
∂

∂x

[

M

A
√

Dt

∂η

∂x

∂f

∂η

]

=
M

ADt
√

Dt

∂2f

∂η2
. (1.38)

Upon substituting these two results into the diffusion equation, we obtain the ordinary

differential equation in η

d2f

dη2
+

1

2

(

f + η
df

dη

)

= 0. (1.39)

To solve (1.39), we should also convert the boundary and initial conditions to two new

constraints on f . As we will see shortly, both boundary conditions and the initial condition

can be satisfied through a single condition on f . The other constraint (remember that

second order equations require two constrains) is taken from the conservation of mass,

given by (1.30). Substituting dx = dη
√

Dt into (1.30) and simplifying, we obtain
∫ ∞

−∞
f(η)dη = 1. (1.40)

Solving (1.39) requires a couple of integrations. First, we rearrange the equation using

the identity

d(fη)

dη
= f + η

df

dη
, (1.41)

which gives us

d

dη

[

df

dη
+

1

2
fη

]

= 0. (1.42)

Integrating once leaves us with

df

dη
+

1

2
fη = C0. (1.43)
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It can be shown that choosing C0 = 0 satisfies both boundary conditions and the initial

condition (see Appendix A for more details).

With C0 = 0 we have a homogeneous ordinary differential equation whose solution can

readily be found. Moving the second term to the right hand side we have

df

dη
= −1

2
fη. (1.44)

The solution is found by collecting the f - and η-terms on separate sides of the equation

df

f
= −1

2
ηdη. (1.45)

Integrating both sides gives

ln(f) = −1

2

η2

2
+ C1 (1.46)

which after taking the exponential of both sides gives

f = C1 exp

(

−η2

4

)

. (1.47)

To find C1 we must use the remaining constraint given in (1.40)
∫ ∞

−∞
C1 exp

(

−η2

4

)

dη = 1. (1.48)

To solve this integral, we should use integral tables; therefore, we have to make one more

change of variables to remove the 1/4 from the exponential. Thus, we introduce ζ such

that

ζ2 =
1

4
η2 (1.49)

2dζ = dη. (1.50)

Substituting this coordinate transformation and solving for C1 leaves

C1 =
1

2
∫∞
−∞ exp(−ζ2)dζ

. (1.51)

After looking up the integral in a table, we obtain C1 = 1/(2
√

π). Thus,

f(η) =
1

2
√

π
exp

(

η2

4

)

. (1.52)

Replacing f in our similarity solution (1.34) gives

C(x, t) =
M

A
√

4πDt
exp

(

− x2

4Dt

)

(1.53)

which is a classic result in environmental fluid mechanics, and an equation that will be

used thoroughly throughout this text. Generalizing to three dimensions, Fischer et al.

(1979) give the the solution

C(x, y, z, t) =
M

4πt
√

4πDxDyDzt
exp

(

− x2

4Dxt
− y2

4Dyt
− z2

4Dzt

)

(1.54)

which they derive using the separation of variables method.
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Example Box 1.2:
Maximum concentrations.

For the three-dimensional instantaneous point-
source solution given in (1.54), find an expression
for the maximum concentration. Where is the max-
imum concentration located?

The classical approach for finding maxima of func-
tions is to look for zero-points in the derivative of
the function. For many concentration distributions,
it is easier to take a qualitative look at the functional
form of the equation. The instantaneous point-source
solution has the form

C(x, t) = C1(t) exp(−|f(x, t)|).
C1(t) is an amplification factor independent of space.
The exponential function has a negative argument,
which means it is maximum when the argument is
zero. Hence, the maximum concentration is

Cmax(t) = C1(t).

Applying this result to (1.54) gives

Cmax(t) =
M

4πt
√

4πDxDyDzt
.

The maximum concentration occurs at the point
where the exponential is zero. In this case
x(Cmax) = (0, 0, 0).

We can apply this same analysis to other concen-
tration distributions as well. For example, consider
the error function concentration distribution

C(x, t) =
C0

2

(

1 − erf

(

x√
4Dt

))

.

The error function ranges over [−1, 1] as its argu-
ment ranges from [−∞,∞]. The maximum concen-
tration occurs when erf(·) = -1, and gives,

Cmax(t) = C0.

Cmax occurs when the argument of the error function
is −∞. At t = 0, the maximum concentration occurs
for all points x < 0, and for t > 0, the maximum
concentration occurs only at x = −∞.

−4 −2 0 2 4
0

0.2

0.4

0.6

0.8

1
Point source solution

η = x / (4Dt)1/2

C
 A

 (
4π

D
 t)

1/
2  / 

M

Fig. 1.4. Self-similarity solution for one-dimensional diffusion of an instantaneous point source in an infinite
domain.

1.3.1 Interpretation of the similarity solution

Figure 1.4 shows the one-dimensional solution (1.53) in non-dimensional space. Comparing

(1.53) with the Gaussian probability distribution reveals that (1.53) is the normal bell-

shaped curve with a standard deviation σ, of width

σ2 = 2Dt. (1.55)

The concept of self similarity is now also evident: the concentration profile shape is always

Gaussian. By plotting in non-dimensional space, the profiles also collapse into a single

profile; thus, profiles for all times t > 0 are given by the result in the figure.
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The Gaussian distribution can also be used to predict how much tracer is within a

certain region. Looking at Figure 1.4 it appears that most of the tracer is between -2

and 2. Gaussian probability tables, available in any statistics book, can help make this

observation more quantitative. Within ±σ, 64.2% of the tracer is found and between ±2σ,

95.4% of the tracer is found. As an engineering rule-of-thumb, we will say that a diffusing

tracer is distributed over a region of width 4σ, that is, ±2σ.

Example Box 1.3:
Profile shape and self similarity.

For the one-dimensional, instantaneous point-
source solution, show that the ratio C/Cmax can be
written as a function of the single parameter α de-
fined such that x = ασ. How might this be used to
estimate the diffusion coefficient from concentration
profile data?

From the previous example, we know that Cmax =
M/

√
4πDt, and we can re-write (1.53) as

C(x, t)

Cmax(t)
= exp

(

− x2

4Dt

)

.

We now substitute σ =
√

2Dt and x = ασ to obtain

C

Cmax
= exp

(

−α2/2
)

.

Here, α is a parameter that specifies the point to
calculate C based on the number of standard devia-
tions the point is away from the center of mass. This
illustrates very clearly the notion of self similarity:
regardless of the time t, the amount of mass M , or
the value of D, the ratio C/Cmax is always the same
value at the same position αx.

This relationship is very helpful for calculating
diffusion coefficients. Often, we do not know the
value of M . We can, however, always normalize a
concentration profile measured at a given time t by
Cmax(t). Then we pick a value of α, say 1.0. We know
from the relationship above that C/Cmax = 0.61 at
x = σ. Next, find the locations where C/Cmax =
0.61 in the experimental profile and use them to mea-
sure σ. We then use the relationship σ =

√
2Dt and

the value of t to estimate D.

1.4 Application: Diffusion in a lake

With a solid background now in diffusion, consider the following example adapted from

Nepf (1995).

As shown in Figures 1.5 and 1.6, a small alpine lake is mildly stratified, with a thermo-

cline (region of steepest density gradient) at 3 m depth, and is contaminated by arsenic.

Determine the magnitude and direction of the diffusive flux of arsenic through the ther-

mocline (cross-sectional area at the thermocline is A = 2 · 104 m2) and discuss the nature

of the arsenic source. The molecular diffusion coefficient is Dm = 1 · 10−10 m2/s.

Molecular diffusion. To compute the molecular diffusive flux through the thermocline, we

use the one-dimensional version of Fick’s law, given above in (1.14)

qz = −Dm
∂C

∂z
. (1.56)

We calculate the concentration gradient at z = 3 from the concentration profile using a

finite difference approximation. Substituting the appropriate values, we have

qz = −Dm
∂C

∂z
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Thermocline
z

Fig. 1.5. Schematic of a stratified alpine lake.

14 14.5 15 15.5 16

0

2

4

6

8

10

(a.)  Temperature profile

Temperature  [deg C]

D
ep

th
  [

m
]

0 2 4 6 8 10

0

2

4

6

8

10

(b.)  Arsenic profile

Arsenic concentration  [µg/l]

D
ep

th
  [

m
]

Fig. 1.6. Profiles of temperature and arsenic concentration in an alpine lake. The dotted line at 3 m indicates
the location of the thermocline (region of highest density gradient).

= −(1 · 10−10)
(10 − 6.1)

(2 − 4)
· 1000 l

1 m3

= +1.95 · 10−7 µg/(m2·s) (1.57)

where the plus sign indicates that the flux is downward. The total mass flux is obtained

by multiplying over the area: ṁ = Aqz = 0.0039 µg/s.

Turbulent diffusion. As we pointed out in the discussion on diffusion coefficients, faster

random motions lead to larger diffusion coefficients. As we will see in Chapter 3, tur-

bulence also causes a kind of random motion that behaves asymptotically like Fickian

diffusion. Because the turbulent motions are much larger than molecular motions, turbu-

lent diffusion coefficients are much larger than molecular diffusion coefficients.

Sources of turbulence at the thermocline of a small lake can include surface inflows,

wind stirring, boundary mixing, convection currents, and others. Based on studies in

this lake, a turbulent diffusion coefficient can be taken as Dt = 1.5 · 10−6 m2/s. Since

turbulent diffusion obeys the same Fickian flux law, then the turbulent diffusive flux qz,t

can be related to the molecular diffusive flux qz,t = qz by the equation

qz,t = qz,m
Dt

Dm

(1.58)
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= +2.93 · 10−3 µg/(m2·s). (1.59)

Hence, we see that turbulent diffusive transport is much greater than molecular diffusion.

As a warning, however, if the concentration gradients are very high and the turbulence is

low, molecular diffusion can become surprisingly significant!

Implications. Here, we have shown that the concentration gradient results in a net diffusive

flux of arsenic into the hypolimnion (region below the thermocline). Assuming no other

transport processes are at work, we can conclude that the arsenic source is at the surface.

If the diffusive transport continues, the hypolimnion concentrations will increase. The next

chapter considers how the situation might change if we include another type of transport:

advection.

Summary

This chapter introduced the subject of environmental fluid mechanics and focused on the

important transport process of diffusion. Fick’s law was derived to represent the mass

flux (transport) due to diffusion, and Fick’s law was used to derive the diffusion equation,

which is used to predict the time-evolution of a concentration field in space due to diffusive

transport. A similarity method was used through the aid of dimensional analysis to find a

one-dimensional solution to the diffusion equation for an instantaneous point source. As

illustrated through an example, diffusive transport results when concentration gradients

exist and plays an important role in predicting the concentrations of contaminants as they

move through the environment.

Exercises

1.1 Definitions. Write a short, qualitative definition of the following terms:

Concentration. Partial differential equation.

Mass fraction. Standard deviation.

Density. Chemical fate.

Diffusion. Chemical transport.

Brownian motion. Transport equation.

Instantaneous point source. Fick’s law.

Similarity method.

1.2 Concentrations in water. A student adds 1.00 mg of pure Rhodamine WT (a common

fluorescent tracer used in field experiments) to 1.000 l of water at 20◦C. Assuming the

solution is dilute so that we can neglect the equation of state of the solution, compute

the concentration of the Rhodamine WT mixture in the units of mg/l, mg/kg, ppm, and

ppb.
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1.3 Concentration in air. Air consists of 21% oxygen. For air with a density of 1.4 kg/m3,

compute the concentration of oxygen in the units of mg/l, mg/kg, mol/l, and ppm.

1.4 Instantaneous point source. Consider the pipe section depicted in Figure 1.3. A stu-

dent injects 5 ml of 20% Rhodamine-WT solution (specific gravity 1.15) instantaneously

and uniformly over the pipe cross-section (A = 0.8 cm3) at the point x = 0 and the time

t = 0. The pipe is filled with stagnant water. Assume the molecular diffusion coefficient

is Dm = 0.13 · 10−4 cm2/s.

• What is the concentration at x = 0 at the time t = 0?

• What is the standard deviation of the concentration distribution 1 s after injection?

• Plot the maximum concentration in the pipe, Cmax(t), as a function of time over the

interval t = [0, 24 h].

• How long does it take until the concentration over the region x = ±1 m can be treated

as uniform? Define a uniform concentration distribution as one where the minimum

concentration within a region is no less than 95% of the maximum concentration within

that same region.

1.5 Advection versus diffusion. Rivers can often be approximated as advection dominated

(downstream transport due to currents is much faster than diffusive transport) or diffusion

dominated (diffusive transport is much faster than downstream transport due to currents).

This property is described by a non-dimensional parameter (called the Peclet number)

Pe = f(u,D, x), where u is the stream velocity, D is the diffusion coefficient, and x is the

distance downstream to the point of interest. Using dimensional analysis, find the form

of Pe such that Pe � 1 is advection dominated and Pe � 1 is diffusion dominated. For

a stream with u = 0.3 m/s and D = 0.05 m2/s, where are diffusion and advection equally

important?

1.6 Maximum concentrations. Referring to Figure 1.4, we note that the maximum con-

centration in space is always found at the center of the distribution (x = 0). For a point

at x = r, however, the maximum concentration over time occurs at one specific time tmax.

Using (1.53) find an equation for the time tmax at which the maximum concentration

occurs at the point x = r.

1.7 Diffusion in a river. The Rhein river can be approximated as having a uniform depth

(h = 5 m), width (B = 300 m) and mean flow velocity (u = 0.7 m/s). Under these

conditions, 100 kg of tracer is injected as a point source (the injection is evenly distributed

transversely over the cross-section). The cloud is expected to diffuse laterally as a one-

dimensional point source in a moving coordinate system, moving at the mean stream

velocity. The river has an enhanced mixing coefficient of D = 10 m2/s. How long does

it take the cloud to reach a point x = 15000 m downstream? What is the maximum

concentration that passes the point x? How wide is the cloud (take the cloud width as

4σ) when it passes this point?
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Table 1.3. Measured concentration and time for a point source diffusing in three-dimensions for problem num-
ber 18.

Time Concentration

(days) (µg/cm3 ±0.03)

0.5 0.02

1.0 0.50

1.5 2.08

2.0 3.66

2.5 4.81

3.0 5.50

3.5 5.80

4.0 5.91

4.5 5.81

5.0 5.70

5.5 5.54

6.0 5.28

6.5 5.05

7.0 4.87

7.5 4.65

8.0 4.40

8.5 4.24

9.0 4.00

9.5 3.84

10.0 3.66

1.8 Measuring diffusion coefficients 1. A chemist is trying to calculate the diffusion coeffi-

cient for a new chemical. In his experiments, he measured the concentration as a function

of time at a point 5 cm away from a virtual point source diffusing in three dimensions.

Select a set of coordinates such that, when plotting the data in Table 1.3, D is the slope

of a best-fit line through the data. Based on this coordinate transformation, what is more

important to measure precisely, concentration or time? What recommendation would you

give to this scientist to improve the accuracy of his estimate for the diffusion coefficient?

1.9 Measuring diffusion coefficients 2.1 As part of a water quality study, you have been

asked to assess the diffusion of a new fluorescent dye. To accomplish this, you do a dye

study in a laboratory tank (depth h = 40 cm). You release the dye at a depth of 20 cm

(spread evenly over the area of the tank) and monitor its development over time. Vertical

profiles of dye concentration in the tank are shown in Figure 1.7; the x-axis represents

the reading on your fluorometer and the y-axis represents the depth.

• Estimate the molecular diffusion coefficient of the dye, Dm, based on the evolution of

the dye cloud.

1 This problem is adapted from Nepf (1995).
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Fig. 1.7. Concentration profiles of fluorescent dye for two different measurement times. Refer to problem num-
ber 1.9.

• Predict at what time the vertical distribution of the dye will be affected by the bound-

aries of the tank.

1.10 Radiative heaters. A student heats his apartment (surface area Ar = 32 m2 and

ceiling height h = 3 m) with a radiative heater. The heater has a total surface area of

Ah = 0.8 m2; the thickness of the heater wall separating the heater fluid from the outside

air is δx = 3 mm (refer to Figure 1.8). The conduction of heat through the heater wall is

given by the diffusion equation

∂T

∂t
= κ∇2T (1.60)

where T is the temperature in ◦C and κ = 1.1 · 10−2 kcal/(s◦Cm) is the thermal conduc-

tivity of the metal for the heater wall. The heat flux q through the heater wall is given

by

q = −κ∇T. (1.61)

Recall that 1 kcal = 4184 J and 1 Watt = 1 J/s.

• The conduction of heat normal to the heater wall can be treated as one-dimensional.

Write (1.60) and (1.61) for the steady-state, one-dimensional case.
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Fig. 1.8. Definitions sketch for one-dimensional thermal conduction for the heater wall in problem number 1.10.

• Solve (1.60) for the steady-state, one-dimensional temperature profile through the heater

wall with boundary conditions T (0) = Th and T (δx) = Tr (refer to Figure 1.8).

• The water in the heater and the air in the room move past the heater wall such that

Th = 85◦C and Tr = 35◦C. Compute the heat flux from (1.61) using the steady-state,

one-dimensional solution just obtained.

• How many 300 Watt lamps are required to equal the heat output of the heater assuming

100% efficiency?

• Assume the specific heat capacity of the air is cv = 0.172 kcal/(kg·K) and the density is

ρa = 1.4 kg/m3. How much heat is required to raise the temperature of the apartment

by 5◦C?

• Given the heat output of the heater and the heat needed to heat the room, how might

you explain that the student is able to keep the heater turned on all the time?
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2. Advective Diffusion Equation

In nature, transport occurs in fluids through the combination of advection and diffusion.

The previous chapter introduced diffusion and derived solutions to predict diffusive trans-

port in stagnant ambient conditions. This chapter incorporates advection into our diffu-

sion equation (deriving the advective diffusion equation) and presents various methods to

solve the resulting partial differential equation for different geometries and contaminant

conditions.

2.1 Derivation of the advective diffusion equation

Before we derive the advective diffusion equation, we look at a heuristic description of

the effect of advection. To conceptualize advection, consider our pipe problem from the

previous chapter. Without pipe flow, the injected tracer spreads equally in both directions,

describing a Gaussian distribution over time. If we open a valve and allow water to flow

in the pipe, we expect the center of mass of the tracer cloud to move with the mean flow

velocity in the pipe. If we move our frame of reference with that mean velocity, then we

expect the solution to look the same as before. This new reference frame is

η = x − (x0 + ut) (2.1)

where η is the moving reference frame spatial coordinate, x0 is the injection point of the

tracer, u is the mean flow velocity, and ut is the distance traveled by the center of mass of

the cloud in time t. If we substitute η for x in our solution for a point source in stagnant

conditions we obtain

C(x, t) =
M

A
√

4πDt
exp

(

−(x − (x0 + ut))2

4Dt

)

. (2.2)

To test whether this solution is correct, we need to derive a general equation for advective

diffusion and compare its solution to this one.

2.1.1 The governing equation

The derivation of the advective diffusion equation relies on the principle of superposition:

advection and diffusion can be added together if they are linearly independent. How do

we know if advection and diffusion are independent processes? The only way that they

can be dependent is if one process feeds back on the other. From the previous chapter,
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Fig. 2.1. Schematic of a control volume with crossflow.

diffusion was shown to be a random process due to molecular motion. Due to diffusion,

each molecule in time δt will move either one step to the left or one step to the right

(i.e. ±δx). Due to advection, each molecule will also move uδt in the cross-flow direction.

These processes are clearly additive and independent; the presence of the crossflow does

not bias the probability that the molecule will take a diffusive step to the right or the left,

it just adds something to that step. The net movement of the molecule is uδt ± δx, and

thus, the total flux in the x-direction Jx, including the advective transport and a Fickian

diffusion term, must be

Jx = uC + qx

= uC − D
∂C

∂x
. (2.3)

We leave it as an exercise for the reader to prove that uC is the correct form of the

advective term (hint: consider the dimensions of qx and uC).

As we did in the previous chapter, we now use this flux law and the conservation of

mass to derive the advective diffusion equation. Consider our control volume from before,

but now including a crossflow velocity, u = (u, v, w), as shown in Figure 2.1. Here, we

follow the derivation in Fischer et al. (1979). From the conservation of mass, the net flux

through the control volume is

∂M

∂t
=
∑

ṁin −
∑

ṁout, (2.4)

and for the x-direction, we have

δṁ|x =

(

uC − D
∂C

∂x

)∣

∣

∣

∣

∣

1

δyδz −
(

uC − D
∂C

∂x

)∣

∣

∣

∣

∣

2

δyδz. (2.5)

As before, we use linear Taylor series expansion to combine the two flux terms, giving

uC|1 − uC|2 = uC|1 −
(

uC|1 +
∂(uC)

∂x

∣

∣

∣

∣

∣

1

δx

)
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= −∂(uC)

∂x
δx (2.6)

and

−D
∂C

∂x

∣

∣

∣

∣

∣

1

+ D
∂C

∂x

∣

∣

∣

∣

∣

2

= −D
∂C

∂x

∣

∣

∣

∣

∣

1

+

(

D
∂C

∂x

∣

∣

∣

∣

∣

1

+
∂

∂x

(

D
∂C

∂x

)∣

∣

∣

∣

∣

1

δx

)

= D
∂2C

∂x2
δx. (2.7)

Thus, for the x-direction

δṁ|x = −∂(uC)

∂x
δxδyδz + D

∂2C

∂x2
δxδyδz. (2.8)

The y- and z-directions are similar, but with v and w for the velocity components, giving

δṁ|y = −∂(vC)

∂y
δyδxδz + D

∂2C

∂y2
δyδxδz (2.9)

δṁ|z = −∂(wC)

∂z
δzδxδy + D

∂2C

∂z2
δzδxδy. (2.10)

Substituting these results into (2.4) and recalling that M = Cδxδyδz, we obtain

∂C

∂t
+ ∇ · (uC) = D∇2C (2.11)

or in Einsteinian notation

∂C

∂t
+

∂uiC

∂xi

= D
∂2C

∂x2
i

, (2.12)

which is the desired advective diffusion (AD) equation. We will use this equation exten-

sively in the remainder of this class.

Note that these equations implicitly assume that D is constant. When considering a

variable D, the right-hand-side of (2.12) has the form

∂

∂xi

(

Dij
∂C

∂xj

)

. (2.13)

2.1.2 Point-source solution

To check whether our initial suggestion (2.2) for a solution to (2.12) was correct, we

substitute the coordinate transformation for the moving reference frame into the one-

dimensional version of (2.12). In the one-dimensional case, u = (u, 0, 0), and there are no

concentration gradients in the y- or z-directions, leaving us with

∂C

∂t
+

∂(uC)

∂x
= D

∂2C

∂x2
. (2.14)

Our coordinate transformation for the moving system is

η = x − (x0 + ut) (2.15)

τ = t, (2.16)
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Fig. 2.2. Schematic solution of the advective diffusion equation in one dimension. The dotted line plots the
maximum concentration as the cloud moves downstream.

and this can be substituted into (2.14) using the chain rule as follows

∂C

∂τ

∂τ

∂t
+

∂C

∂η

∂η

∂t
+ u

(

∂C

∂η

∂η

∂x
+

∂C

∂τ

∂τ

∂x

)

=

D

(

∂

∂η

∂η

∂x
+

∂

∂τ

∂τ

∂x

)(

∂C

∂η

∂η

∂x
+

∂C

∂τ

∂τ

∂x

)

(2.17)

which reduces to

∂C

∂τ
= D

∂2C

∂η2
. (2.18)

This is just the one-dimensional diffusion equation (1.27) in the coordinates η and τ with

solution for an instantaneous point source of

C(η, τ) =
M

A
√

4πDτ
exp

(

− η2

4Dτ

)

. (2.19)

Converting the solution back to x and t coordinates (by substituting (2.15) and (2.16)), we

obtain (2.2); thus, our intuitive guess for the superposition solution was correct. Figure 2.2

shows the schematic behavior of this solution for three different times, t1, t2, and t3.

2.1.3 Incompressible fluid

For an incompressible fluid, (2.12) can be simplified by using the conservation of mass

equation for the ambient fluid. In an incompressible fluid, the density is a constant ρ0

everywhere, and the conservation of mass equation reduces to the continuity equation

∇ · u = 0 (2.20)

(see, for example Batchelor (1967)). If we expand the advective term in (2.12), we can

write

∇ · (uC) = (∇ · u)C + u · ∇C. (2.21)
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by virtue of the continuity equation (2.20) we can take the term (∇ · u)C = 0; thus, the

advective diffusion equation for an incompressible fluid is

∂C

∂t
+ ui

∂C

∂xi

= D
∂2C

∂x2
i

. (2.22)

This is the form of the advective diffusion equation that we will use the most in this class.

2.1.4 Rules of thumb

We pause here to make some observations regarding the AD equation and its solutions.

First, the solution in Figure 2.2 shows an example where the diffusive and advective

transport are about equally important. If the crossflow were stronger (larger u), the cloud

would have less time to spread out and would be narrower at each ti. Conversely, if the

diffusion were faster (larger D), the cloud would spread out more between the different

ti and the profiles would overlap. Thus, we see that diffusion versus advection dominance

is a function of t, D, and u, and we express this property through the non-dimensional

Peclet number

Pe =
D

u2t
, (2.23)

or for a given downstream location L = ut,

Pe =
D

uL
. (2.24)

For Pe � 1, diffusion is dominant and the cloud spreads out faster than it moves down-

stream; for Pe � 1, advection is dominant and the cloud moves downstream faster than

it spreads out. It is important to note that the Peclet number is dependent on our zone of

interest: for large times or distances, the Peclet number is small and advection dominates.

Second, the maximum concentration decreases in the downstream direction due to dif-

fusion. Figure 2.2 also plots the maximum concentration of the cloud as it moves down-

stream. This is obtained when the exponential term in (2.2) is 1. For the one-dimensional

case, the maximum concentration decreases as

Cmax(t) ∝
1√
t
. (2.25)

In the two- and three-dimensional cases, the relationship is

Cmax(t) ∝
1

t
and (2.26)

Cmax(t) ∝
1

t
√

t
, (2.27)

respectively.

Third, the diffusive and advective scales can be used to simplify the equations and

make approximations. One of the most common questions in engineering is: when does a

given equation or approximation apply? In contaminant transport, this question is usually

answered by comparing characteristic advection and diffusion length and time scales to
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the length and time scales in the problem. For advection (subscript a) and for diffusion

(subscript d), the characteristic scales are

La = ut ; ta =
L

u
(2.28)

Ld =
√

Dt ; td =
L2

D
. (2.29)

From the Gaussian solution to a point-source, for instance, we can show that the

time required before a cloud can be considered well-mixed over an area of length L is

tm,d = L2/(8D). These characteristic scales (easily derivable through dimensional anal-

ysis) should be memorized and used extensively to get a rough solution to transport

problems.

2.2 Solutions to the advective diffusion equation

In the previous chapter we presented a detailed solution for an instantaneous point source

in a stagnant ambient. In nature, initial and boundary conditions can be much different

from that idealized case, and this section presents a few techniques to deal with other

general cases. Just as advection and diffusion are additive, we will also show that super-

postion can be used to build up solutions to complex geometries or initial conditions from

a base set of a few general solutions.

The solutions in this section parallel a similar section in Fischer et al. (1979). Ap-

pendix B presents analytical solutions for other initial and boundary conditions, primar-

ily obtained by extending the techniques discussed in this section. Taken together, these

solutions can be applied to a wide range of problems.

2.2.1 Initial spatial concentration distribution

A good example of the power of superposition is the solution for an initial spatial con-

centration distribution. Since advection can always be included by changing the frame

of reference, we will consider the one-dimensional stagnant case. Thus, the governing

equation is

∂C

∂t
= D

∂2C

∂x2
. (2.30)

We will consider the homogeneous initial distribution, given by

C(x, t0) =

{

C0 if x ≤ 0

0 if x > 0
(2.31)

where t0 = 0 and C0 is the uniform initial concentration, as depicted in Figure 2.3. At a

point x = ξ < 0 there is an infinitesimal mass dM = C0Adξ, where A is the cross-sectional

area δyδz. For t > 0, the concentration at any point x is due to the diffusion of mass from

all the differential elements dM . The contribution dC for a single element dM is just the

solution of (2.30) for an instantaneous point source
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Fig. 2.3. Schematic of an instantaneous initial concentration distribution showing the differential element dM at
the point −ξ.

dC(x, t) =
dM

A
√

4πDt
exp

(

−(x − ξ)2

4Dt

)

, (2.32)

and by virtue of superposition, we can sum up all the contributions dM to obtain

C(x, t) =
∫ 0

−∞

C0dξ√
4πDt

exp

(

−(x − ξ)2

4Dt

)

(2.33)

which is the superposition solution to our problem. To compute the integral, we must, as

usual, make a change of variables. The new variable ζ is defined as follows

ζ =
x − ξ√

4Dt
(2.34)

dζ = − dξ√
4Dt

. (2.35)

Substituting ζ into the integral solution gives

C(x, t) =
C0√

π

∫ x/
√

4Dt

−∞
− exp(−ζ2)dζ. (2.36)

Note that to obtain the upper bound on the integral we set ξ = 0 in the definition for ζ

given in (2.34). Rearranging the integral gives

C(x, t) =
C0√

π

∫ ∞

x/
√

4Dt
exp(−ζ2)dζ (2.37)

=
C0√

π

[

∫ ∞

0
exp(−ζ2)dζ −

∫ x/
√

4Dt

0
exp(−ζ2)dζ

]

. (2.38)

The first of the two integrals can be solved analytically—from a table of integrals, its

solution is
√

π/2. The second integral is the so called error function, defined as

erf(ϕ) =
2√
π

∫ ϕ

0
exp(−ζ2)dζ. (2.39)

Solutions to the error function are generally found in tables or as built-in functions in a

spreadsheet or computer programming language. Hence, our solution can be written as

C(x, t) =
C0

2

(

1 − erf

(

x√
4Dt

))

. (2.40)
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Fig. 2.4. Solution (2.40) for an instantaneous initial concentration distribution given by (2.31) with C0 = 1.

Figure 2.4 plots this solution for C0 = 1 and for increasing times t.

Example Box 2.1:
Diffusion of an intravenous injection.

A doctor administers an intravenous injection of
an allergy fighting medicine to a patient suffering
from an allergic reaction. The injection takes a to-
tal time T . The blood in the vein flows with mean
velocity u, such that blood over a region of length
L = uT contains the injected chemical; the concen-
tration of chemical in the blood is C0 (refer to the
following sketch).

L

-x x

x = 0

What is the distribution of chemical in the vein when
it reaches the heart 75 s later?

This problem is an initial spatial concentration
distribution, like the one in Section 2.2.1. Take the
point x = 0 at the middle of the distribution and
let the coordinate system move with the mean blood
flow velocity u. Thus, we have the initial concentra-
tion distribution

C(x, t0) =

{

C0 if −L/2 < x < L/2
0 otherwise

where t0 = 0 at the time T/2.
Following the solution method in Section 2.2.1,

the superposition solution is

C(x, t) =

∫ L/2

−L/2

C0dξ√
4πDt

exp

(

− (x − ξ)2

4Dt

)

which can be expanded to give

C(x, t) =
C0√
4πDt

·
[∫ L/2

−∞

exp

(

− (x − ξ)2

4Dt

)

dξ −
∫

−L/2

−∞

exp

(

− (x − ξ)2

4Dt

)

dξ

]

.

After substituting the coordinate transformation in
(2.34) and simplifying, the solution is found to be

C(x, t) =
C0

2

(

erf

(

x + L/2√
4Dt

)

−

erf

(

x − L/2√
4Dt

))

.

Substituting t = 75 s gives the concentration distri-
bution when the slug of medicine reaches the heart.

2.2.2 Fixed concentration

Another common situation is a fixed concentration at some point x1. This could be, for

example, the oxygen concentration at the air-water interface. The parameters governing
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Fig. 2.5. Solution (2.43) for a fixed concentration at x = 0 of C0 = 1.

the solution are the fixed concentration C0, the diffusion coefficient D, and the coordinates

(x−x0), and t. Again, we will neglect advection since we can include it through a change

of variables, and we will take x0 = 0 for simplicity. As we did for a point source, we form

a similarity solution from the governing variables, which gives us the solution form

C(x, t) = C0f

(

x√
Dt

)

. (2.41)

If we define the similarity variable η = x/
√

Dt and substitute it into (2.30) we obtain, as

expected, an ordinary differential equation in f and η, given by

d2f

dη2
+

η

2

df

dη
= 0 (2.42)

with boundary conditions f(0) = 1 and f(∞) = 0. Unfortunately, our ordinary differential

equation is non-linear. A quick look at Figure 2.4, however, might help us guess a solution.

The point at x = 0 has a fixed concentration of C0/2. If we substitute C0 as the leading

coefficient in (2.40) (instead of C0/2), maybe that would be the solution. Substitution

into the differential equation (2.42) and its boundary conditions proves, indeed, that the

solution is correct, namely

C(x, t) = C0

(

1 − erf

(

x√
4Dt

))

(2.43)

is the solution we seek. Figure 2.5 plots this solution for C0 = 1. Important note: this

solution is only valid for x > x0.

2.2.3 Fixed, no-flux boundaries

The final situation we examine in this section is how to incorporate no-flux boundaries.

No-flux boundaries are any surface that is impermeable to the contaminant of interest.

The discussion in this section assumes that no chemical reactions occur at the surface and

that the surface is completely impermeable.
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Example Box 2.2:
Dissolving sugar in coffee.

On a cold winter’s day you pour a cup of coffee and
add 2 g of sugar evenly distributed over the bottom
of the coffee cup. The diameter of the cup is 5 cm;
its height is 7 cm. If you do not stir the coffee, when
does the concentration boundary layer first reach the
top of the cup and when does all of the sugar dis-
solve? How would these answers change if you stir
the coffee?

The concentration of sugar is fixed at the satu-
ration concentration at the bottom of the cup and
is initially zero everywhere else. These are the same
conditions as for the fixed concentration solution;
thus, the sugar distribution at height z above the
bottom of the cup is

C(z, t) = C0

(

1 − erf

(

z√
4Dt

))

.

The characteristic height of the concentration
boundary layer is proportional to σ =

√
2Dt. As-

sume the concentration boundary layer first reaches
the top of the cup when 2σ = h = 7 cm. Solving for
time gives

tmix,bl =
h2

8D
.

For an order-of-magnitude estimate, take D ∼
10−9 m2/s, giving

tmix,bl ≈ 6 · 105 s.

To determine how long it takes for the sugar to
dissolve, we must compute the mass flux of sugar at
z = 0. We already computed the derivative of the
error function in Example Box 1.1. The mass flux of
sugar at z = 0 is then

ṁ(0, t) =
ADCsat√

πDt

where A is the cross-sectional area of the cup. The to-
tal amount of dissolved sugar Md is the time-integral
of the mass flux

Md =

∫ t

0

ADCsat√
πDτ

dτ

Integrating and solving for time gives

td =
M2

d π

4A2DC2
sat

where td is the time it takes for the mass Md to
dissolve. This expression is only valid for t < tmix,bl;
for times beyond tmix,bl, we must account for the
boundary at the top of the cup. Assuming Csat =
0.58 g/cm3, the time needed to dissolve all the sugar
is

td = 5 · 104 s.

By stirring, we effectively increase the value of D.
Since D is in the denominator of each of these time
estimates, we shorten the time for the sugar to dis-
solve and mix throughout the cup.

As you might expect, we first need to find a way to specify a no-flux boundary as a

boundary condition to the governing differential equation. This is done easily using Fick’s

law. Since no-flux means that q = 0 (and taking D as constant), the boundary conditions

can be expressed as

q|Sb
· n = 0

(

∂C

∂x
,
∂C

∂y
,
∂C

∂z

)∣

∣

∣

∣

∣

Sb

· n = 0 (2.44)

where Sb is the function describing the boundary surface (i.e. Sb = f(x, y)) and n is

the unit vector normal to the no-flux boundary. In the one-dimensional case, the no-flux

boundary condition reduces to

∂C

∂x

∣

∣

∣

∣

∣

xb

= 0, (2.45)

where xb is the boundary location. This property is very helpful in interpreting concen-

tration measurements to determine whether a boundary, for instance, the lake bottom, is

impermeable or not.
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Fig. 2.6. Schematic of a no-flux boundary with real instantaneous point source to the left and an imaginary
source to the right. The dotted lines indicate the individual contributions from the two sources; the solid line
indicates the superposition solution.

To find a solution to a bounded problem, consider an instantaneous point source in-

jected at x0 with a no-flux boundary a distance L to the right as shown in Figure 2.6.

Our standard solution allows mass to diffuse beyond the no-flux boundary (as indicated

by the dashed line in the figure). To replace this lost mass, an image source (imaginary

source) is placed to the right of the boundary, such that it leaks the same amount of mass

back to left of the boundary as our standard solution leaked to the right. Superposing

(adding) these two solutions gives us the desired no-flux behavior at the wall. The image

source is placed L to the right of the boundary, and the solution is

C(x, t) =
M

A
√

4πDt

(

exp

(

−(x − x0)
2

4Dt

)

+ exp

(

−(x − xi)
2

4Dt

))

(2.46)

where xi = x0 + 2L. Naturally, the solution given here is only valid to the left of the

boundary. To the right of the boundary, the concentration is everywhere zero. Compute

the concentration gradient ∂C/∂x at x = 0 to prove to yourself that the no-flux boundary

condition is satisfied.

The method of images becomes more complicated when multiple boundaries are con-

cerned. This is because the mass diffusing from the image source on the right eventually

will penetrate a boundary on the left and need its own image source. In general, when

there are two boundaries, an infinite number of image sources is required. In practice,

the solution usually converges after only a few image sources have been included (Fischer

et al. 1979). For the case of an instantaneous point source at the origin with boundaries

at ±L, Fischer et al. (1979) give the image source solution

C(x, t) =
M

A
√

4πDt

∞
∑

n=−∞

exp

(

−(x + 4nL)2

4Dt

)

−

exp

(

−(x + (4n − 2)L)2

4Dt

)

. (2.47)

Obviously, the number of image sources required for the solution to converge depends on

the time scale over which the solution is to be valid. These techniques will become more

clear in the following examples and remaining chapters.
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Example Box 2.3:
Boundaries in a coffee cup.

In the previous example box we said that we have
to account for the free surface boundary when the
concentration boundary layer reaches the top of the
coffee cup. Describe the image source needed to ac-
count for the free surface and state the image-source
solution for the concentration distribution.

We can ignore the boundaries at the sides of the
cup because sugar is evenly distributed on the bot-
tom of the cup. This even distribution results in
∂C/∂x = ∂C/∂y = 0, which results in no net dif-
fusive flux toward the cup walls.

To account for the free surface, though, we must
add an image source with a fixed concentration of
Csat somewhere above the cup. Taking z = 0 at the
bottom of the cup, the image source must be placed
at z = 2h, where h is the depth of coffee in the cup.

Taking care that C(z,∞) → Csat, the superposi-
tion solution for the sugar concentration distribution
can be found to be

C(z, t) = Csat

(

1 + erf

(

2h√
4Dt

)

−

erf

(

z√
4Dt

)

− erf

(

2h − z√
4Dt

))

.

2.3 Application: Diffusion in a Lake

We return here to the application of arsenic contamination in a small lake presented in

Chapter 1 (adapted from Nepf (1995)). After further investigation, it is determined that

a freshwater spring flows into the bottom of the lake with a flow rate of 10 l/s.

Advection. Advection is due to the flow of spring water through the lake. Assuming the

spring is not buoyant, it will spread out over the bottom of the lake and rise with a

uniform vertical flux velocity (recall that z is positive downward, so the flow is in the

minus z-direction)

va = −Q/A

= −5 · 10−7 m/s. (2.48)

The concentration of arsenic at the thermocline is 8 µg/l, which results in an advective

flux of arsenic

qa = Cva

= −4 · 10−3 µg/(m2s). (2.49)

Thus, advection caused by the spring results in a vertical advective flux of arsenic through

the thermocline.

Discussion. Taking the turbulent and advective fluxes of arsenic together, the net vertical

flux of arsenic through the thermocline is

Jz = −4.00 · 10−3 + 2.93 · 10−3

= −1.10 · 10−3 µg/(m2s) (2.50)

where the minus sign indicates the net flux is upward. Thus, although the net diffusive flux

is downward, the advection caused by the stream results in the net flux at the thermocline

being upward. We can conclude that the arsenic source is likely at the bottom of the

lake. The water above the thermocline will continue to increase in concentration until
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Fig. 2.7. Schematic diagram of the reservoir and fish farm intake for the copper contamination example.

the diffusive flux at the thermocline becomes large enough to balance the advective flux

through the lake, at which time the system will reach a steady state.

2.4 Application: Fishery intake protection

As part of a renovation project, the face of a dam is to be treated with copper sulfate

to remove unsightly algae build-up. A fish nursery derives its water from the reservoir

upstream of the dam and has contracted you to determine if the project will affect their

operations. Based on experience, the fish nursery can accept a maximum copper con-

centration at their intake of 1.5 · 10−3 mg/l. Refer to Figure 2.7 for a schematic of the

situation.

The copper sulfate is applied uniformly across the dam over a period of about one hour.

Thus, we might model the copper contamination as an instantaneous source distributed

evenly along the dam face. After talking with the renovation contractor, you determine

that 10 kg of copper will be dissolved at the dam face. Because the project is scheduled

for the spring turnover in the lake, the contaminant might be assumed to spread evenly

in the vertical (dam cross-sectional area A = 3000 m2). Based on a previous dye study,

the turbulent diffusion coefficient was determined to be 2 m2/s. The average flow velocity

past the fishery intake is 0.01 m/s.

Advection or diffusion dominant. To evaluate the potential risks, the first step is to see

how important diffusion is to the transport of copper in the lake. This is done through

the Peclet number, giving

Pe =
D

uL
= 0.3 (2.51)

which indicates diffusion is mildly important, and the potential for copper to migrate

upstream remains.
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Fig. 2.8. Concentration of copper at the fishery intake as a function of time. The dotted line indicates the
maximum allowable concentration of 1.5 · 10−3 mg/l.

Maximum concentration at intake. Because there is potential that copper will move up-

stream due to diffusion, the concentration of copper at the intake needs to be predicted.

Taking the dam location at x = 0 and taking x positive downstream, the concentration

at the intake is

C(xi, t) =
M

A
√

4πDt
exp

(

−(xi − ut)2

4Dt

)

. (2.52)

where xi is the intake location (-700 m). Figure 2.8 shows the solution for the copper con-

centration at the intake from (2.52). From the figure, the maximum allowable concentra-

tion is expected to be exceeded for about 1 day between the times t = 0.3 and t = 1.3 days.

The maximum copper concentration at the intake will be about 2.4 ·10−3 mg/l. Thus, the

fish farm will have to take precautions to prevent contamination. What other factors do

you think could increase or decrease the likelihood of copper poisoning at the fish farm?

Summary

This chapter derived the advective diffusion equation using the method of superposition

and demonstrated techniques to solve the resulting partial differential equation. Solu-

tions for a stagnant ambient were shown to be easily modified to account for advection

by solving in a moving reference frame. Solutions for distributed and fixed concentra-

tion distributions were presented, and the image-source method to account for no-flux

boundaries was introduced. Engineering approximations should be made by evaluating

the Peclet number and characteristic length and time scales of diffusion and advection.

Exercises

2.1 Integral evaluation. Define an appropriate coordinate transformation and show that
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I =
1√
π

∫ 4Dt+x2/
√

Dt

−∞
2x

√
Dt exp



−
(

x2

√
Dt

+ 4Dt

)2


 dx (2.53)

can also be written as

I =
Dt

2

(

erf

(

x2

√
Dt

+ 4Dt

)

− 1

)

(2.54)

2.2 Peclet number. A river with cross section A = 20 m2 has a flow rate of Q = 1 m3/s.

The effective mixing coefficient is D = 1 m2/s. For what distance downstream is diffusion

dominant? Where does advection become dominant? What is the length of stream where

diffusion and advection have about equal influence?

2.3 Advection in a stream. To estimate the mixing characteristics of a small stream, a

scientist injects 5 g of dye instantaneously and uniformly over the river cross section

(A = 5 m2) at the point x = 0. A measurement station is located 1 km downstream and

records a river flow rate of Q = 0.5 m3/s. In order to design the experiment, the scientist

assumed that D = 0.1 m2/s. Use this value to answer the following equations.

• The fluorometer used to measure the dye downstream at the measuring station has a

detection limit of 0.1 µg/l. When does the measuring station first detect the dye cloud?

• When does the maximum dye concentration pass the measuring station, and what is

this maximum concentration?

• After the maximum concentration passes the measuring station, the measured concen-

tration decreases again. When is the measuring station no longer able to detect the

dye?

• Why is the elapsed time between first detection and the maximum concentration differ-

ent from the elapsed time between the last detection and the maximum concentration?

2.4 Fixed concentration. A beaker in a laboratory contains a solution with dissolved

methane gas (CH4). The concentration of methane in the atmosphere Ca is negligible;

the concentration of methane in the uniformly-mixed portion of the beaker is Cw. The

methane in the beaker dissolves out of the water and into the air, resulting in a fixed

concentration at the water surface of Cws = 0. Assume this process is limited by diffusion

of methane through the water.

• Write an expression for the vertical concentration distribution of methane in the beaker.

Assume the bottom boundary does not affect the profile (concentration at the bot-

tom is Cw) and that methane is uniformly distributed in the horizontal (use the one-

dimensional solution).

• Use the expression found above to find an expression for the flux of methane into the

atmosphere through the water surface.

2.5 Concentration profiles. Figure 2.9 shows four concentration profiles measured very

carefully at the bottom of four different lakes. For each profile, state whether the lake

bottom is a no-flux or flux boundary and describe where you think the source is located

and why.
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Fig. 2.9. Bottom concentration profiles for the four lakes in problem number 2.4.

2.6 Double point sources. To demonstrate the image-source method, a professor creates

two instantaneous point sources of dye (three dimensional) a distance L apart and mea-

sures the concentration of dye at the point halfway between the two sources. Estimate

the radius of the cloud for each point source by r = 2σ.

• Write an expression for the time t when the two sources first touch.

• Write an expression for the concentration distribution along the line connecting the two

point sources.

• Differentiate this solution to show that the net flux through the measurement point

along the axis of the two sources is zero.

2.7 Smoke stack. A chemical plant has a smoke stack 75 m tall that discharges a continu-

ous flux of carbon monoxide (CO) of 0.01 kg/s . The wind blows with a velocity of 1 m/s

due east (from the west to the east) and the transverse turbulent diffusion coefficient is

4.5 m2/s. Neglect longitudinal (downwind) diffusion.

• Write the unbounded solution for a continuous source in a cross wind.

• Add the appropriate image source(s) to account for the no-flux boundary at the ground

and write the resulting image-source solution for concentration downstream of the re-

lease.

• Plot the two-dimensional concentration distribution downstream of the smoke stack for

the plane 2 m above the ground.

• For radial distance r away from the smoke stack, where do the maximum concentrations

occur?
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Fig. 2.10. Sketch of the boat arena and spill location for problem number 2.4.

2.8 Damaged smoke stack. After a massive flood, the smoke stack in the previous problem

developed a leak at ground level so that all the exhaust exits at z = 0.

• How does this new release location change the location(s) of the image source(s)?

• Plot the maximum concentration at 2 m above the ground as a function of distance

from the smoke stack for this damaged case.

• If a CO concentration of 1.0 µg/l of CO is dangerous, should be factor be closed until

repairs are completed?

2.9 Boundaries in a boat arena. A boat parked in an arena has a sudden gasoline spill.

The arena is enclosed on three sides, and the spill is located as shown in Figure 2.10.

Find the locations of the first 11 most important image sources needed to account for the

boundaries and incorporate them into the two-dimensional instantaneous point-source

solution.

2.10 Image sources in a pipe. A point source is released in the center of an infinitely long

round pipe. Describe the image source needed to account for the pipe walls.

2.11 Vertical mixing in a river. Wastewater from a chemical plant is discharged by a line

diffuser perpendicular to the river flow and located at the bottom of the river. The river

flow velocity is 15 cm/s and the river depth is 1 m.

• Find the locations of the first four most important image sources needed to account for

the river bottom and the free surface.

• Write a spreadsheet program that computes the ratio of C(x, z = h, t = x/u) to

Cmax(t = x/u), where u is the flow velocity in the river and h is the water depth;

x = z = 0 at the release location.

• Use the spreadsheet program to find the locations where the concentration ratio is 0.90,

0.95, and 0.98.

• From dimensional analysis we can write that the time needed for the injection to mix

in the vertical is given by

tmix =
xmix

u
=

h2

αD
(2.55)

where D is the vertical diffusion coefficient. Compute the value of α for the criteria

Cmin/Cmax = 0.95.

• Why is the value of α independent of D?
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Table 2.1: Table of solutions to the diffusion equation

Schematic and Solution

Instantaneous point source, infinite domain

C

x

C(x,t = 0) = 

x0

δ (x-x0)M
A

8

C

x

Cmax

2σ1

4σ2

C(x, t) =
M

A
√

4πDt
exp

[

− (x − x0)
2

4Dt

]

Cmax(t) =
M

A
√

4πDt

qx(x, t) =
M(x − x0)

2At
√

4πDt
exp

[

− (x − x0)
2

4Dt

]

Let σ =
√

2Dt and
(2σ)2 = 8Dt.
For x0 = 0:
C(±σ, t) = 0.61Cmax(t)

Let σ =
√

2Dt and
(4σ)2 = 32Dt.
For x0 = 0:
C(±2σ, t) = 0.14Cmax(t)

Instantaneous distributed source, infinite domain

C

x

C(x,t = 0) = 

x0

C

x

2σ1

C0, x < x0

   0, x > x0

C0
2

4σ2

C(x, t) =
C0

2

[

1 − erf

[

(x − x0)√
4Dt

]]

Cmax(t) = C0

qx(x, t) =
C0

√
D√

4πt
exp

[

− (x − x0)
2

4Dt

]

Let σ =
√

2Dt and
(2σ)2 = 8Dt.
For x0 = 0:
C(+σ, t) = 0.16C0

C(−σ, t) = 0.84C0

Let σ =
√

2Dt and
(4σ)2 = 32Dt.
For x0 = 0:
C(+2σ, t) = 0.02C0

C(−2σ, t) = 0.98C0
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Table 2.1: (continued)

Schematic Solution

Fixed concentration, semi-infinite domain

C

x

C(x=x0,t ) = C0

x0

C

x

σ

C0

C0

2σ

C(x > x0, t) = C0

[

1 − erf

[

(x − x0)√
4Dt

]]

Cmax(t) = C0

qx(x > x0, t) =
2C0

√
D√

4πt
exp

[

− (x − x0)
2

4Dt

]

Let σ =
√

2Dt and
σ2 = 2Dt.
For x0 = 0:
C(+σ, t) = 0.32C0

C(−σ, t) = Undefined

Let σ =
√

2Dt and
(2σ)2 = 8Dt.
For x0 = 0:
C(+2σ, t) = 0.05C0

C(−2σ, t) = Undefined

Instantaneous point source, bounded domain

C

x

C(x,t = 0) = 

x0

δ (x-x0)M
A

8

C

x

Cmax

dC
dx

= 0
xb

2Lb

C(x, t) =
M

A
√

4πDt

∞
∑

n=−∞

exp

[

− (x − x0 + 4nLb)
2

4Dt

]

− exp

[

− (x − x0 + (4n − 2)Lb)
2

4Dt

]

Cmax(t) =
M

A
√

4πDt

∞
∑

n=−∞

exp

[

− (4nLb)
2

4Dt

]

− exp

[

− (4n − 2)Lb)
2

4Dt

]

qx(x, t) =
M

2At
√

4πDt

∞
∑

n=−∞

(x − x0 + 4nLb) exp

[

− (x − x0 + 4nLb)
2

4Dt

]

−(x − x0 + (4n − 2)Lb) exp

[

− (x − x0 + (4n − 2)Lb)
2

4Dt

]

Using the image-source
method, the first image
on the opposite side of
the boundary is at
x0 ± 2Lb.
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Table 2.1: (continued)

Schematic Solution

Instantaneous 2-D point source, infinite domain

y

x

C(x,y,t = 0) = δ (x-x0)M
H

y

x

δ (y-y0)

(x0,y0)

σ

C(x, y, t) =
M

4πHt
√

DxDy

exp

[

− (x − x0)
2

4Dxt

− (y − y0)
2

4Dyt

]

Cmax(t) =
M

4πHt
√

DxDy

q(x, y, t) =
M

8πHt2
√

DxDy

exp

[

− (x − x0)
2

4Dxt

− (y − y0)
2

4Dyt

]

((x − x0)i + (y − y0)j)

Let Dx = Dy,σ =
√

2Dt,
(2σ)2 = 8Dt, and
r2 = (x−x0)

2+(y−y0)
2.

For r = σ:
C(σ, t) = 0.61Cmax(t)

Let Dx = Dy,
σ =

√
2Dt,

(4σ)2 = 32Dt, and
r2 = (x−x0)

2+(y−y0)
2.

For r = 2σ:
C(2σ, t) = 0.14Cmax(t)

Instantaneous 3-D point source, infinite domain

z

x

C(x � � �t = 0) = δ (x-x0)M
H

z

x

δ (y-y0)

(x0,y0,z0)

δ (z-z0)

Iso-concentration
surface

y

y

C(x, y, z, t) =
M

4πt
√

4πtDxDyDz

exp

[

− (x − x0)
2

4Dxt

− (y − y0)
2

4Dyt
− (z − z0)

2

4Dzt

]

Cmax(t) =
M

4πt
√

4πtDxDyDz

q(x, y, z, t) =
M

8πt2
√

4πtDxDyDz

exp

[

− (x − x0)
2

4Dxt

− (y − y0)
2

4Dyt
− (z − z0)

2

4Dzt

]

·

((x − x0)i + (y − y0)j + (z − z0)k)

Let Dx = Dy = Dz,
σ =

√
2Dt, (2σ)2 = 8Dt,

and
r2 = (x − x0)

2 + (y −
y0)

2 + (z − z0)
2.

For r = σ:
C(σ, t) = 0.61Cmax(t)

Let Dx = Dy = Dz,
σ =

√
2Dt,

(4σ)2 = 32Dt, and
r2 = (x − x0)

2 + (y −
y0)

2 + (z − z0)
2.

For r = 2σ:
C(2σ, t) = 0.14Cmax(t)



3. Mixing in Rivers: Turbulent Diffusion

and Dispersion

In previous chapters we considered the processes of advection and molecular diffusion

and have seen some example problems with so called “turbulent diffusion” coefficients,

where we use the same governing equations, but with larger diffusion (mixing) coefficients.

In natural rivers, a host of processes lead to a non-uniform velocity field, which allows

mixing to occur much faster than by molecular diffusion alone. In this chapter, we formally

derive the equations for non-uniform velocity fields to demonstrate their effects on mixing.

First, we consider the effect of a random, turbulent velocity field. Second, we consider

the combined effects of diffusion (molecular or turbulent) with a shear velocity profile to

develop equations for dispersion. In each case, the resulting equations retain their previous

form, but the mixing coefficients are orders of magnitude greater than the molecular

diffusion coefficients.

We start by giving a description of turbulence and its effects on the transport of

contaminants. We then derive a new advective diffusion equation for turbulent flow and

show why turbulence can be described by the regular advective diffusion equation derived

previously, but using larger turbulent diffusion coefficients. We then look at the effect

of a shear velocity profile on the transport of contaminants and derive one-dimensional

equations for longitudinal dispersion. This chapter concludes with a common dye study

application to compute the effective mixing coefficients in rivers.

3.1 Turbulence and mixing

In the late 1800’s, Reynolds performed a series of experiments on the transport of dye

streaks in pipe flow. These were the pioneering observations of turbulence, and his analysis

is what gives the Re number its name. It is interesting to realize that the first contribu-

tion to turbulence research was in the area of contaminant transport (the behavior of

dye streaks); therefore, we can assume that turbulence has an important influence on

transport. In his paper, Reynolds (1883) wrote (taken from Acheson (1990)):

The experiments were made on three tubes. They were all about 4 feet 6 inches

[1.37 m] long, and fitted with trumpet mouthpieces, so that water might enter

without disturbance. The water was drawn through the tubes out of a large glass

tank, in which the tubes were immersed, arrangements being made so that a streak

or streaks of highly colored water entered the tubes with the clear water.

The general results were as follows:
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Fig. 3.1. Sketches from Reynolds (1883) showing laminar flow (top), turbulent flow (middle), and turbulent flow
illuminated with an electric spark (bottom). Taken from Acheson (1990).

1. When the velocities were sufficiently low, the streak of colour extended in a

beautiful straight line through the tube.

2. If the water in the tank had not quite settled to rest, at sufficiently low veloc-

ities, the streak would shift about the tube, but there was no appearance of

sinuosity.

3. As the velocity was increased by small stages, at some point in the tube, always

at a considerable distance from the trumpet or intake, the color band would all

at once mix up with the surrounding water, and fill the rest of the tube with a

mass of colored water. Any increase in the velocity caused the point of break

down to approach the trumpet, but with no velocities that were tried did it

reach this. On viewing the tube by the light of an electric spark, the mass of

color resolved itself into a mass of more or less distinct curls, showing eddies.

Figure 3.1 shows the schematic drawings of what Reynolds saw, taken from his paper.

The first case he describes, the one with low velocities, is laminar flow: the fluid moves

in parallel layers along nearly perfect lines, and disturbances are damped by viscosity. The

only way that the dye streak can spread laterally in the laminar flow is through the action

of molecular diffusion; thus, it would take a much longer pipe before molecular diffusion

could disperse the dye uniformly across the pipe cross-section (what rule of thumb could

we use to determine the required length of pipe?).

The latter case, at higher velocities, is turbulent flow: the fluid becomes suddenly

unstable and develops into a spectrum of eddies, and these disturbances grow due to

instability. The dye, which more or less follows the fluid passively, is quickly mixed across

the cross-section as the eddies grow and fill the tube with turbulent flow. The observations

with an electric spark indicate that the dye conforms to the shape of the eddies. After

some time, however, the eddies will have grown and broken enough times that the dye will

no longer have strong concentration gradients that outline the eddies: at that point, the
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dye is well mixed and the mixing is more or less random (even though it is still controlled

by discrete eddies).

Reynolds summarized his results by showing that these characteristics of the flow were

dependent on the non-dimensional number Re = UL/ν, where U is the mean pipe flow

velocity, L the pipe diameter and ν the kinematic viscosity, and that turbulence occurred

at higher values of Re. The main consequence of turbulence is that it enhances momentum

and mass transport.

3.1.1 Mathematical descriptions of turbulence

Much research has been conducted in the field of turbulence. The ideas summarized in

the following can be found in much greater detail in the treatises by Lumley & Panofsky

(1964), Pope (2000), and Mathieu & Scott (2000).

In this section we will consider a special kind of turbulence: homogeneous turbu-

lence. The term homogeneous means that the statistical properties of the flow are steady

(unchanging)—the flow can still be highly irregular. These homogeneous statistical prop-

erties are usually described by properties of the velocity experienced at a point in space in

the turbulent flow (this is an Eulerian description). To understand the Eulerian properties

of turbulence, though, it is useful to first consider a Lagrangian frame of reference and

follow a fluid particle.

In a turbulent flow, large eddies form continuously and break down into smaller eddies

so that there is always a spectrum of eddy sizes present in the flow. As a large eddy breaks

down into multiple smaller eddies, very little kinetic energy is lost, and we say that energy

is efficiently transferred through a cascade of eddy sizes. Eventually, the eddies become

small enough that viscosity takes over, and the energy is damped out and converted into

heat. This conversion of kinetic energy to heat at small scales is called dissipation and is

designated by

ε =
dissipated kinetic energy

time
(3.1)

which has the units [L2/T 3]. Since the kinetic energy is efficiently transferred down to

these small scales, the dissipated kinetic energy must equal the total turbulent kinetic

energy of the flow: this means that production and dissipation of kinetic energy in a

homogeneous turbulent flow are balanced.

The length scale of the eddies in which turbulent kinetic energy is converted to heat is

called the Kolmogorov scale LK . How large is LK? We use dimensional analysis to answer

this question and recognize that LK depends on the rate of dissipation (or, equivalently,

production) of energy, ε, and on the viscosity, ν, since friction converts the kinetic energy

to heat. Forming a length scale from these parameters, we have

LK ∝ ν3/4

ε1/4
. (3.2)

This is an important scale in turbulence.
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Fig. 3.2. Schematic measurement of the turbulent fluctuating velocity at a point showing the average velocity, u
and the fluctuating component, u′(t).

Summarizing the Lagrangian perspective, if we follow a fluid particle, it may begin by

being swept into a large eddy, and then will move from eddy to eddy as the eddies break

down, conserving kinetic energy in the cascade. Eventually, the particle finds itself in a

small enough eddy (one of order LK in size), that viscosity dissipates its kinetic energy

into heat. This small eddy is also a part of a larger eddy; hence, all sizes of eddies are

present at all times in the flow.

Because it is so difficult to follow a fluid particle with a velocity probe (this is what we

try to do with Particle Tracking Velocimetry (PTV)), turbulent velocity measurements are

usually made at a point, and turbulence is described by an Eulerian reference frame. The

spectrum of eddies pass by the velocity probe, transported with the mean flow velocity.

Large eddies produce long-period velocity fluctuations in the velocity measurement, and

small eddies produce short-period velocity fluctuations, and all these scales are present

simultaneously in the flow. Figure 3.2 shows an example of a turbulent velocity measure-

ment for one velocity component at a point. If we consider a short portion of the velocity

measurement, the velocities are highly correlated and appear deterministic. If we compare

velocities further apart in the time-series, the velocities become completely uncorrelated

and appear random. The time-scale at which velocities begin to appear uncorrelated and

random is called the integral time scale tI . In the Lagrangian frame, this is the time it

takes a parcel of water to forget its initial velocity. This time scale can also be written as

a characteristic length and velocity, giving the integral scales uI and lI .

Reynolds suggested that at some time longer than tI , the velocity at a point xi could

be decomposed into a mean velocity ui and a fluctuation u′
i such that

ui(xi, t) = ui(xi) + u′
i(xi, t), (3.3)

and this treatment of the velocity is called Reynolds decomposition. tI is, then, comparable

to the time it takes for ui to become steady (constant).

One other important descriptor of turbulence is the root-mean-square velocity
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urms =
√

u′u′ (3.4)

which, since kinetic energy is proportional to a velocity squared, is a measure of the

turbulent kinetic energy of the flow (i.e. the mean flow kinetic energy is subtracted out

since u′ is just the fluctuation from the mean).

3.1.2 The turbulent advective diffusion equation

To derive an advective diffusion equation for turbulence, we substitute the Reynolds

decomposition into the normal equation for advective diffusion and analyze the results.

Before we can do that, we need a Reynolds decomposition analogy for the concentration,

namely,

C(xi, t) = C(xi) + C ′(xi, t). (3.5)

Since we are only interested in the long-term (long compared to tI) average behavior

of a tracer cloud, after substituting the Reynolds decomposition, we will also take a time

average. As an example, consider the time-average mass flux in the x-direction at our

velocity probe, uC:

qx = uC

= (ui + u′
i)(C + C ′)

= uiC + uiC ′ + u′
iC + u′

iC
′ (3.6)

where the overbar indicates a time average

uC =
1

tI

∫ t+tI

t
uCdτ. (3.7)

For homogeneous turbulence, the average of the fluctuating velocities must be zero, u′
i =

C ′ = 0, and we have

uC = uiC + u′
iC

′ (3.8)

where we drop the double over-bar notation since the average of an average is just the

average. Note that we cannot assume that the cross term u′
iC

′ is zero.

With these preliminary tools, we are now ready to substitute the Reynolds decomposi-

tion into the governing advective diffusion equation (with molecular diffusion coefficients)

as follows

∂C

∂t
+

∂uiC

∂xi

=
∂

∂xi

(

D
∂C

∂xi

)

∂(C + C ′)

∂t
+

∂(ui + u′
i)(C + C ′)

∂xi

=
∂

∂xi

(

D
∂(C + C ′)

∂xi

)

. (3.9)

Next, we integrate over the integral time scale tI

1

tI

∫ t+tI

t

{

∂(C + C ′)

∂τ
+

∂(ui + u′
i)(C + C ′)

∂xi

=
∂

∂xi

(

D
∂(C + C ′)

∂xi

)}

dτ
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∂(C + C ′)

∂t
+

∂(uiC + uiC ′ + u′
iC + u′

iC
′)

∂xi

=
∂

∂xi



D
∂(C + C ′)

∂xi



 . (3.10)

Finally, we recognize that the terms uiC ′, u′
iC and C ′ are zero, and, after moving the

u′
iC

′-term to the right hand side, we are left with

∂C

∂t
+ ui

∂C

∂xi

= −∂u′
iC

′

∂xi

+
∂

∂xi

(

D
∂C

∂xi

)

. (3.11)

To utilize (3.11), we require a model for the term u′
iC

′. Since this term is of the form

uC, we know that it is a mass flux. Since both components of this term are fluctuating,

it must be a mass flux associated with the turbulence. Reynolds describes this turbulent

component qualitatively as a form of rapid mixing; thus, we might make an analogy with

molecular diffusion. Taylor (1921) derived part of this analogy by analytically tracking a

cloud of tracer particles in a turbulent flow and calculating the Lagrangian autocorrelation

function. His result shows that, for times greater than tI , the cloud of tracer particles grows

linearly with time. Rutherford (1994) and Fischer et al. (1979) use this result to justify an

analogy with molecular diffusion, though it is worth pointing out that Taylor did not take

the analogy that far. For the diffusion analogy model, the average turbulent diffusion time

step is ∆t = tI , and the average turbulent diffusion length scale is ∆x = uItI = lI ; hence,

the model is only valid for times greater than tI . Using a Fick’s law type relationship for

turbulent diffusion gives

u′
iC

′ = Dt
∂C

∂xi

(3.12)

with

Dt =
(∆x)2

∆t
= uI lI . (3.13)

Substituting this model for the average turbulent diffusive transport into (3.11) and drop-

ping the overbar notation gives

∂C

∂t
+ ui

∂C

∂xi

=
∂

∂xi

(

Dt
∂C

∂xi

)

+
∂

∂xi

(

Dm
∂C

∂xi

)

. (3.14)

As we will see in the next section, Dt is usually much greater than the molecular diffusion

coefficient Dm; thus, the final term is typically neglected.

3.1.3 Turbulent diffusion coefficients in rivers

So, how big are these turbulent diffusion coefficients? To answer this question, we need

to determine what the coefficients depend on and use dimensional analysis.

For this purpose, consider a wide river with depth h and width W � h. An important

property of three-dimensional turbulence is that the largest eddies are usually limited

by the smallest spatial dimension, in this case, the depth. This means that turbulent
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Example Box 3.1:
Turbulent diffusion in a room.

To demonstrate turbulent diffusion in a room, a
professor sprays a point source of perfume near the
front of a lecture hall. The room dimensions are 10 m
by 10 m by 5 m, and there are 50 people in the room.
How long does it take for the perfume to spread
through the room by turbulent diffusion?

To answer this question, we need to estimate the
air velocity scales in the room. Each person repre-
sents a heat source of 60 W; hence, the air flow in
the room is dominated by convection. The vertical
buoyant velocity w∗ is, by dimensional analysis,

w∗ = (BL)1/3

where B is the buoyancy flux per unit area in [L2/T3]
and L is the vertical dimension of the room (here
5 m). The buoyancy of the air increases with tem-
perature due to expansion. The net buoyancy flux
per unit area is given by

B = βg
H

ρcv

where β is the coefficient of thermal expansion
(0.00024 K−1 for air), H is the heat flux per unit
area, ρ is the density (1.25 kg/m3 for air), and cv is
the specific heat at constant volume (1004 J/(Kg·K)
for air).

For this problem,

H =
50 pers. · 60 W/pers.

102 m2

= 30 W/m2.

This gives a unit area buoyancy flux of 5.6 ·
10−5 m2/s3 and a vertical velocity of w∗ = 0.07 m/s.

We now have the necessary scales to estimate the
turbulent diffusion coefficient from (3.13). Taking
uI ∝ w∗ and lI ∝ h, where h is the height of the
room,

Dt ∝ w∗h

≈ 0.35 m2/s

which is much greater than the molecular diffusion
coefficient (compare to Dm = 10−5 m2/s in air).
The mixing time can be taken from the standard
deviation of the cloud width

tmix ≈ L2

Dt
.

For vertical mixing, L = 5 m, and tmix is 1 minute;
for horizontal mixing, L = 10 m, and tmix is 5 min-
utes. Hence, it takes a few minutes (not just a couple
seconds or a few hours) for the students to start to
smell the perfume.

properties in a wide river should be independent of the width, but dependent on the

depth. Also, turbulence is thought to be generated in zones of high shear, which in a river

would be at the bed. A parameter that captures the strength of the shear (and also is

know to be proportional to many turbulent properties) is the shear velocity u∗ defined as

u∗ =

√

τ0

ρ
(3.15)

where τ0 is the bed shear and ρ is the fluid density. For uniform open channel flow, the

shear friction is balanced by gravity, and

u∗ =
√

gdS (3.16)

where S is the channel slope. Arranging our two parameters (d and u∗) to form a diffusion

coefficient gives

Dt ∝ u∗d. (3.17)

Because the velocity profile is much different in the vertical (z) direction as compared

with the transverse (y) direction, Dt is not expected to be isotropic (i.e. it is not the same

in all directions).

Vertical mixing. Vertical turbulent diffusion coefficients can be derived from the velocity

profile (see Fischer et al. (1979)). For fully developed turbulent open-channel flow, it can

be shown that the average turbulent log-velocity profile is given by
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ut(z) = u +
u∗

κ
(1 + ln(z/d)) (3.18)

where κ is the von Karman constant. Taking κ = 0.4, we obtain

Dt,z = 0.067du∗. (3.19)

This relationship has been verified by experiments for rivers and for atmospheric boundary

layers and can be considered accurate to ±25%.

Example Box 3.2:
Vertical mixing in a river.

A factory wastestream is introduced through a lat-
eral diffuser at the bed of a river, as shown in the
following sketch.

ασ

L

At what distance downstream can the injection be
considered as fully mixed in the vertical?

The assumption of “fully mixed” can be defined
as the condition where concentration variations over
the cross-section are below a threshold criteria. Since
the vertical domain has two boundaries, we have
to use an image-source solution similar to (2.47) to
compute the concentration distribution. The results
can be summarized by determining the appropriate
value of α in the relationship

h = ασ

where h is the depth and σ is the standard devia-
tion of the concentration distribution. Fischer et al.
(1979) suggest α = 2.5.

For vertical mixing, we are interested in the ver-
tical turbulent diffusion coefficient, so we can write

h = 2.5
√

2Dt,zt

where t is the time required to achieve vertical mix-
ing. Over the time t, the plume travels downstream
a distance L = ut. We can also make the approxi-
mation u∗ = 0.1u. Substituting these relationships
together with (3.19) gives

h = 2.5
√

2 · 0.067h(0.1u)L/u.

Solving for L gives

L = 12h.

Thus, a bottom or surface injection in a natural
stream can be treated as fully vertically mixed af-
ter a distance of approximately 12 times the channel
depth.

Transverse mixing. On average there is no transverse velocity profile and mixing co-

efficients must be obtained from experiments. For a wealth of laboratory and field ex-

periments reported in Fischer et al. (1979), the average transverse turbulent diffusion

coefficient in a uniform straight channel can be taken as

Dt,y = 0.15du∗. (3.20)

The experiments indicate that the width plays some role in transverse mixing; however, it

is unclear how that effect should be incorporated (Fischer et al. 1979). Transverse mixing

deviates from the behavior in (3.20) primarily due to large, coherent lateral motions,

which are really not properties of the turbulence in the first place. Based on the ranges

reported in the experiments, (3.20) should be considered accurate to at best ±50%.

In natural streams, the cross-section is rarely of uniform depth, and the fall-line tends

to meander. These two effects enhance transverse mixing, and for natural streams, Fischer

et al. (1979) suggest the relationship

Dt,y = 0.6du∗. (3.21)
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If the stream is slowly meandering and the side-wall irregularities are moderate, the

coefficient in (3.21) is usually found in the range 0.4–0.8.

Longitudinal mixing. Since we assume there are no boundary effects in the lateral or

longitudinal directions, longitudinal turbulent mixing should be equivalent to transverse

mixing:

Dt,x = Dt,y. (3.22)

However, because of non-uniformity of the vertical velocity profile and other non-

uniformities (dead zones, curves, non-uniform depth, etc.) a process called longitudinal

dispersion dominates longitudinal mixing, and Dt,x can often be neglected, with a longi-

tudinal dispersion coefficient (derived in the next section) taking its place.

Summary. For a natural stream with width W = 10 m, depth h = 0.3 m, flow rate

Q = 1 m3/s, and slope S = 0.0005, the relationships (3.19), (3.20), and (3.22) give

Dt,z = 6.4 · 10−4 m2/s (3.23)

Dt,y = 5.7 · 10−3 m2/s (3.24)

Dt,x = 5.7 · 10−3 m2/s. (3.25)

Since these calculations show that Dt in natural streams is several orders of magnitude

greater than the molecular diffusion coefficient, we can safely remove Dm from (3.14).

3.2 Longitudinal dispersion

In the previous section we saw that turbulent fluctuating velocities caused a kind of ran-

dom mixing that could be described by a Fickian diffusion process with larger, turbulent

diffusion coefficients. In this section we want to consider what effect velocity deviations

in space, due to non-uniform velocity, or shear-flow, profiles, might have on the transport

of contaminants.

Figure 3.3 depicts schematically what happens to a dye patch in a shear flow such as

open-channel flow. If we inject a contaminant so that it is uniformly distributed across

the cross-section at point (a), there will be no vertical concentration gradients and, there-

fore, no net diffusive flux in the vertical at that point. The patch of tracer will advect

downstream and get stretched due to the different advection velocities in the shear profile.

After some short distance downstream, the patch will look like that at point (b). At that

point there are strong vertical concentration gradients, and therefore, a large net diffusive

flux in the vertical. As the stretched out patch continues downstream, (turbulent) diffu-

sion will smooth out these vertical concentration gradients, and far enough downstream,

the patch will look like that at point (c). The amount that the patch has spread out in

the downstream direction at point (c) is much more than what could have been produced

by just longitudinal (turbulent) diffusion. This combined process of advection and lateral

diffusion is called dispersion.
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u(z)

(a.) (b.) (c.)

Side view of river:

Depth-average concentration distributions:

x

C

x

C

x

C

(a.) (b.) (c.)

Fig. 3.3. Schematic showing the process of longitudinal dispersion. Tracer is injected uniformly at (a) and
stretched by the shear profile at (b). At (c) vertical diffusion has homogenizied the vertical gradients and a
depth-averaged Gaussian distribution is expected in the concentration profiles.

If we solve the transport equation in three dimensions using the appropriate molecular

or turbulent diffusion coefficients, we do not need to do anything special to capture the

stretching effect of the velocity profile described above. Dispersion is implicitly included

in three-dimensional models.

However, we would like to take advantage of the fact that the concentration distri-

bution at the point (c.) is essentially one-dimensional: it is well mixed in the y- and

z-directions. In addition, the concentration distribution at point (c) is observed to be

Gaussian, suggesting a Fickian-type diffusive process. Taylor’s analysis for dispersion, as

presented in the following, is a method to include the stretching effects of dispersion in

a one-dimensional model. The result is a one-dimensional transport equation with an

enhanced longitudinal mixing coefficient, called the longitudinal dispersion coefficient.

As pointed out by Fischer et al. (1979), the analysis presented by G. I. Taylor to com-

pute the longitudinal dispersion coefficient from the shear velocity profile is a particularly

impressive example of the genius of G. I. Taylor. At one point we will cancel out the terms

of the equation for which we are trying to solve. Through a scale analysis we will discard

terms that would be difficult to evaluate. And by thoroughly understanding the physics of

the problem, we will use a steady-state assumption that will make the problem tractable.

Hence, just about all of our mathematical tools will be used.

3.2.1 Derivation of the advective dispersion equation

To derive an equation for longitudinal dispersion, we will follow a modified version of

the Reynolds decomposition introduced in the previous section to handle turbulence.

Referring to Figure 3.4, we see that for one component of the turbulent decomposition,
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u'(t)

u

u

t

Reynolds Decomposition:
turbulence

u'(z)

z

u u

Reynolds Decomposition:
shear-flow

Fig. 3.4. Comparison of the Reynolds decomposition for turbulent flow (left) and shear flow (right).

we have a mean velocity that is constant at a point xi in three dimensional space and

fluctuating velocities that are variable in time so that

u(xi, t) = u(xi) + u′(xi, t). (3.26)

For shear-flow decomposition (here, we show the log-velocity profile in a river), we have

a mean velocity that is constant over the depth and deviating velocities that are variable

over the depth such that

u(z) = u + u′(z) (3.27)

where the overbar represents a depth average, not an average o turbulent fluctuations.

We explicitly assume that u and u′(z) are independent of x. A main difference between

these two equations is that (3.26) has a random fluctuating component u′(xi, t); whereas,

(3.27) has a deterministic, non-random (and fully known!) fluctuating component u′(z),

which we rather call a deviation than a fluctuation. As for turbulent diffusion above, we

also have a Reynold’s decomposition for the concentrations

C(x, z) = C(x) + C ′(x, z) (3.28)

which is dependent on x, and for which C ′(x, z) is unknown.

Armed with these concepts, we are ready to follow Taylor’s analysis and apply it to

longitudinal dispersion in an open channel. For this derivation we will assume laminar

flow and an infinitely wide channel with no-flux boundaries at the top and bottom, so

that v = w = 0. The dye patch is introduced as a plane so that we can neglect lateral

diffusion (∂C/∂y = 0). The governing advective diffusion equation is

∂C

∂t
+ u

∂C

∂x
= Dx

∂2C

∂x2
+ Dz

∂2C

∂z2
. (3.29)

This equation is valid in three dimensions and contains the effect of dispersion. The dif-

fusion coefficients would either be molecular or turbulent, depending on whether the flow

is laminar or turbulent. Substituting the Reynolds decomposition for the shear velocity

profile, we obtian
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∂(C + C ′)

∂t
+ (u + u′)

∂(C + C ′)

∂x
= Dx

∂2(C + C ′)

∂x2
+ Dz

∂2(C + C ′)

∂z2
. (3.30)

Since we already argued that longitudinal dispersion will be much greater than longitudi-

nal diffusion, we will neglect the Dx-term for brevity (it can always be added back later

as an additive diffusion term). Also, note that C is not a function of z; thus, it drops out

of the final Dz-term.

As usual, it is easier to deal with this equation in a frame of reference that moves with

the mean advection velocity; thus, we introduce the coordinate transformation

ξ = x − ut (3.31)

τ = t (3.32)

z = z, (3.33)

and using the chain rule, the differential operators become

∂

∂x
=

∂

∂ξ

∂ξ

∂x
+

∂

∂τ

∂τ

∂x
+

∂

∂z

∂z

∂x

=
∂

∂ξ
(3.34)

∂

∂t
=

∂

∂ξ

∂ξ

∂t
+

∂

∂τ

∂τ

∂t
+

∂

∂z

∂z

∂t

=
∂

∂τ
− u

∂

∂ξ
(3.35)

∂

∂z
=

∂

∂ξ

∂ξ

∂z
+

∂

∂τ

∂τ

∂z
+

∂

∂z

∂z

∂z

=
∂

∂z
. (3.36)

Substituting this transformation and combining like terms (and dropping the terms dis-

cussed above) we obtain

∂(C + C ′)

∂τ
+

∂u′(C + C ′)

∂ξ
= Dz

∂2C ′

∂z2
, (3.37)

which is effectively our starting point for Taylor’s analysis.

The discussion above indicates that it is the gradients of concentration and velocity in

the vertical that are responsible for the increased longitudinal dispersion. Thus, we would

like, at this point, to remove the non-fluctuating terms (terms without a prime) from

(3.37). This step takes great courage and profound foresight, since that means getting rid

of ∂C/∂t, which is the quantity we would ultimately like to predict (Fischer et al. 1979).

As we will see, however, this is precisely what enables us to obtain an equation for the

dispersion coefficient.

To remove the constant components from (3.37), we will take the depth average of

(3.37) and then subtract that result from (3.37). The depth-average operator is

1

h

∫ h

0
dz. (3.38)
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Applying the depth average to (3.37) leaves

∂C

∂τ
+

∂u′C ′

∂ξ
= 0, (3.39)

since the depth average of C ′ is zero, but the cross-term, u′C ′, may not be zero. This

equation is the one-dimensional governing equation we are looking for. We will come back

to this equation once we have found a relationship for u′C ′. Subtracting this result from

(3.37), we obtain

∂C ′

∂τ
+ u′∂C

∂ξ
+ u′∂C ′

∂ξ
=

∂u′C ′

∂ξ
+ Dz

∂2C ′

∂z2
, (3.40)

which gives us a governing equation for the concentration deviations C ′. If we can solve

this equation for C ′, then we can substitute the solution into (3.39) to obtain the desired

equation for C.

Before we solve (3.40), let us consider the scale of each term and decide whether it is

necessary to keep all the terms. This is called a scale-analysis. We are seeking solutions for

the point (c) in Figure 3.3. At that point, a particle in the cloud has thoroughly sampled

the velocity profile, and C ′ � C. Thus,

u′∂C ′

∂ξ
� u′∂C

∂ξ
and (3.41)

∂u′C ′

∂ξ
� u′∂C

∂ξ
. (3.42)

We can neglect the two terms on the left-hand-side of the inequalities above, leaving us

with

∂C ′

∂τ
+ u′∂C

∂ξ
= Dz

∂2C ′

∂z2
. (3.43)

This might be another surprise. In the turbulent diffusion case, it was the cross-term

u′C ′ that became our turbulent diffusion term. Here, we have just discarded this term. In

turbulence (as will also be the case here for dispersion), that cross-term represents mass

transport due to the fluctuating velocities. But let us, also, take a closer look at the middle

term of (3.43). This term is an advection term working on the mean concentration, C,

but due to the non-random deviating velocity, u′(z). Thus, it is the transport term that

represents the action of the shear velocity profile.

Next, we see another insightful simplification that Taylor made. In the beginning stages

of dispersion ((a) and (b) in Figure 3.3) the concentration fluctuations are unsteady, but

downstream (at point (c)), after the velocity profile has been thoroughly sampled, the

vertical concentration fluctuations will reach a steady state (there will be a balanced

vertical transport of contaminant), which represents the case of a constant (time-invariant)

dispersion coefficient. At steady state, (3.43) becomes

u′∂C

∂ξ
=

∂

∂z

(

Dz
∂C ′

∂z

)

(3.44)
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where we have written the form for a non-constant Dz. Solving for C ′ by integrating twice

gives

C ′(z) =
∂C

∂ξ

∫ z

0

1

Dz

∫ z

0
u′dzdz, (3.45)

which looks promising, but still contains the troublesome C-term.

Let’s step back for a moment and consider what the mass flux in the longitudinal di-

rection is. In our moving coordinate system, we only have one velocity; thus, the advective

mass flux must be

qa = u′(C + C ′). (3.46)

To obtain the total mass flux, we take the depth average

qa =
1

h

∫ h

0
u′(C + C ′)dz

=
1

h

∫ h

0
u′C ′dz

= u′C ′. (3.47)

Recall that the depth average of u′C is zero. Substituting the solution for C ′ from (3.45),

the depth-average mass flux becomes

qa =
1

h

∫ h

0
u′∂C

∂ξ

∫ z

0

1

Dz

∫ z

0
u′dzdzdz. (3.48)

We can take ∂C/∂ξ outside of the integral since it is independent of z, leaving us with

qa = −DL
∂C

∂ξ
(3.49)

where

DL = −1

h

∫ h

0
u′
∫ z

0

1

Dz

∫ z

0
u′dzdzdz, (3.50)

and we have a Fick’s law-type mass flux relationship in (3.49). Since the equation for

DL is just a function of the depth and the velocity profile, we can calculate DL for any

velocity profile by integrating; thus, we have an analytical solution for the longitudinal

dispersion coefficient.

The final step is to introduce this result into the depth-average governing equation

(3.39) to obtain

∂C

∂τ
=

∂

∂ξ

(

DL
∂C

∂ξ

)

, (3.51)

which, in the original coordinate system, gives the one-dimensional advective dispersion

equation

∂C

∂t
+ u

∂C

∂x
=

∂

∂x

(

DL
∂C

∂x

)

(3.52)

with DL as defined by (3.50).
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Example Box 3.3:
River mixing processes.

As part of a dye study to estimate the mixing co-
efficients in a river, a student injects a slug (point
source) of dye at the surface of a stream in the mid-
dle of the cross-section. Discuss the mixing processes
and the length scales affecting the injected tracer.

Although the initial vertical momentum of the dye
injection generally results in good vertical mixing,
assume here that the student carefully injects the
dye just at the stream surface. Vertical turbulent
diffusion will mix the dye over the depth, and from
Example Box 3.2 above, the injection can be treated
as mixed in the vertical after the point

Lz = 12h

where h is the stream depth.

As the dye continues to move downstream, lat-
eral turbulent diffusion mixes the dye in the trans-
verse direction. Based on the discussion in Example
Box 3.2, the tracer can be considered well mixed lat-
erally after

Ly =
W 2

3h

where W is the stream width.
For the region between the injection and Lz, the

dye cloud is fully three-dimensional, and no simplifi-
cations can be made to the transport equation. Be-
yond Lz, the cloud is vertically mixed, and longitudi-
nal dispersion can be applied. For distances less than
Ly, a two-dimensional model with lateral turbulent
diffusion and longitudinal dispersion is required. For
distances beyond Ly, a one-dimensional longitudinal
dispersion model is acceptable.

3.2.2 Calculating longitudinal dispersion coefficients

All the brilliant mathematics in the previous section really paid off since we ended up

with an analytical solution for the dispersion coefficient

DL = −1

h

∫ h

0
u′
∫ z

0

1

Dz

∫ z

0
u′dzdzdz.

In real streams, it is usually the lateral shear (in the y-direction) rather than the vertical

shear that plays the more important role. For lateral shear, Fischer et al. (1979) derive

by a similar analysis the relationship

DL = − 1

A

∫ W

0
u′h

∫ y

0

1

Dzh

∫ y

0
u′hdydydy (3.53)

where A is the cross-sectional area of the stream and W is the width. Irrespective of

which relationship we choose, the question that remains is, how do we best calculate

these integrals.

Analytical solutions. For laminar flows, analytical velocity profiles may sometimes exist

and (3.50) can be calculated analytically. Following examples in Fischer et al. (1979), the

simplest flow is the flow between two infinite plates, where the top plate is moving at U

relative to the bottom plate. For that case

DL =
U2d2

120Dz

(3.54)

where d is the distance between the two plates. Similarly, for laminar pipe flow, the

solution is

DL =
a2U2

0

192Dr

(3.55)

where a is the pipe radius, U0 is the pipe centerline velocity and Dr is the radial diffusion

coefficient.
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For turbulent flow, an analysis similar to the section on turbulent diffusion can be

carried out and the result is that (3.50) keeps the same form, and we substitute the

turbulent diffusion coefficient and the mean turbulent shear velocity profile for Dz and

u′. The result for turbulent flow in a pipe becomes

DL = 10.1au∗. (3.56)

One result of particular importance is that for an infinitely wide open channel of

depth h. Using the log-velocity profile (3.18) with von Karman constant κ = 0.4 and the

relationship (3.50), the dispersion coefficient is

DL = 5.93hu∗. (3.57)

Comparing this equation to the prediction for longitudinal turbulent diffusion from the

previous section (Dt,x = 0.15hu∗) we see that DL has the same form (∝ hu∗) and that DL

is indeed much greater than longitudinal turbulent diffusion. For real open channels, the

lateral shear velocity profile between the two banks becomes dominant and the leading

coefficient for DL can range from 5 to 7000 (Fischer et al. 1979). For further discussion of

analytical solutions, see Fischer et al. (1979).

Numerical integration. In many practical engineering applications, the variable chan-

nel geometry makes it impossible to assume an analytical shear velocity profile. In that

case, one alternative is to break the river cross-section into a series of bins, measure the

mean velocity in each bin, and then compute the second relationship (3.53) by numerical

integration. Fischer et al. (1979) give a thorough discussion of how to do this.

Engineering estimates. When only very rough measurements are available, it is nec-

essary to come up with a reasonably accurate engineering estimate for DL. To do this,

we first write (3.53) in non-dimensional form using the dimensionless variables (denoted

by ∗) defined by

y = Wy∗; u′ =
√

u′2u′∗; Dy = DyD
∗
y; h = hh∗

where the overbar indicates a cross-sectional average. As we already said, longitudinal

dispersion in streams is dominated by the lateral shear velocity profile, which is why we

are using y and Dy. Substituting this non-dimensionalization into (3.53) we obtain

DL =
W 2u′2

Dy

I (3.58)

where

I = −
∫ 1

0
u′∗h∗

∫ y∗

0

1

D∗
yh

∗

∫ y∗

0
u′∗h∗dy∗dy∗dy∗. (3.59)

As Fischer et al. (1979) point out, in most practical cases it may suffice to take I ≈
0.01to0.1.

To go one step further, we introduce some further scales measured by Fischer et al.

(1979). From experiments and comparisons with the field, the ratio u′2/u2 can be taken
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as 0.2 ± 0.03. For irregular streams, we can take Dy = 0.6du∗. Substituting these values

into (3.58) with I = 0.033 gives the estimate

DL = 0.011
u2W 2

du∗
(3.60)

which has been found to agree with observations within a factor of 4 or so. Deviations

are primarily due to factors not included in our analysis, such as recirculation and dead

zones.

Geomorphological estimates. Deng et al. (2001) present a similar approach for an

engineering estimate of the dispersion coefficient in straight rivers based on characteristic

geomorphological parameters. The expression they obtain is

DL

hu∗
=

0.15

8εt0

(

W

h

)5/3 ( u

u∗

)2

(3.61)

where εt0 is a dimensionless number given by:

εt0 = 0.145 +
(

1

3520

)(

u

u∗

)(

W

h

)1.38

. (3.62)

These equations are based on the hydraulic geometry relationship for stable rivers and on

the assumption that the uniform-flow formula is valid for local depth-averaged variables.

Deng et al. (2001) compare predictions for this relationship and predictions from (3.60)

with measurements from 73 sets of field data. More than 64% of the predictions by (3.61)

fall within the range of 0.5 ≤ DL|prediction/DL|measurement ≤ 2. This accuracy is on average

better than that for (3.60); however, in some individual cases, (3.60) provides the better

estimate.

Dye studies. One of the most reliable means of computing a dispersion coefficient is

through a dye study, as illustrated in the applications of the next sections. It is important

to keep in mind that since DL is dependent on the velocity profile, it is, in general, a

function of the flow rate. Hence, a DL computed by a dye study for one flow rate does not

necessarily apply to a situation at a much different flow rate. In such cases, it is probably

best to perform a series of dye studies over a range of flow rates, or to compare estimates

such as (3.60) to the results of one dye study to aid predictions under different conditions.

3.3 Application: Dye studies

The purpose of a dye tracer study is to determine a river’s flow and transport proper-

ties; in particular, the mean advective velocity and the effective longitudinal dispersion

coefficient. To estimate these quantities, we inject dye upstream, measure the concentra-

tion distribution downstream, and compare the results to analytical solutions. The two

major types of dye injections are instantaneous injections and continuous injections. The

following sections discuss typical results for these two injection scenarios.
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3.3.1 Preparations

To prepare a dye injection study, we use engineering estimates for the expected transport

properties to determine the location of the measurement station(s), the duration of the

experiment, the needed amount of dye, and the type of dye injection.

For illustration purposes, assume in the following discussion that you measure a river

cross-section to have depth h = 0.35 m and width W = 10 m. The last time you visited the

site, you measured the surface current by timing leaves floating at the surface and found

Us = 53 cm/s. A rule-of-thumb for the mean stream velocity is U = 0.85Us = 0.45 cm/s.

You estimate the river slope from topographic maps as S = 0.0005. The channel is uniform

but has some meandering.

Measurement stations. A critical part of a dye study is that you measure far enough

downstream that the dye is well mixed across the cross-section. If you measure too close to

the source, you might obtain a curve for C(t) that looks Gaussian, but the concentrations

will not be uniform across the cross-section, and dilution estimates will be biased. We use

our mixing length rules of thumb to compute the necessary downstream distance.

Assuming the injection is at a point (conservative case), it must mix both vertically

and transversely. The two relevant turbulent diffusion coefficients are

Dt,z = 0.067d
√

gdS

= 9.7 · 10−4 m2/s (3.63)

Dt,y = 0.6d
√

gdS

= 8.7 · 10−3 m2/s. (3.64)

The time it takes for diffusion to spread a tracer over a distance l is l2/(12.5D); thus, the

distance the tracer would move downstream in this time is

Lx =
l2

12.5D
U. (3.65)

There are several injection possibilities. If you inject at the bottom or surface, the dye

must spread over the whole depth; if you inject at middle depth, the dye must only spread

over half the depth. Similarly, if you inject at either bank, the dye must spread across the

whole river; if you inject at the stream centerline, the dye must only spread over half the

width. Often it is possible to inject the dye in the middle of the river and at the water

surface. For such an injection, we compute in our example that Lm,z for spreading over

the full depth is 4.2 m, whereas, Lm,y for spreading over half the width is 95 m. Thus, the

measuring station must be at least Lm = 100 m downstream of the injection.

The longitudinal spreading of the cloud is controlled by the dispersion coefficient. Using

the estimate from Fischer et al. (1979) given in (3.60), we have

DL = 0.011
U2W 2

d
√

gdS

= 15.4 m2/s. (3.66)
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We would like the longitudinal width of the cloud at the measuring station to be less than

the distance from the injection to the measuring station; thus, we would like a Peclet

number, Pe, at the measuring station of 0.1 or less. This criteria gives us

Lm =
D

UPe
= 342 m. (3.67)

Since for this stream the Peclet criteria is more stringent than that for lateral mixing, we

chose a measurement location of Lm = 350 m.

Experiment duration. We must measure downstream long enough in time to capture

all of the cloud or dye front as it passes. The center of the dye front reaches the measuring

station with the mean river flow: tc = Lc/U . Dispersion causes some of the dye to arrive

earlier and some of the dye to arrive later. An estimate for the length of the dye cloud

that passes after the center of mass is

Lσ = 3
√

2DLLm/U

= 525 m (3.68)

or in time coordinates, tσ = 1170 s. Thus, we should start measuring immediately after

the dye is injected and continue taking measurements until t = tc + tσ = 30 min. To be

conservative, we select a duration of 35 min.

Amount of injected dye tracer. The general public does not like to see red or orange

water in their rivers, so when we do a tracer study, we like to keep the concentration

of dye low enough that the water does not appear colored to the naked eye. This is

possible using fluorescent dyes because they remain visible to measurement devices at

concentrations not noticeable to casual observation. The most common fluorescent dye

used in river studies is Rhodamine WT. Many other dyes can also be used, including

other types of Rhodamine (B, 6G, etc.) or Fluorescein. Smart & Laidlay (1977) discuss

the properties of many common fluorescent dyes.

In preparing a dye study, it is necessary to determine the amount (mass) of dye to

inject. A common field fluorometer by Turner Designs has a measurement range for Rho-

damine WT of (0.04 to 40)·10−2 mg/l. To have good sensitivity and also leave room for

a wide range of river flow rates, you should design for a maximum concentration at the

measurement station near the upper range of the fluorometer, for instance Cmax = 4 mg/l.

The amount of dye to inject depends on whether the injection is a point source or a

continuous injection. For a point source injection, we use the instantaneous point source

solution with the longitudinal dispersion coefficient estimated above

M = CmaxA
√

4πDLLm/U

= 5.4 g. (3.69)

For a continuous injection, we estimate the dye mass flow rate from the expected dilution

ṁ = U0ArCmax
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Fig. 3.5. Schematic of a Marriot bottle taken from Fischer et al. (1979).

= 6.3 g/s. (3.70)

These calculations show that a continuous release uses much more dye than a point release.

These estimates are for the pure (usually a powder) form of the dye.

Type of injection. To get the best injection characteristics, we dissolve the powder form

of the dye in a solution of water and alcohol before injecting it in the river. The alcohol is

used to obtain a neutrally buoyant mixture of dye. For a point release, we usually spill a

bottle of dye mixture containing the desired initial mass of dye in the center of the river

and record the time when the injection occurs. For a continuous release, we require some

tubing to direct the dye into the river, a reservoir containing dye at a known concentration,

and a means of regulating the flow rate of dye.

The easiest way to get a constant dye flow rate is to use a peristaltic pump. Another

means is to construct a Marriot bottle as described in Fischer et al. (1979) and shown in

Figure 3.5. The idea of the Marriot bottle is to create a constant head tank where you

can assume the pressure is equal to atmospheric pressure at the bottom of the vertical

tube. As long as the bottle has enough dye in it that the bottom of the vertical tube is

submerged, a constant flow rate Q0 will result by virtue of the constant pressure head

between the tank and the injection. We must calibrate the flow rate in the laboratory for

a given head drop prior to conducting the field experiment.

The concentration of the dye C0 for the continuous release is calculated according to

the equation

ṁ = Q0C0 (3.71)

where Q0 is the flow rate from the pump or Marriot bottle. With these design issues

complete, a dye study is ready to be conducted.

3.3.2 River flow rates

Figure 3.6 shows a breakthrough curve for a continuous injection, based on the design
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Fig. 3.6. Measured dye concentration for example dye study. Dye fluctuations are due to instrument uncertainty,
not due to turbulent fluctuations.

in the previous section. The river flow rate can be estimated from the measured steady-

state concentration in the river Cr at t = 35 min. Reading from the graph, we have

Cr = 3.15 mg/l. Thus, the actual flow rate measured in the dye study was

Qr =
ṁ

Cr

= 2.0 m3/s. (3.72)

Notice that this estimate for the river flow rate is independent of the cross-sectional area.

To estimate the error in this measurement, we use the error-propagation equation

δγ =

√

√

√

√

n
∑

i=1

(

∂γ

∂mi

δmi

)2

(3.73)

where δγ is the error in some quantity γ, estimated from n measurements mi. Computing

the error for our river flow rate estimate, we have

δQr =

√

√

√

√

(

C0

Cr

δQ0

)2

+
(

Q0

Cr

δC0

)2

+

(

Q0C0

C2
r

δCr

)2

. (3.74)

If the uncertainties in the measurements were Cr = (3.15±0.04) mg/l, C0 = 32±0.01 g/l

and Q0 = 0.2 ± 0.01 l/s, then our estimate should be Qr = 2.0 ± 0.1 m3/s. The error

propagation formula is helpful for determining which sources of error contribute the most

to the overall error in our estimate.

3.3.3 River dispersion coefficients

The breakthrough curve in Figure 3.6 also contains all the information we need to estimate

an in situ longitudinal dispersion coefficient. To do that, we will use the relationship

σ2 = 2DLt. (3.75)
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Since our measurements of σ are in time, we must convert them to space in order to use

this equation. One problem is that the dye cloud continues to grow as it passes the site,

so the width measured at the beginning of the front is less than the width measured after

most of the front has passed; thus, we must take an average.

The center of the dye front can be taken at C = 0.5C0, which passed the station at

t = 12.94 min and represents the mean stream velocity. One standard deviation to the

left of this point is at C = 0.16C0, as shown in the figure. This concentration passed

the measurement station at t = 8.35 min. One standard deviation to the right is at

C = 0.84C0, and this concentration passed the station at t = 20.12 min. From this

information, the average velocity is u = 0.45 m/s and the average width of the front

is 2σt = 20.12 − 8.35 = 11.77 min. The time associated with this average sigma is t =

8.35 + 11.77/2 = 14.24 min.

To compute DL from (3.75), we must convert our time estimate of σt to a spatial

estimate using σ = uσt. Solving for DL gives

DL =
u2σ2

t

2t
= 14.8 m2/s. (3.76)

This value compares favorably with our initial estimate from (3.50) of 15.4 m2/s.

3.4 Application: Dye study in Cowaselon Creek

In 1981, students at Cornell University performed a dye study in Cowaselon Creek using

an instantaneous point source of Rhodamine WT dye. The section of Cowaselon Creek

tested has a very uniform cross-section and a straight fall line from the injection point

through the measurement stations. At the injection site, the students measured the cross-

section and flow rate, obtaining

Q = 0.6 m3/s W = 10.7 m

u = 0.17 m/s h = 0.3 m.

From topographic maps, they measured the creek slope over the study area to be S =

4.3 · 10−4.

The concentration profiles were measured at three stations downstream. The first sta-

tion was 670 m downstream of the injection, the second station was 2800 m downstream

of the injection, and the final station was 5230 m downstream of the injection. At each

location, samples were taken in the center of the river and near the right and left banks.

Figure 3.7 shows the measured concentration profiles.

For turbulent mixing in the vertical direction, the downstream distance would be

Lm,z = 12d = 17 m. This location is well upstream of our measurements; thus, we ex-

pect the plume to be well-mixed in the vertical by the time it reaches the measurement

stations.
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Fig. 3.7. Measured dye concentrations at two stations in Cowaselon Creek for a point injection. Measurements
at each station are presented for the stream centerline and for locations near the right and left banks.
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For mixing in the lateral direction, the method in Example Box 3.3 (using Dt,y =

0.15du∗ for straight channels) gives a downstream distance of Lm,y = 2500 m. Since the

first measurement station is at L = 670 m we clearly see that there are still lateral gradi-

ents in the concentration cloud. At the second measurement station, 2800 m downstream,

the lateral gradients have diffused, and the lateral distribution is independent of the lat-

eral coordinate. Likewise, at the third measurement station, 5230 m downstream, the

plume is mixed laterally; however, due to dispersion, the plume has also spread more in

the longitudinal direction.

To estimate the dispersion coefficient, we can take the travel time between the stations

two and three and the growth of the cloud. The travel time between stations is δt = 3.97 hr.

The width at station one is σ1 = 236 m, and the width at station two is σ2 = 448 m. The

dispersion coefficient is

DL =
σ2

2 − σ2
1

2δt
= 5.1 m2/s. (3.77)

Comparing to (3.60) and (3.61), we compute

DL|Fischer = 3.3 m2/s (3.78)

DL|Deng = 5.4 m2/s. (3.79)

Although the geomorphological estimate of 5.4 m2/s is closer to the true value than is

3.3 m2/s, for practical purposes, both methods give good results. Dye studies, however,

are always helpful for determining the true mixing characteristics of rivers.

Summary

This chapter presented the effects of contaminant transport due to variability in the ambi-

ent velocity. In the first section, turbulence was discussed and shown to be composed of a

mean velocity and a random, fluctuating turbulent velocity. By introducing the Reynolds

decomposition of the turbulent velocity into the advective diffusion equation, a new equa-

tion for turbulent diffusion was derived that has the same form as that for molecular

diffusion, but with larger, turbulent diffusion coefficients. The second type of variable ve-

locity was a shear velocity profile, described by a mean stream velocity and deterministic

deviations from that velocity. Substituting a modified type of Reynolds decomposition

for the shear profile into the advective diffusion equation and depth averaging led to a

new equation for longitudinal dispersion and an integral relationship for calculating the

longitudinal dispersion coefficient. To demonstrate how to use these equations and obtain

field measurements of these properties, the chapter closed with an example of a simple

dye study to obtain stream flow rate and longitudinal dispersion coefficient.
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Station 1:

Dye injected @
x = 0 m
Qd = 100 cm3/s
Cd = 50 mg/l

x = 70 m
Cd = 10 ug/l
Cl = 0.5 ug/l

x = 170 m
Cd = 8 ug/l
Cl = 0.9 ug/l

Station 2:

Station 3:

River cross-section:

W = 1 m
d = 0.5 m

Fig. 3.8. Schematic data for the Lindane contamination dye study problem.

Exercises

3.1 Turbulent diffusion coefficients. What are the vertical and transverse diffusion co-

efficients for the Rhein river in the vicinity of Karlsruhe? How long will it take for a

contaminant discharged at the river edge to be fully mixed vertically? laterally?

3.2 Numerical integration. Using the velocity profile data in Table 3.1 (from Nepf (1995)),

perform a numerical integration of (3.53) to estimate a longitudinal dispersion coefficient.

You should obtain a value of DL = 1.5 m2/s.

3.3 Dye study (taken from Nepf (1995)). A small stream has been found to be contami-

nated with Lindane, a pesticide known to cause convulsions and liver damage. Groundwa-

ter wells in the same region have also been found to contain Lindane, and so you suspect

that the river contamination is due to groundwater inflow. To test your theory, you con-

duct a dye study. Based on the information given in Figure 3.8, what is the groundwater

volume flux and the concentration of Lindane in the groundwater? Due to problems with

the pump, the dye flow rate has an error of ±5 cm3/s. Assume this is the only error in

your measurement and report your measurement uncertainty.
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Table 3.1. Stream velocity data for calculating a longitudinal dispersion coefficient.

Station Distance from Total depth Measurement Velocity

number bank d depth, z/d u

[cm] [cm] [–] [cm/s]

1 0.0 0 0 0.0

2 30.0 14 0.6 3.0

3 58.4 42 0.2 6.0

0.8 6.4

4 81.3 41 0.2 16.8

0.8 17.6

5 104.1 43 0.2 13.4

0.8 13.6

6 137.2 41 0.2 13.6

0.8 14.2

7 170.2 34 0.2 9.0

0.8 9.6

8 203.2 30 0.2 5.0

0.8 5.4

9 236.2 15 0.2 1.0

0.8 1.4

10 269.2 15 0.2 0.8

0.8 1.2

11 315.0 14 0.6 0.0

12 360.7 0 0 0.0



4. Physical, Chemical, and Biological

Transformations

In the previous chapters, concentrations change in response to transport processes, such

as diffusion, advection, and dispersion, and we have considered these processes in mass

conserving systems. Now, we would like to look at systems where the mass of a given

species of interest is not conserving. Processes that remove mass can be physical, chemical

or biological in nature. Since the total mass of the system must be conserved, these

processes generally change the species of interest into another species; thus, we will call

these processes transformation.

This chapter begins by describing the common types of transformation reactions. Since

we are interested in concentration changes, we review reaction kinetics and derive rate

laws for first- and second-order systems. The methods are then generalized to higher-

order reactions. Transformation is then added to our transport equation for two types of

reactions. In the first case, the reaction becomes a source or sink term in the governing

differential equation; in the second case, the reaction occurs at the boundary and becomes

a boundary constraint on the governing transport equation. The chapter closes with an

engineering application to bacteria die-off downstream of a wastewater treatment plant.

4.1 Concepts and definitions

Transformation is defined as production (or loss) of a given species of interest through

physical, chemical, or biological processes. When no transformation occurs, the system

is said to be conservative, and we represent this characteristic mathematically with the

conservation of mass equation

dMi

dt
= 0 (4.1)

where Mi is the total mass of species i. When transformation does occur, the system is

called reactive, and, for a given species of interest, the system is no longer conservative.

We represent this characteristic mathematically as

dMi

dt
= Si (4.2)

where Si is a source or sink term. For reactive systems, we must supply these reaction

equations that describe the production or loss of the species of interest. Since the total

system mass must be conserved, these reactions are often represented by a system of

transformation equations.
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Transformation reactions are broadly categorized as either homogeneous or heteroge-

neous. Homogeneous reactions occur everywhere within the fluid of interest. This means

that they are distributed throughout the control volume; hence, they are represented as

a source or sink term in the governing differential equation. By contrast, heterogeneous

reactions occur only at fluid boundaries. They are not distributed throughout the control

volume; hence, they are specified by source or sink boundary conditions constraining the

governing differential equation.

Some reactions have properties of both homogeneous and heterogeneous reactions.

As an example, consider a reaction that occurs on the surface of suspended sediment

particles. Because the reaction occurs only at the sediment/water interface, the reaction

is heterogeneous. But, because the sediment is suspended throughout the water column,

the effect of the reaction is homogeneous in nature. Models that represent the reaction

through boundary conditions (i.e. they treat the reaction as heterogeneous) are sometimes

called two-phase, or multi-phase, models. Models that simplify the reaction to treat it as

a homogeneous reaction are called single-phase, or mixture, models. To obtain analytical

solutions, we often must use the single-phase approach.

4.1.1 Physical transformation

Physical transformations result from processes governed by the laws of physics. The clas-

sical example, which comes from the field of nuclear physics, is radioactive decay. Radioac-

tive decay is the process by which an atomic nucleus emits particles or electromagnetic

radiation to become either a different isotope of the same element or an atom of a differ-

ent element. The three radioactive decay paths are alpha decay (the emission of a helium

nucleus), beta decay (the emission of an electron or positron), and gamma decay (the

emission of a photon). Gamma decay alone does not result in transformation, but it is

generally accompanied by beta emission, which does.

A common radioactive element encountered in civil engineering is radon, a species in

the uranium decay chain. Radon decays to polonium by alpha decay according to the

equation

222Rn → 218Po + α (4.3)

where α represents the ejected helium nucleus, 4
2He. As we will see in the section on ki-

netics, this single-step reaction is first order, and the concentration of radon decreases

exponentially with time. The time it takes for half the initial mass of radon to be trans-

formed is called the half-life.

Another common example that we will treat as a physical transformation is the set-

tling of suspended sediment particles. Although settling does not actually transform the

sediment into something else, it does remove sediment from our control volume by deposit-

ing it on the river bed. This process can be expressed mathematically by heterogeneous

transformation equations at the river bed; hence, we will discuss it as a transformation.
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4.1.2 Chemical transformation

Chemical transformation refers to the broad range of physical and organic chemical reac-

tions that do not involve transformations at the atomic level. Thus, the periodic table of

the elements contains all the building blocks of chemical transformations.

A classic example from aqueous phase chemistry is the dissolution of carbon dioxide

(CO2) in water (H2O), given by the equilibrium equation

CO2 + H2O ⇀↽ HCO−
3 + H+ (4.4)

where HCO−
3 is called bicarbonate and H+ is the hydrogen ion. The terms on the left-

hand-side of the equation are called the reactants; the terms on the right-hand-side of the

equation are called the products. Equilibrium refers to the state in which the formation of

products occurs at the same rate as the reverse process that re-forms the reactants from

the products. This give-and-take balance between reactants and products is indicated by

the ⇀↽ symbol.

4.1.3 Biological transformation

Biological transformation refers to that sub-set of chemical reactions mediated by living

organisms through the processes of photosynthesis and respiration. These reactions involve

the consumption of a nutritive substance to produce biomass, and are accompanied by

an input or output of energy.

The classical photosynthesis equation shows the production of glucose, C6H12O6, from

CO2 through the input of solar radiation, hν :

6CO2 + 6H2O → C6H12O6 + 6O2. (4.5)
hν

Photosynthesis and respiration (particularly in the form of biodegradation) are of par-

ticular interest in environmental engineering because they affect the concentration of

oxygen, a component essential for most aquatic life.

4.2 Reaction kinetics

Reaction kinetics is the study of the rate of formation of products from reactants in a

transformation reaction. All reactions occur at a characteristic rate k = 1/∆tk. A common

measure of this characteristic rate is the half-life, the time for half of the reactants to be

converted into products. The other physical processes of interest in our problems (i.e.

diffusion and advection) also occur with characteristic time scales, ∆tp. Comparing these

characteristic time-scales, three cases can be identified:

• ∆tk � ∆tp: For these reactions we can assume the products are formed as soon as

reactants become available, and we can neglect the reaction kinetics. Such reactions are

called instantaneous and are reactant-limited; that is, the rate of formation of products



72 4. Physical, Chemical and Biological Transformations

is controlled by the rate of formation of reactants and not by the reaction rate of the

tranformation equation.

• ∆tk � ∆tp: For these reactions the reaction can be ignored altogether, and we have a

conservative (non-reacting) system.

• ∆tk ≈ ∆tp: For these reactions neither the reaction nor the reaction kinetics can be

ignored. Assuming the products are readily available, such reactions are called rate-

limited, and the rate of formation of products is controlled by the reaction kinetics of

the chemical transformation.

This last case, where the reactions are rate-limited, is the case of interest in this chapter,

and in this section we discuss the rate laws of chemical kinetics.

To formulate the rate laws for a generic reaction, consider the mixed chemical reaction

aA + bB → cC + dD, (4.6)

where the lower-case letters are the stoichiometric coefficients of the reaction and the

upper-case letters are the reactants (A and B) and products (C and D). The general

form of the rate law for species A can be written as

d[A]

dt
= RA, (4.7)

where RA is a function describing the rate law for species A. We use the [A]-notation to

designate concentration of species A (we will also use the equivalent notation CA). From

the stoichiometry of the reaction, the following ratios can also be inferred:

d[A]/dt

d[B]/dt
=

a

b
, and

d[A]/dt

−d[C]/dt
=

a

c
.

Substituting the rate laws gives the relationships

RA = +
a

b
RB, and (4.8)

RA = −a

c
RC . (4.9)

We still require a means of writing the rate law for species i, Ri.

The general form of the rate law for product i formed from j reactants is

Ri = kiC
n1

1 Cn2

2 ... C
nj

j , (4.10)

where k is the rate constant of the reaction, nj is the order of the reaction with respect

to constituent j, and K =
∑j

i=1 ni is the overall reaction order (note that the units of k

depend on K). In general, reaction order cannot be predicted (except for simple, single-

step, elementary reactions, where reaction order is the stoichiometric coefficient). Hence,

reaction rate laws are determined on an experimental basis.

As one might expect, the reaction rate k is temperature dependent. One way to find a

relationship for k(T ) is to use Arrhenius equation for an ideal gas
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k = A exp(−Ea/(RT )), (4.11)

where A is a constant, Ea is the activation energy, R is the ideal gas constant, and T is

the absolute temperature. Defining k1 = k(T1) we can rearrange this equation to obtain

k(T ) = k1 exp

(

Ea(T − T1)

RTT1

)

. (4.12)

for small temperature changes, this equation can be linearized by defining the constant

θ =
Ea

RT2T1

. (4.13)

Then, for T1 ≤ T ≤ T2,

k(T ) = k1 exp(θ(T − T1)). (4.14)

This form of the temperature dependence is often applied to non-gaseous systems as well.

4.2.1 First-order reactions

The general equation for a first-order reaction is

dC

dt
= ±kC, (4.15)

where k has units [1/T ]. Common examples are radioactive decay and the dye-off of

bacteria in a river.

This is a standard initial-value problem, whose solution can be found subject to the

initial condition

C(t = 0) = C0. (4.16)

First, rearrange the governing equation to obtain

dC

C
= ±kdt. (4.17)

Next, integrate both sides, yielding
∫ dC

C
=
∫

±kdt

ln(C) = ±kt + C1, (4.18)

where C1 is an integration constant. Solving for C we obtain

C = C ′
1 exp(±kt), (4.19)

where C ′
1 is another constant (given by exp(C1)). After applying the initial condition, we

obtain

C(t) = C0 exp(±kt). (4.20)

Figure 4.1 plots this solution for C0 = 1 and k = −1.

As already discussed above, the characteristic reaction time is given by the time it

takes for the ratio C(t)/C0 to reach a specified value. For radioactive decay, k is negative,
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Fig. 4.1. Solution for a first-order transformation reaction. The reaction rate is k = −1.

and two common characteristic times are the half-life and the e-folding time. The half-life,

T1/2, is the time required for the concentration ratio to reach 1/2. From (4.20), the half-life

is

T1/2 =
ln(1/2)

k

≈ −0.69

k
. (4.21)

The e-folding time is the time required for the concentration ratio to reach 1/e, given by

Te = −1

k
. (4.22)

Hence, the characteristic times for first-order reactions are independent of the initial

concentration (or mass).

Example Box 4.1:
Radioactive decay.

A radioactive disposal site receives a sample of
high-grade plutonium containing 1 g of 239Pu and
a sample of low-grade plutonium containing 1 g
of 242Pu. The half-lives of the two samples are
24,100 yrs for 239Pu and 379,000 yrs for 242Pu. On
average, how many atoms transform per sample of
plutonium?

The instantaneous disintegration rate is given by

∂C

∂t
= −kC

=
ln(0.5)

t1/2

C.

The molar weight of plutonium is 244.0642 g/mol;
hence, we have N0 = 2.467 · 1021 atoms per sample.
For 239Pu, we have

∂N

∂t
= −2.876 · 10−5N0

= −2.248 · 109 atoms/s

and for 239Pu, we have

∂N

∂t
= −1.829 · 10−6N0

= −1.430 · 108 atoms/s.

Hence, even though the half-lives are very long, we
still have a tremendous number of transformations
per second in these two samples of plutonium.
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Example Box 4.2:
Radio-carbon dating.

Radio-carbon dating can be used to estimate the
age of things that once lived. The principle of radio-
carbon dating is to compare the 14C ratio in some-
thing when it was alive to the 14C ratio in the artifact
now and use (4.20) to estimate how long the artifact
has been dead. The main assumption is that all living
things absorb the same ratio of radioactive carbon,
14C, to stable carbon, 12C, as has the atmosphere.
For this method, scientists require an accurate esti-
mate of the half-life of 14C, which is 5730±40 yrs.
Use the error-propogation equation (3.73) to esti-
mate the accuracy of this method.

Currently, the radioactive carbon in the atmo-
sphere is about 1 ·10−10 % of the total carbon. Thus,
per mole of C, there would be 6.022 · 1011 atoms of
14C. If we assume the atmosphere has historically
had the same 14C ratio, then we can use this number
for C0. A student carefully measures the 14C content
of a sample to have C = 7.528 · 1010 atoms of 14C
per mole. Thus, the age of the sample is

t = − 1

k
ln
(

C

C0

)

= 17190 yrs old.

We can estimate the accuracy as follows. First,
re-write the estimate equation as

t = − 1

k
(ln(C) − ln(C0)) .

Second, we calculate the necessary derivatives

∂t

∂k
=

1

k2
ln
(

C

C0

)

∂t

∂C
= − 1

kC
∂t

∂C0

= − 1

kC0

.

Finally, we incorporate these derivatives into the
error-propagation equation

δt =

[

(

1

k2
ln
(

C

C0

)

δk
)2

+
(

1

kC
δC
)2

+
(

1

kC0

δC0

)2
]1/2

.

Assuming an accuracy of ±0.1% for the 14C concen-
trations, the accuracy of our estimate is

δt =
√

119.42 + 8.22 + 8.32

= ±120 yrs.

Hence, the error in the half-life is the most impor-
tant error, and leads of an error of ±120 yrs for this
sample.

4.2.2 Second-order reactions

The general equation for a second-order reaction is

dC

dt
= ±kC2, (4.23)

where k has units [L3/M/T ]. An example is the reaction of iodine gas given by the reaction

2I(g) → I2(g), (4.24)

which has rate constant k = 7 · 109 l/(mol·s).
This is another initial-value problem, which can be solved subject to the initial condi-

tion

C(t = 0) = C0. (4.25)

We begin by rearranging the governing equation to obtain

dC

C2
= ±kt. (4.26)

This time we integrate using definite integrals and our initial condition, giving
∫ C

C0

dC ′

C ′2
=
∫ t

0
±kdt

−
(

1

C
− 1

C0

)

= ±kt. (4.27)
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Fig. 4.2. Solution for a second-order transformation reaction. The reaction rate is k = −1.

Solving for C(t) gives

C(t) =
1

∓kt + 1/C0

. (4.28)

Figure 4.2 plots this solution for C0 = 1 and k = −1.

The characteristic times for a second-order reaction are given by

T1/2 = − 1

kC0

, and (4.29)

Te = −(e − 1)

kC0

. (4.30)

Hence, for second- and higher-order reactions, the characteristic times depend on the

initial concentration!

4.2.3 Higher-order reactions

The general equation for an nth-order reaction is

dC

dt
= ±kCn, (4.31)

where k has units [L3(n−1)/M (n−1)/T ]. The general solution subject to the initial condition

C(t = 0) = C0 is
(

1

(n − 1)

)[

1

Cn−1
− 1

C
(n−1)
0

]

= kt (4.32)

for n ≥ 2. Such reactions are rare, and one generally tries different values of n to find the

best fit to experimental data.

A common means of dealing with higher-order reaction rates is to linearize the reaction

in the vicinity of the concentration of interest, CI . The linearized reaction rate equation

is

R = k∗C − kC2
I , (4.33)
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Fig. 4.3. Schematic of a control volume with crossflow and reaction.

where k is the real rate constant and k∗ is the linearized rate constant; note that kC2
I is

also a constant. Thus, higher-order reactions can be treated as first-order reactions in the

vicinity of a known concentration CI .

4.3 Incorporating transformation with the advective-

diffusion equation

Having a thorough understanding of transformations and reaction kinetics, we are ready to

incorporate transformations into our transport equation, the advective diffusion equation.

As we pointed out earlier, reactions are treated differently, depending on whether they

are homogeneous or heterogeneous. Homogeneous reactions add a term to the governing

differential equation; whereas, heterogeneous reactions are enforced with special boundary

conditions.

4.3.1 Homogeneous reactions: The advective-reacting

diffusion equation

Homogeneous reactions add a new term to the governing transport equation because

they occur everywhere within our system; hence, they provide another flux to our law of

conservation of mass. Referring to the control volume in Figure 4.3, the mass conservation

equation is

∂M

∂t
=
∑

Jin −
∑

Jout ± S, (4.34)

where S is a source or sink reaction term. We have already seen in the derivation of the

advective diffusion equation that

∑

Jin −
∑

Jout =

(

D
∂2C

∂x2
i

− ui
∂C

∂xi

)

δxδyδz. (4.35)
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The reaction term is just the kinetic rate law integrated over the volume, giving

S = ±Rδxδyδz. (4.36)

Combining these results in an equation for the concentration, we obtain

∂C

∂t
+

∂uiC

∂xi

= D
∂2C

∂x2
i

± R, (4.37)

where R has the same form as in the sections discussed above. Appendix B presents

solutions for a wide range of cases.

As an example, consider the solution for an instantaneous point source of a first-order

reacting substance in one dimension. The solution for C(t) can be found using Fourier

transformation to be

C(x, t) =
M

A
√

4πDt
exp

(

−(x − ut)2

4Dt

)

exp(±kt), (4.38)

where M is the total mass of substance injected, A is the cross-sectional area, D is the

diffusion coefficient, u is the flow velocity, and k is the reaction rate constant. If we

compare this solution to the solution for a first-order reaction given in (4.20), we see that

the initial concentration C0 is replaced by the time-varying solution in the absence of

transformation. This observation is helpful for deriving solutions to cases not presented

in Appendix B.

4.3.2 Heterogeneous reactions: Reaction boundary conditions

Heterogeneous reactions occur only at the boundaries; hence, they provide new flux bound-

ary conditions as constraints on the governing transport equation. Examples include cor-

rosion, where there is an oxygen sink at the boundary, and also catalyst reactions, where

the presence of other-phase boundaries is needed to facilitate or speed up the reaction.

Figure 4.4 shows a macroscopic and microscopic view of the solid boundary. To define the

Jn = S

δs

CV :  δx δy δsZoom in
(Enlarge)

(a.)  Macroscopic view of 
       surface reaction.

(b.)  Microscopic view of 
       surface reaction.

Fig. 4.4. Schematic representation of the reaction boundary condition. S represents the source or sink term, δs

is the reaction sublayer, and δxδy is the surface area into the page of the boundary control volume.

boundary condition, we require an expression for the source/sink flux, Jn.
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Writing the conservation of mass for the control volume in the microscopic view, we

have

dM

dt
= ±S, (4.39)

where S is the source or sink mass flux over the control volume. We can expand this

expression to obtain

δxδyδs
dCs

dt
= δxδyδsR, (4.40)

where δs is the reaction sublayer depth and Cs is the mean surface concentration within

the reaction sublayer. Since we are looking for a flux, Jn, with units [M/(L2T)], we must

write the above equation on a per unit area basis, that is

δs
dCs

dt
= δsR = Jn. (4.41)

Thus, the general form of a reaction boundary condition is

Jn = δsR. (4.42)

As an example, consider the one-dimensional case for a first-order reacting boundary

condition. For first order reactions, R = kCs, and for the one-dimensional case, Jn =

D(dC/dx)|s. Substituting into the general case, we obtain

D
dC

dx

∣

∣

∣

∣

∣

s

= δskCs. (4.43)

The reaction constant, k, is controlled by the boundary geometry, the possible presence

of a catalyst, and by the kinetics for the species of interest; hence, k is a property of

both the species and the boundary surface. The reaction rate is often given as a reaction

velocity, ks = kδs. These types of boundary conditions will be handled in greater detail

in the chapter on sediment- and air/water interfaces.

4.4 Application: Wastewater treatment plant

A wastewater treatment plant (WWTP) discharges a constant flux of bacteria, ṁ into a

stream. How does the concentration of bacteria change downstream of the WWTP due to

the die-off of bacteria? The river is h = 20 cm deep, L = 20 m wide and has a flow rate

of Q = 1 m3/s. The bacterial discharge is ṁ = 5 · 1010 bacteria/s, and the bacteria can

be modeled with a first-order transformation equation with a rate constant of 0.8 day−1.

The bacteria are discharged through a line-source diffuser so that the discharge can be

considered well-mixed both vertically and horizontally at the discharge location. Refer to

Figure 4.5 for a schematic of the situation.

The solution for a first-order reaction was derived above and is given by

C(t) = C0 exp(−kt). (4.44)
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Fig. 4.6. Bacteria concentration downstream of WWTP.

The initial concentration C0 is the concentration at the discharge, which we can derive

through the relationship

ṁ0 = QC0. (4.45)

Substituting the values given above, C0 = 5 · 106 #/100ml. The next step is to covert the

time t in our general solution to space x through the relationship

x = ut. (4.46)

Substituting, we have

C(x) = C0 exp
(

−k
x

u

)

= 5 · 106 exp(−3.7 · 10−5x) #/100ml. (4.47)

The half-life for this case can be given in terms of downstream distance. From (4.21), we

have

x1/2 = −0.69

k

= − 0.69

−3.7 · 10−5

= 18.6 km. (4.48)

Figure 4.6 plots the solution for the first 20 km of downstream distance.
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Summary

This chapter introduced the treatment of transformation processes. Three classes of trans-

formations were considered: physical, chemical and biological. The rate laws governing the

transformations were derived from chemical reaction kinetics. Solutions for first and sec-

ond order reactions were derived, and methods for dealing with higher-order reactions and

temperature dependence of rate constants were presented. These rate laws were then com-

bined with the transport equation for two types of reactions: for homogeneous reactions,

the rate law becomes a source or sink term in the governing differential transport equation;

for heterogeneous reactions, a modified rate law becomes a boundary condition constrain-

ing the governing differential equation. An example of bacterial die-off downstream of a

WWTP closed the chapter.

Exercises

4.1 Reaction order. A chemical reaction is of order 1.5. What are the units of the rate

constant? What is the solution to the rate equation (i.e. what is C(t))? Write an expression

for the half-life.

4.2 Clean disposal. A chemical tanker runs aground near the shore of a wide river. The

company declares the load on the tanker a complete loss, due to contamination by river

water, and decides to slowly discharge the hazardous material into the river to dispose of

it. The material (an industrial acid) reacts with the river water (the material is buffered

by the river alkalinity) and is converted to harmless products with a rate constant of

k = 5·10−5 s−1. Calculate the maximum discharge rate such that a concentration standard

of 0.01 mg/l is not exceeded at a distance of 1.5 km downstream. The river flow rate is

Q = 15 m3/s, the depth is h = 2 m, the width is B = 75 m, and the concentration of

acid in the grounded tanker is 1200 mg/l. If the tanker contains 10000 m3, how long will

it take to safely empty the tanker?

4.3 Water treatment. In part of a water treatment plant, a mixing tank is used to re-

move heavy metals. Untreated water flows into the tank where is it rigorously mixed

(instantaneously mixed) and brought into contact with other chemicals that remove the

metals. A single outlet is installed in the tank. Assume the inflow and outflow rates are

identical, and assume metals are removed in a first-order reaction with a rate constant of

k = 0.06 s−1. The tank volume is 15 m3. What is the allowable flow rate such that the

exit stream contains 10% of the metals in the input stream? How high can the flow rate

be if the reaction rate constant is doubled?
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5. Boundary Exchange: Air-Water and

Sediment-Water Interfaces

In the previous chapter we introduced transformation and described both homogeneous

and heterogeneous reactions. Now, we would like to look in more detail at heteroge-

neous reactions and discuss the chemical and physical processes at interfaces that lead

to boundary fluxes of chemical species. The two major boundary types in environmental

fluid mechanics are the air-water and sediment-water interfaces. Because the processes

at both boundaries are very similar, we treat them together in this chapter under the

heading of boundary exchange.

This chapter is divided into three main sections. First, the boundary layer in the

vicinity of the interface is described, and two common models for treating the boundary

dynamics are introduced without specifying what type of boundary is involved. Second,

the air-water interface is introduced, and methods are described for treating gas exchange

across the interface. As an example, the Streeter-Phelps equation for predicting oxygen

concentrations downstream of an organic waste stream is introduced. Third, the sediment-

water interface is described, including the complex physical and transformation processes

that bring sediment and water into contact, and a short description of the chemistry that

occurs at the sediment-water interface is provided.

5.1 Boundary exchange

Under the concept of boundary exchange, we are primarily interested in the transfer of

substances that can be dissolved in the water phase. Examples at the air-water interface

include chemicals present in both phases (the air and the water), such as oxygen and car-

bon dioxide, as well as volatile chemicals that off-gas from the water into the atmosphere,

where the concentration is negligible, such as mercuric compounds (e.g. (CH3)2Hg), chlo-

rinated hydrocarbons (e.g. CH2Cl), and a host of other organic compounds. Examples at

the sediment-water interface include metals, salts, nutrients, and organic compounds.

The transfer of these substances at an interface leads to a net mass flux, J , which

can have diffusive and advective components. Diffusive transfer is often assumed to be

controlled by equilibrium chemistry. Advective transfer results from a host of processes,

such as the ejection of sea spray from waves or the flow of groundwater. In general, this

net mass flux becomes a boundary condition that is imposed on the governing transport

equation that is then solved either numerically or analytically.
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Fig. 5.1. Schematic for the boundary exchange for a dissolving substance into a stagnant water body. Figure (a.)
shows the initial condition, and Figure (b.) shows the time-response of the concentration profiles. Csat is the
saturation concentration of the dissolving substance.

The challenge in describing boundary exchange is in predicting the magnitude of J .

Unfortunately, the dynamics that control the magnitude of the exchange flux are often

microscopic in nature and must be predicted by sub-models. If we consider the example

of sugar dissolving in a cup of tea, we know from experience that the sugar dissolves much

faster if we stir the tea than if we let the system remain stagnant. But, if we add sand to

a cup of tea and stir for a few years, the sand will still not completely dissolve. Hence,

we expect J to depend on the physico-chemical properties of the species in the exchange

process, as well as on the hydrodynamic conditions in each phase.

5.1.1 Exchange into a stagnant water body

As a simple introduction, consider a completely stagnant case, where the hydrodynamic

effects on transfer are negligible. Figure 5.1 describes such a situation. The initial condition

is that a semi-infinite body of water has a uniform initial concentration C(z, t) = C0 that is

less than the saturation concentration of the substance, Csat. The surface interface is then

instantaneously exposed to an infinite source of the substance. Because the concentration

in the water body is below Csat, the substance will want to dissolve into the water until

the water body reaches a uniform concentration of Csat. The dissolution reaction is a very

fast reaction; hence, the concentration at the surface becomes Csat as soon as the source

is applied. However, the movement of C into the water body is limited by diffusion away

from the surface. This process is illustrated schematically in Figure 5.1(b.).

To treat this stagnant case quantitatively, consider the governing transport equation

and its solution. Because ∂C/∂x = ∂C/∂y = 0, we can use the one-dimensional equation,

and because the fluid is stagnant, we can neglect advection, leaving us with

∂C

∂t
= D

∂2C

∂z2
. (5.1)

The boundary and initial conditions are:

C(−∞, t) = C0 (5.2)
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C(0, t) = Csat (5.3)

C(z, 0) = C0. (5.4)

The solution for this case was found in Section 2.2.2 for the case of C0 = 0. The modified

solution for this case is

C(z, t) − C0

Csat − C0

= 1 − erf

(

−z√
4Dt

)

(5.5)

where the minus sign inside the error function is needed since z is negative downward.

Recall also that (5.5) is only valid for z ≤ 0.

From this solution we can derive an expression for the boundary flux at z = 0 using

Fick’s law. Writing the flux law for the stagnant case in one-dimension, we have

Jz = uC − D
∂C

∂z

∣

∣

∣

∣

∣

z=0

= −D
∂C

∂z

∣

∣

∣

∣

∣

z=0

(5.6)

since u = 0. Substituting the solution above, we can compute Jz as

Jz(t) = −(Csat − C0)

√

D

πt
. (5.7)

We can also compute the characteristic thickness, δ, of the mixing layer, or the concen-

tration boundary layer, over which the concentrations change from Csat to C0:

δ = σz =
√

2Dt. (5.8)

Hence, for the stagnant case, the mixing layer grows deeper in time and the boundary

flux can be written as

Jz = −kl(Csat − C0) (5.9)

where kl is the transfer velocity, given in this stagnant case by kl =
√

D/(πt), with units

[L/T ].

5.1.2 Exchange into a turbulent water body

When the water body present below (or above) the interface is turbulent, large-scale mo-

tion within the fluid body will interact with the mixing layer, defined by the concentration

boundary layer δ.

This turbulent motion has two major effects. First, the turbulence in the bulk fluid

erodes the boundary layer, thereby, limiting the growth of the layer thickness δ. Since

the bulk fluid and interface concentrations C0 and Ci are independent of δ, this effect

will increase the concentration gradient; hence, Jz will be larger than in the stagnant

case. Second, the turbulence in the bulk fluid will cause motion within the boundary

layer, thereby, increasing the effective diffusivity. Hence, Jz will again be larger than the

stagnant case. However, molecular diffusion is still expected to be a rate-limiting process



86 5. Boundary Exchange

-z

z

C0

δ

Ci

Fig. 5.2. Schematic of the interface exchange for a turbulent water body.

since turbulence (three-dimensional motion) cannot exist directly at the surface. For the

case of a large groundwater flux, this last statement may have to be relaxed, but for now

we will assume the actual interface is laminar.

These effects of turbulence can be summarized in the following list of expectations

regarding the concentration boundary layer for a turbulent flow:

1. We expect an average film thickness, δ. That is, turbulence will prevent δ from growing

arbitrarily large.

2. We expect an average boundary layer flux (transfer velocity). This is a consequence

of the previous expectation.

3. The transfer rate can be limited on either side of the interface by the chemical or

hydrodynamic conditions in that phase.

The following two sections introduce models which seek expressions for kl that satisfy the

three expectations listed above.

5.1.3 Lewis-Whitman model

The simplest type of model is the Lewis-Whitman model, which says that the mixing

layer is a constant thickness, δ, which leads to kl given by

kl =
D

δ
(5.10)

(refer to Figure 5.2). Note that for this model kl is linearly proportional to D, as compared

to the square-root dependence derived in the stagnant case. Also, the mixing depth δ is

a pure function of the hydrodynamic condition. Thus, once one has an expression for δ,

the transfer velocity for different substances can be computed using the various respective

molecular diffusivities Dm. The weakness of this model is that is does not provide any

physical insight into how to predict δ; hence, δ must be determined empirically.

5.1.4 Film-renewal model

The film-renewal model improves on the Lewis-Whitman model by providing a physical

mechanism that controls the boundary layer thickness; hence, we can use this mechanism
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to formulate a predictive model for δ. In the film renewal model, the boundary layer

is allowed to grow as in the stagnant case until at some point the turbulence suddenly

replaces the water in the boundary layer, and the mixing layer growth starts over from

the beginning. This mixing layer exchange, or film-renewal, occurs periodically with a

renewal frequency that is a function of the turbulent characteristics of the flow.

Under the idealized case that the boundary layer grows undisturbed until is it suddenly

completely replaced by water from the bulk turbulent flow, the net flux at the boundary

can be determined analytically. The governing transport equation and the initial and

boundary conditions are exactly the same as in the stagnant case (see (5.1) to (5.4)).

The solution is given by (5.5), and the net flux at the boundary is given by (5.7). These

solutions are only valid, however, from t = 0 to t = tr, the time between renewal events.

The mean boundary flux over one cycle can be found easily by taking the time average

Jz =
1

tr

∫ t+tr

t
Jz(t)dt

=
1

tr

∫ t+tr

t
−(Ci − C0)

√

D

πt
dt

= −(Ci − C0)

√

4D

πtr
(5.11)

or, since the renewal frequency, r, is just 1/tr,

Jz = −(Ci − C0)

√

4Dr

π
. (5.12)

Thus, the average transfer velocity is independent of time and is given by

kl =

√

4Dr

π
(5.13)

which leaves us with the need to predict r.

The renewal frequency r is a characteristic of the turbulence. Recall that a turbulent

flow is a spectrum of eddy sizes, from the integral scale down to the Kolmogorov scale,

and is driven, for homogeneous turbulence, by the dissipation rate

ε =
u3

I

lI
(5.14)

where uI and lI are the integral velocity and length scales of the flow, respectively. For a

shear flow, the approximations uI = u∗ and lI = h are generally valid, where u∗ is the shear

velocity and h is the depth of the shear layer. We can derive two extreme estimates for r:

one for the case that the concentration boundary layer is renewed by Kolmogorov-scale

eddies (called the small-eddy estimate), and another for the case that the concentration

boundary layer is renewed by integral-scale eddies (called the large-eddy estimate).

Small-eddy estimate of r. Since the smallest eddies are dissipated by viscosity ν, an

estimate for the Kolmogorov time scale tK can be written as

tK =

√

ν

ε
. (5.15)
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Taking r as 1/tK and substituting approximations for uI and lI for a shear flow, we can

obtain

r =

√

u3
∗

hν
. (5.16)

If we further substitute the shear velocity as u∗ = u
√

f/8, where u is the mean flow

velocity and f is a friction coefficient, then an estimate for kl can be written as

kl = K
u3/4

h1/4
(5.17)

where K is a constant that depends on the fluid properties (i.e. ν) , the physico-chemical

properties of the substance (i.e. D), and on the boundary type (i.e. f). For kl at the

air-water interface with units cm/s, K is of order 10−1 to 100.

Large-eddy estimate of r. The time scale of the largest eddies is given by the integral

time scale tI , which for a shear flow is

tI =
u∗

h
. (5.18)

Taking r = 1/tI , and substituting u∗ = u
√

f/8 leads the the expression for kl given by

kl = Ku1/2h1/4 (5.19)

where K is another constant which depends on the the physico-chemical properties of the

substance (i.e. D), and on the boundary type (i.e. f).

Experimental data are sparse, but tend to agree better with the relationship kl ∝ u3/4;

hence, it is most likely the small-scale eddies that are responsible for the film renewal.

5.2 Air/water interface

At the air-water interface we are primarily concerned with the transfer of gases that can

be dissolved in the water. The substance may, or may not, be measurable in the gas phase.

Figure 5.3 demonstrates the general case for a substance with measurable concentrations

in both the gas and liquid phase. As the figure demonstrates, there is a concentration

boundary layer in the vicinity of the water surface for both the phases. Because there

cannot be a build-up of concentration at the interface, the flux from the gas into the

water, ṁa, must equal the flux at the interface into the water, ṁw. Hence, only one of the

phases contains the rate-limiting step.

The rate of transfer at the interface is controlled by the transfer velocity kl; thus, the

rate-limiting phase will have the lowest value of kl. Consider first the Lewis-Whitman

model. The transfer velocity increases as the diffusion coefficient increases and as the

concentration boundary layer gets thinner. Both of these conditions are higher in the gas

phase than in the liquid phase. The more complex film-renewal model gives the same

conclusion: the flux at the interface can be higher in the air than in the water. Therefore,
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Fig. 5.3. Schematic of the air-water interface for a substance with measurable concentrations in both the air and
the water.

we generally assume the substance is immediately available at the gas side of the interface,

and we must only consider the concentration boundary layer in the water phase in order

to compute the net flux at the boundary.

Because the air-water interface is a moving boundary, two further complications can

arise that are not addressed in either of our boundary transfer models. First, wind gen-

erates shear directly at the interface. We considered shear at the channel bed as the

generation mechanism for turbulence in the film-renewal model. However, shear at the

air-water interface generates motion at the interface that can strongly affect (and greatly

increase) the transfer velocity from the case of a stagnant wind. These effects are par-

ticularly important in the ocean and in lakes. Second, surface waviness, breaking and

instabilities, greatly increases gas transfer by disturbing the exchange boundary layer.

For example, breaking waves entrain air and carry air bubbles deep into the fluid, that

then dissolve as they rise back to the water surface. Such dynamic situations must be

handled by more complicated techniques.

5.2.1 General gas transfer

Assuming the rate-limiting step in on the liquid side of the interface, we can now derive

a general expression for gas transfer into a well-mixed medium, such as at the surface

layer of a lake in summer. We will consider the control volume in Figure 5.3(b.). The

conservation of mass equation is

dM

dt
= ṁin − ṁout (5.20)

= ṁw. (5.21)
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Example Box 5.1:
Volatilization.

As an example, consider the off-gassing of the
volatile compound benzyl chloride (CH2Cl) from a
stream with velocity u = 1 m/s and initial concen-
tration of CH2Cl of C0 = 0.1 mg/l. The gas transfer
coefficient is Kl = 1 · 10−4 s−1. Because CH2Cl is
not present in the atmosphere, Ciw can be taken as
zero. Then (5.23) becomes

Cw

dt
= −KlCw

which, after substituting t = x/u, has solution

Cw(x) = C0 exp
(

−Kl
x

u

)

.

Thus, CH2Cl concentration decreases exponentially
downstream from the source due to volatilization.

To write M as a concentration, we must define the size of the control volume. A common

assumption is to use the depth of the well-mixed water body, h, and a non-specified surface

area, A. Then, substituting from (5.9)

Ah
Cw

dt
= Akl(Ciw − Cw) (5.22)

which is rearranged to give

Cw

dt
= Kl(Ciw − Cw) (5.23)

where Kl = kl/h is the gas transfer coefficient with units [T−1].

5.2.2 Aeration: The Streeter-Phelps equation

A common problem that requires modeling the exchange of oxygen through the air-water

interface is that of predicting the oxygen dynamics in a river downstream of a biodegrad-

able waste stream. As the waste is advected downstream, it degrades, thereby consuming

oxygen. The oxygen deficit, however, drives the counteracting aeration process, so that

the situation is similar to that shown in Figure 5.4.

Biodegradation is a reaction that consumes oxygen. A general biodegradation equation

can be written as

OM + O2 → CO2 + H2O + new cells + stable products
microorganisms

where OM stands for organic matter (the biodegradable waste). It can be shown in the

laboratory that the consumption of OM is a first-order reaction. Thus, the rate-law for

the consumption of OM is given by

d[OM]

dt
= −kd[OM] (5.24)

where kd is the rate constant for biodegradation. In the classical literature on this subject,

the concentration of OM is called the oxygen demand and is given the symbol L. Substi-

tuting L for [OM] in the above equation and imposing the initial condition L(t = 0) = L0,

the solution for the consumption of oxygen demand becomes

L(t) = L0 exp(−kdt) (5.25)
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Fig. 5.4. Schematic of the dissolved oxygen sag curve downstream of a biodegradable waste stream. The upper
figure illustrates the receiving stream; the lower diagram shows the downstream dissolved oxygen concentration.

where L0 is called the ultimate carbonaceous oxygen demand. The word carbonaceous

refers to the fact that the oxygen consumption is due to conversion of carbon-based

organic matter as opposed to any other chemical reaction that might consume oxygen.

Because O2 is consumed at the same rate as OM, we can write the following relationship:

d[O2]

dt
=

d[OM]

dt
= −kdL0 exp(−kdt). (5.26)

If we define the oxygen deficit, D = ([O2]sat − [O2]), then the production of oxygen deficit

is given by

dD

dt
= kdL0 exp(−kdt). (5.27)

This equation represents a sink term for oxygen due to biodegradation of the waste stream.

At the same time the waste is being degraded the river is being aerated by exchange

at the air-water interface. The mass flux of oxygen, ṁO2
, is derived from the boundary

exchange flux in (5.9)

ṁO2
= −Akr([O2]sat − [O2])

= −AkrD (5.28)

where kr is the river aeration transfer velocity for oxygen and the negative sign indicates

a flux of oxygen goes into the river.

We can now use the control volume in Figure 5.3(b.) to derive the oxygen balance

downstream of the waste source. If we make the one-dimensional assumption and move
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our control volume with the mean flow velocity in the river, then the mass balance for

our control volume is

dMO2

dt
= ṁO2

− S (5.29)

where S is a sink term representing the biodegradation process. Taking the width of the

river as W and the depth as h, we can write the equation for the concentration of O2 as

Wδxh
d[O2]

dt
= ṁO2

− S

= Wδxkr([O2]sat − [O2]) − WδxhRO2
(5.30)

where RO2
is the reaction rate law for the consumption of O2. Rewriting this equation for

the oxygen deficit D, we have

dD

dt
= RD − KrD (5.31)

where RD is the rate law for the production of D and Kr = kr/h is the oxygen transfer

coefficient. Substituting (5.27) RD, we obtain the inhomogeneous ordinary differential

equation

dD

dt
= kdL0 exp(−kdt) − KrD (5.32)

subject to the initial condition D(t = 0) = D0, which is the initial oxygen deficit just

upstream of the point where the waste stream is introduced. The solution to this equation

is the classic Streeter-Phelps equation:

D(t) =
kdL0

Kr − kd

(exp(−kdt) − exp(−Krt)) + D0 exp(−Krt). (5.33)

The derivation of this solution is given in Appendix C.

5.3 Sediment/water interface

Unlike the air-water interface, where the interface is generally confined to an abrupt

transition at the water surface, the sediment-water interface is very difficult to define

and is controlled by a number of complicated physical and chemical processes. The real

difficulty of the sediment-water interface lies in the multi-phase (dispersive) nature of the

interface. At an individual sediment grain, the interface may be clearly defined. However,

since we cannot treat every sediment grain individually, a continuum description of the

system is necessary. Two important quantities are used to describe dispersed systems.

The porosity, n, is the volume of water contained in a unit volume of mixture

n =
Vw

V
. (5.34)

This parameter can vary widely, but is generally between 0.1 and 0.9 within a porous

media (groundwater system) and is 0.99 and higher within the water column (suspended

sediment system). For suspended sediments, the second parameter is also important: the
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Example Box 5.2:
Dissolved-oxygen sag curve.

As an example of the application of the Streeter-
Phelps equation, consider the following waste
stream. A wastewater treatment plant discharges
an oxygen demanding waste stream at a rate of
ṁ = 295 g/s of BOD (biochemical oxygen demand)
into a stream h = 3 m deep, W = 30 m wide, and
with a flow rate Q = 27 m3/s. The waste stream
is introduced through a longitudinal diffuser so that
the we can assume complete lateral and vertical mix-
ing at the source. The initial concentration of BOD
in the river L0 is then

L0 =
ṁ

Q

=
295

27
= 10.9 mg/l.

Based on regular experiments conducted by the fa-
cility operator, the decay rate of the waste is known
to be kd = 0.2 day−1.

A rule of thumb often used for computing the aer-
ation rate is

Kr =
3.9u1/2

h3/2

where Kr is in day−1, u is the mean stream ve-
locity in m/s, and h is the depth in m. For this
stream Kr = 0.4 day−1. The initial oxygen deficit
was measured to be D0 = 1.5 mg/l (the saturation
oxygen concentration is 9.1 mg/l). The plot below
shows the solution (5.33) for the oxygen concentra-
tion ([O2]sat − D) downstream of the mixing zone.
The critical time to reach the minimum oxygen con-
centration is

tc =
1

Kr − kd
ln

[

Kr

kd

(

1 − D0(Kr − kd)

kdL0

)]

which for this case is 2.67 days, or 69 km. This exam-
ple illustrates how slow the aeration process can be
in the absence of aeration devices, such as cascades
and water falls.
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slip velocity, or settling velocity, us. The settling velocity is generally taken as the termi-

nal fall velocity of the sediment in a quiescent system. The porous media/water column

interface can then be defined as the point where n becomes small enough that us goes to

zero due to contact with other sediment particles, forming a (relatively) fixed matrix.

As shown in Figure 5.5 many processes lead to the transport of chemical species in

the water column and through the sediment bed. These processes are organized in the

figure into two categories. On the left are physical processes that do not involve chemical

transformation; on the right are chemical and biological processes.

The physical processes are responsible for transport. Within the water column, chemi-

cals can move with either the solid or liquid phase. Of the transport processes listed in the

figure, we have already discussed advection and diffusion (both turbulent and molecular)

in detail. The other transport processes in the water column (which are specific to the

sediment phase) are:
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Fig. 5.5. Schematic of processes occurring at the sediment-water interface, in the water column and in the
sediment bed (porous media).

• Flocculation and settling: flocculation is the sticking together of several sediment

particles to form larger particles. Settling is the downward fall of sediment particles due

to their negative buoyancy. Accept for very small particles (colloids), sediment particles

always have a negative vertical velocity component relative to the water column motion.

• Sedimentation: sedimentation is the process whereby sediment is lost from the water

column and gained by the sediment bed. This occurs once the settling sediment particles

reach the channel, lake or ocean bottom and rejoin the sediment bed.

• Erosion: erosion is the process by which sediment is lost from the sediment bed and

entrained into the water column.

Within the sediment bed, or porous media, further transport processes are at work. For

species in the liquid phase, the processes of advection, diffusion, and dispersion are active

throughout the porous media. For the sediment particles, physical transport occurs only

in the upper active layer due to the process of bioturbation:

• Bioturbation: bioturbation is the name given to the mixing of sediment caused by

animals living in the sediment (mostly worms). These animals move sediment as they

dig. Two important classes of worms mix the sediment differently. In the one case,

sediment is eaten at the base of the active layer and moved up to the surface. In the

other case, sediment is removed from the surface and carried down to the bottom of the

active layer. The net movement of sediment is often modeled by an enhanced diffusion

process, where we use bioturbation diffusion coefficients.
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Through the combination of all these transport processes, chemical species move in and

out of the water column and the porous media.

Through transformation processes, chemical species move in and out of the solid and

liquid phases and, also, change to other species. We have already discussed chemical and

biological transformation reactions. These reactions occur both in the water column and

in the porous media. They can also occur in either the liquid phase, the solid phase or

at the interface. Processes at the sediment interface are particularly important for the

transport of chemicals through these multi-phase systems:

• Adsorption/desorption: the chemical processes of adsorption and desorption control

the distribution of certain chemicals between the solid and liquid phases. Due to complex

chemical/physical processes, some molecules have an affinity for sticking to the solid

phase (often due to electrical charge interaction). That is, some molecules would rather

stick to a sediment particle than remain dissolved in the surrounding fluid. The behavior

of most organic compounds and heavy metals is controlled by sorption chemistry.

Because sorption is a dominant process occurring at the sediment-water interface, it is

discussed in more detail at the end of this section.

As discussed in Gschwend (1987), the processes at the sediment-water interface (at the

bottom of a lake or channel) depend on the energetic state of the water body. Beginning

with laminar conditions (as in a deep lake) and progressing to increasingly energetic,

turbulent conditions (as in reservoirs, estuaries, and streams), the progression is as follows.

With no motion, exchange occurs due to direct sorption exchange and diffusion of dissolved

species from the pore water. Next, the system begins to flow, allowing the advective and

dispersive flux of groundwater flow. Bioturbation, which may always be present, adds

energy by actively mixing the sediments. As the water column begins to flow, sediments

can be pushed along the top layer of sediments in a process called bed-load transport.

Finally, with an energetic water column, erosion begins, sediment is carried up into the

water column, and suspended transport (advection of sediment in the water column)

becomes important. Hence, the transport of species associated with sediment is a complex

problem dependent on the chemistry of the species and the mobility of the sediment.

5.3.1 Adsorption/desorption in disperse aqueous systems

Ignoring the complex problems that lead to the transport of sediment, we focus in this

section on the exchange at the solid/liquid interface of a mixed solution of suspended

sediment particles in a dispersed (large n) system. An important process controlling the

distribution of many toxins in sediment-laden solutions is adsorption/desorption. Defined

above, this process causes a large fraction of the sorbing compound to attach to the

sediment particles. Hence, sorption controls the concentration of dissolved contaminant,

and causes much of the contaminant to be transported with the sediment.

Figure 5.6 illustrates the situation. Sorbing compounds include most polar and non-

polar organic compounds and heavy metal ions. To describe the situation quantitatively,
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Fig. 5.6. Schematic of the adsorption/desorption process for the molecule A.

we define two concentrations. First, the concentration of substance A that is dissolved in

solution is designated C and is defined as

C =
Mdissolved

Vw

(5.35)

having normal concentration units. Second, the non-dimensional sorbed-fraction concen-

tration, C∗
s , is defined as

C∗
s =

Madsorbed/Vw

Msediment/Vw

=
Madsorbed

Msediment
. (5.36)

These equations are valid only for highly dispersed systems, where nV ≈ V .

Because sorption kinetics are very fast, we can usually assume that equilibrium exists

between the adsorbed and desorbed fractions. Based on experiments, the following simple

type of equilibrium relationship has been proposed:

C∗
s =

ΓC

K + C
(5.37)

which is called the Langmuir equation. The coefficient K is a constant with units of con-

centration; the coefficient Γ is a non-dimensional constant, called the Langmuir isotherm,

which gives the asymptotic value of C∗
s as C becomes large. Figure 5.7 plots the Langmuir

equation for Γ = 1 and K = 1. For most toxins in the environment, C � K, and we can

simplify the Langmuir equation to

C∗
s = PC (5.38)

where P is the partition coefficient with units [L3/M]. Typical values of P are between

103 to 106 l/kg.

In order to avoid the confusion caused by C∗
s being non-dimensional, a dimensional

concentration of adsorbed contaminant is convenient to define. From the density of the

sediment ρs and the porosity, the dimensional adsorbed concentration is

Cs = C∗
s ρs

(

1 − n

n

)

= KDC (5.39)
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where KD is a non-dimensional distribution coefficient. It is important to note that P is

a purely physico-chemical parameter; whereas, KD also depends on the sediment concen-

tration and physical characteristics (through the porosity and density, respectively).

Example Box 5.3:
Naphthalene partitioning.

Consider the partitioning of the organic toxin
naphthalene, the smallest of the polynuclear aro-
matic hydrocarbons (PAHs). We wish to find the
fraction of dissolved to adsorbed naphthalene, fd.
Using (5.38), this fraction is given by

fd =
C

C + Cs

=
1

1 + ρs

(

1−n
n

)

P
.

For naphthalene P = 103 l/kg. Typical sediment has
a density of 2600 kg/m3. For a mixture with n =
0.99, fd = 4%.

We can see that fd is always large for low concen-
trations C by looking at the range of expected KD.
From above

KD = ρs

(

1 − n

n

)

P.

Making the following order-or-magnitude estimates

ρs = 103

(1 − n)/n = 10−3

P = 103 to 106

KD ranges from 103 to 106; fd ranges from 10−3 to
10−6. Therefore, we can assume that a large fraction
of the contaminant is present in the sorbed state.

If we manage to eliminate the source of a toxic
contaminant that is also sorbed to the sediments,
then the sediment bed itself will start to release its
sediment load into the water column water, creating
a new source (see Exercise 5.3). Unfortunately, be-
cause fd is so large, the sediment load is large, and
it takes a long time before the water column is free
from this sediment source of the contaminant.

Summary

This chapter introduced the processes that result in boundary exchange of chemical

species. The general issue in describing boundary exchange is in determining the net

boundary flux J . Once that flux is know, boundary exchange becomes a boundary con-

dition on the governing transport equation. The solution for J in a stagnant water body
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was used to develop two descriptions of exchange in turbulent water bodies. The Lewis-

Whitman model, the simplest model, assumes the concentration boundary layer between

phases has a constant depth. The film-renewal model assumes that turbulence constantly

refreshes the fluid in the concentration boundary layer, and that the renewal rate derives

from turbulent eddy characteristics. The exchange at the air-water interface was discussed

in more detail, with examples for volatile chemicals and oxygen aeration. The sediment-

water interface was described qualitatively, and the sorption chemistry at the sediment

water interface was described in more detail.

Exercises

5.1 BOD test. To determine the biodegradation rate coefficient of a particular waste, the

waste is placed in solution in a closed bottle, where the oxygen concentration in monitored

over time. Table 5.1 gives the results of a typical test. Based on all the data in the table,

estimate the value of the rate coefficient, kd.

5.2 PCB contamination. An industrial plant releases PCBs (polychlorinated biphenols)

through a diffuser into a river. The river moves swiftly, with a modest sediment load. PCB

is volatile (will off-gas into the atmosphere) and can be adsorbed by the sediment in the

river. Describe the network of complex interactions that must be investigated to predict

the fate of PCBs from this disposal source.

5.3 Sediment source of phosphorus. Phosphorus, in the form of phosphate (PO3−
4 ), is often

a limiting nutrient for algae production in lakes. Because the uncontrolled growth of algae

is undesirable, the discharge of phosphorus into the environment should be minimized (this

is why you cannot buy laundry detergent any more that contains phosphorus). The U.S.

Environmental Protection Agency recommends a limit of 0.05 mg/l PO3−
4 for streams

that flow into freshwater lakes.

An old chemical plant recently shut off their phosphorus discharge; however, high

concentrations of phosphorus are still being measured downstream of the chemical plant.

After further investigation, the following facts were collected:

• The concentration of phosphate in the stream water upstream of the plant is C0 =

0.003 mg/l.

• The sediments in the stream are saturated with sorbed phosphorus for a distance of

2 km downstream of the plant.

• The phosphate concentration at the sediment bed is kept constant by desorption at a

value of Cb = 0.1 mg/l.

• The design conditions in the stream are h = 2 m deep and u = 0.2 m/s.

• The phosphate transfer velocity at the sediment bed is given approximately by the

relationship (film-renewal model):

kl = 0.002
u3/4

h1/4
in m/s. (5.40)
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Table 5.1. Measurements of time and oxygen concentration for a BOD test. (Data taken from Nepf (1995))

Time [O2]

[days] [mg/l]

0 9.00

2 5.21

4 3.81

6 3.30

8 3.11

10 3.04

12 3.01

14 3.01

16 3.00

18 3.00

20 3.00

What is the concentration of phosphate in the stream just after passing the region of

contaminated sediments? If the stream carries a suspended sediment load, how would

that affect the concentration of phosphate in the stream?
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6. Atmospheric Mixing

Previous chapters have dealt solely with transport in various water bodies and have pre-

sented examples of one-dimensional solutions to the transport equations. We now turn our

attention to transport and mixing in the atmosphere, and by necessity, we will have to give

more attention to three-dimensional solutions. Because of the atmosphere’s unique compo-

sition and boundary and forcing conditions, atmospheric turbulence is more complicated

than the idealized homogeneous, stationary, isotropic case. Moreover, these complications

impact transport and mixing because they determine the values of the turbulent diffusion

and dispersion coefficients. Hence, a concise discussion of atmospheric mixing requires

also studying atmospheric turbulence and the resulting modifications in the behaviour of

mixing coefficients from the idealized case.

This chapter begins with an introduction to atmospheric turbulence and a review of

turbulent boundary layer structure. The log-velocity profile for a turbulent shear flow is

introduced, and the behaviour of turbulence throughout a neutrally stable atmospheric

boundary layer is described. Because of their importance to turbulence characteristics,

the buoyancy effects of heating and cooling within the boundary layer are discussed qual-

itatively. The discussion on mixing begins with a review of turbulent mixing in three-

dimensional, homogeneous, stationary turbulence. The solution for a continuous point

source is derived and used to illustrate mixing in the remaining section. The chapter

closes by adapting the idealized solution in homogeneous, stationary turbulence to the

turbulence present in the atmosphere.

Much of the material in this chapter was taken from Csanady (1973) and from Fe-

dorovich (1999). For further reading, those two sources are highly recommended, along

with the classic books by Lumley & Panofsky (1964) and Pasquill (1962) and more recent

contributions by Garratt (1992) and Kaimal & Finnigan (1994).

6.1 Atmospheric turbulence

In Environmental Fluid Mechanics, we are concerned with local mixing processes in fluids

that interact with living organisms. For the atmosphere, this means that we are interested

in mixing processes near the earth’s surface. Because of the no-slip boundary condition

at the surface, wind in the upper atmosphere generates a near-surface boundary layer,

defined by variations in velocity and often accompanied by variations in temperature (and

density). Figure 6.1 shows this situation schematically. Because of its dominant role in
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Fig. 6.1. Schematic of the velocity and temperature variation within the atmosphere near the earth’s surface.
The region of high velocity shear is called a boundary layer.

APBL

�	��

posphere

Tropopause

z 
 [k

m
]

Capping Inversion

Potential Temperature  [°C]
0

2

10

12

20 50 65

Stratosphere

Fig. 6.2. Schematic of the potential temperature profile in the earth’s troposphere and lower stratosphere showing
the atmospheric planetary boundary layer (APBL).

mixing near the earth’s surface, we present here a short introduction to turbulence in the

atmospheric boundary layer.

6.1.1 Atmospheric planetary boundary layer (APBL)

Fedorovich (1999) defines the atmospheric planetary boundary layer (APBL) as the sub-

domain of the lower portion of the earth’s planetary atmosphere (troposphere) which is in

contact with the bottom boundary (earth’s surface) and which varies in depth from several

meters to a few kilometers. Figure 6.2 provides a schematic of this definition. The figure

depicts the APBL as the lower part of the troposphere and shows that it is separated

from the linearly stratified region of the troposphere by a strong density gradient, called

the capping inversion. The capping inversion arises due to strong mixing that occurs at

the earth’s surface which results in a weaker density gradient within the APBL than in

the upper troposphere. Although the density gradient shown in the figure is for a neutral

APBL (no density gradient), heating and cooling processes within the APBL can lead to

both unstable and stable conditions, discussed below under buoyancy effects. Above the

APBL, the wind has an approximately constant velocity; hence, the APBL encompasses

the full near-surface boundary layer.
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(a.)  Growth of a boundary layer with increasing fetch.

(b.)  Boundary layer structure at the section x'.

Fig. 6.3. Schematic of the development of a turbulent boundary layer over a flat surface.

6.1.2 Turbulent properties of a neutral APBL

Figure 6.3 shows the development of a general turbulent boundary layer over a flat surface.

In the upper figure, the boundary layer is tripped at x = 0 and begins to grow in height

downstream as an increasing function of x1/2. In the idealized case, the boundary layer

is tripped by the edge of a flat plate extending into a free turbulent flow. In nature,

boundary layers start in response to changes in friction (roughness), as when the wind

blows over a long, smooth lake and suddenly encounters a forest on the other side. The

distance the wind has blown downstream of a major change in surface properties is called

the fetch.

A turbulent boundary layer at any point x contains three major zones that differ

in their turbulence characteristics (refer to Figure 6.3(b.)). The lowest layer, directly

in contact with the surface, is the viscous sub-layer (VSL). It has a depth of about

5ν/u∗ (of order millimeter in the atmosphere). The VSL thickness is independent of the

total boundary layer depth δ(x), and velocities in the VSL are low so that the flow

is laminar. A transition to turbulence occurs between 5ν/u∗ and 50ν/u∗. Above this

transition zone, and to a height of about 10-20% of the total boundary layer depth (of

order 100 m in the atmosphere), lies the inertial sub-layer (ISL), also called the Prandtl

layer in the atmosphere. The inertial sub-layer is fully turbulent, and turbulent properties
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are functions of the friction velocity only (i.e. they are independent of the total boundary

layer depth). The mean longitudinal velocity profile in the ISL is given by the well-known

log-velocity profile

U(z)

u∗
=

1

κ
ln
(

u∗z

ν

)

+ C (6.1)

where κ ≈ 0.4 is the von Karman constant and C is an integration constant about equal

to five. It is important to note that within this layer U(z) is independent of δ(x). The

remaining region of the boundary layer is called the outer layer, or Ekman layer in the

atmosphere, and extends up to where the velocity becomes U0. Within the atmosphere,

the Ekman layer is deep enough that it experiences Coriolis effects due to the earth’s

rotation. In the outer layer, turbulence properties and the velocity profile are dependent

on the total layer depth, and we use a technique called matching to adjust the log-velocity

profile in this layer so that it reaches U0 at z = δ(x).

In general, turbulence measurements in the APBL depend on the height of the mea-

surement, the roughness of the ground, and the stability (Csanady 1973). Measurements

near the surface (within the ISL) demonstrate that

urms ∝ u∗ (6.2)

where urms = (u′2)1/2. Above this surface layer, urms tends to decay with height. Because

the land surface is quite rough in comparison to an idealized flat plate, the log-velocity

profile cited above is adjusted in the ISL to give

U(z) =
u∗

κ
ln
(

z

z0

)

(6.3)

where z0 is the roughness height (valid for z � z0).

Because the mean wind-speed increases with height and the turbulent fluctuation ve-

locities are constant with height within the neutral APBL, turbulence intensity decreases

with height. Turbulence intensity is defined as

ix =
(u′2)1/2

U(z)
(6.4)

iy =
(v′2)1/2

U(z)
(6.5)

iz =
(w′2)1/2

U(z)
(6.6)

where iy and iz are the turbulence intensities (non-dimensional), u′ is the longitudinal

fluctuation velocity, v′ is the transverse fluctuation velocity, and w′ is the vertical fluc-

tuation velocity. Measurements by Panofsky (1967) revealed for a neutral surface layer

that

(u′2)1/2 = 2.2u∗ (6.7)

(v′2)1/2 = 2.2u∗ (6.8)

(w′2)1/2 = 1.25u∗. (6.9)
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Fig. 6.4. Potential temperature, θ, profiles in the APBL for the three main stability classes: (a.) the convective
boundary layer (CBL), (b.) the neutral boundary layer (NBL), and (c.) the stable boundary layer (SBL).

Combining these relationships with the log velocity profile yields

ix = iy =
0.88

ln(z/z0)
(6.10)

iz =
0.50

ln(z/z0)
. (6.11)

It is important to note that these data were collected under idealized conditions: large

fetch, flat ground, and uniform roughness (often prairie grass).

6.1.3 Effects of buoyancy

Unfortunately, the idealized neutral conditions described above are rarely strictly valid.

Heating and cooling within the boundary layer result in temperature differences, which

equate to density differences; thus, buoyancy effects and stability/instability are important

processes in the APBL.

Shown in Figure 6.4, three general stability types are possible. We have already dis-

cussed the neutral case, where the density is constant throughout the boundary layer

(refer to Figure 6.4(b.)). During the day, solar radiation heats the bottom air, creating

an unstable density profile as shown in Figure 6.4(a.). This case is called a convective

boundary layer (CBL). The warm air at the bottom rises, due to its buoyancy, creating

enhanced vertical velocities. Because of its special kind of instability, convective instabil-

ities are cellular in shape. That is, circular regions of warm upward-moving air, called

thermals, are surrounded by layers of cooler downward moving air. This kind of instabil-

ity can be seen in a pot of water heated on the stove. The third stability type is show in

Figure 6.4(c.). At night, the bottom layer cools rapidly, and the boundary layer develops

a stable density profile (heavy air below lighter air). This stable density profile damps the

turbulence, in particular the vertical turbulent fluctuation velocities, and encourages in-

ternal wave motion. Because of the cellular instability structure of the CBL, and internal

wave fields of the SBL, these boundary layers have spatially heterogeneous properties.

Despite these complicated and inter-related effects, generalized quantitative results can

be obtained for natural boundary layers. Pasquill (1962) suggested a means of predicting

the stability type as a function of wind speed, time of day, and radiative conditions (in
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Table 6.1. Pasquill stability categories taken from Csanady (1973).

Surface wind Solar insolation Night conditions

speed Strong Moderate Slight mainly overcast or ≤ 3/8 Low

in [m/s] ≥ 4/8 low cloud cloud

2 A A–B B – –

2-3 A–B B C E F

3-5 B B–C C D E

5-6 C C–D D D D

6 C D D D D

A - Extremely unstable, B - Moderately unstable, C - Slightly unstable, D - Neutral, E - Slightly stable,

F - Moderately stable.

Table 6.2. Typical turbulence intensities near the ground level, taken from Csanady (1973)

Thermal stratification iy iz

Extremely unstable 0.40–0.55 0.15–0.55

Moderately unstable 0.25–0.40 0.10–0.15

Near neutral 0.10–0.25 0.05–0.08

Moderately stable 0.08–0.25 0.03–0.07

Extremely stable 0.03–0.25 0.00–0.03

particular, cloud cover, which provides insulation). Table 6.1 provides this stability cate-

gorization. Cramer (1959) suggested the associated typical turbulent intensities near the

ground level as shown in Table 6.2. As demonstrated in the tables, turbulence intensities

are indeed higher in unstable conditions than for stable conditions, and both the vertical

and horizontal turbulence intensities are affected.

Combining all these processes, Fedorovich (1999) summarizes the processes affecting

mixing as follows:

• large-scale meteorologic forcing (U0).

• earth’s rotation (Coriolis)

• external and internal heating/cooling (T (z))

• physical properties of the surface (z0)

• physical properties of air (u∗)

The remaining sections incorporate these processes in a description of atmospheric mixing.

6.2 Turbulent mixing in three dimensions

Before we discuss mixing in the atmospheric boundary layer, we should review the turbu-

lent transport equation in a simpler turbulent flow. In Chapter 3 we derived the turbulent

advective diffusion equation for homogeneous and stationary turbulence. The transport

equation for the mean concentration field C was found to be
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∂C

∂t
+

∂uiC

∂xi

= Dx,t
∂2C

∂x2
+ Dy,t

∂2C

∂y2
+ Dz,t

∂2C

∂z2
(6.12)

where Di,t are the turbulent diffusion coefficients.

In Chapter 3 we only presented the solutions for times greater than the integral time

scale of the turbulence tI , where we could assume the turbulent diffusion coefficients were

constant in time. In general, the turbulent diffusion coefficient in the x direction is given

by

Dx,t =
1

2

dσ2
x

dt
(6.13)

where σx is the standard deviation of the concentration field in the x-direction (Csanady

1973). Similar relationships are valid for the y- and z-directions. From Taylor’s theorem

it follows that

Dx,t = u′2
∫ t

0
R(τ)dτ (6.14)

where R is the velocity correlation function of the turbulent flow (Csanady 1973). Gen-

erally, we consider two limiting solutions to this equation: at short times for t → 0, and

at large times for t → ∞. These solutions are

Dx,t =
(u′2)2

u
x (x → 0) (6.15)

Di,t = (u′2)2tL (x → ∞). (6.16)

Thus, the turbulent diffusion coefficients grow linearly at short times until they reach a

constant value at times greater than tL.

Example: Continuous point release. As an example, consider the classical problem

of a continuous release at a height h above the ground level. We set the coordinate system

so that the mean wind is in the x-direction. The source strength is ṁ in [M/T]. To enforce

the solid boundary condition at z = 0 we use an image source. The solution for the slender

plume assumption (diffusion in the x-direction is negligible) is given in Csanady (1973)

as

C(x, y, z) =
ṁ

2πuσyσz

[

exp

{

− y2

2σ2
y

− (z − h)2

2σ2
z

}

+

exp

{

− y2

2σ2
y

− (z + h)2

2σ2
z

}]

. (6.17)

The solution for the concentration at ground level is given by setting z = 0:

C(x, y, 0) =
ṁ

πuσyσz

exp

[

− y2

2σ2
y

− h2

2σ2
z

]

(6.18)

and the solution for the centerline of the plume at ground level is given by setting z =

y = 0:

C(x, 0, 0) =
ṁ

πuσyσz

exp

[

− h2

2σ2
z

]

. (6.19)



108 6. Atmospheric Mixing

0 1 2 3 4 5 6 7 8 9 10
0

0.05

0.1

x i
z
 / h

C
 U

 h
2 / q

Centerline concentration at z = y = 0

0 1 2 3 4 5 6 7 8 9 10

−1.5

−1

−0.5

0

0.5

1

1.5

x i
z
 / h

y 
i z / 

h

Concentration distribution at z = 0

Fig. 6.5. Concentration distributions for a continuous release at a height h into a homogeneous and stationary
turbulent flow.

Figure 6.5 shows the solutions of the latter two equations at short times (t → 0) in

non-dimensional form.

6.3 Atmospheric mixing models

The results for homogeneous, stationary turbulence are extended in this section to ap-

plications in the atmosphere. An underlying assumption for the derivation of (6.12) is

that the Eulerian and Lagrangian descriptions of the velocity field are identical. Csanady

(1973) points out that this is only true for homogeneous and stationary turbulence if the

system is unbounded or bounded by rigid, impermeable walls. The atmospheric bound-

ary layer is indeed bounded from below by a solid boundary, but the top boundary (the

capping inversion in Figure 6.2) is permeable. That is, fluid parcels moving in the APBL

can move through the capping inversion, bringing high velocity fluctuations with them,

and these parcels are replaced by fluid with lower turbulence intensities from above the

capping layer. This departure from the idealized case of a solid or semi-infinite boundary

results in changes to the velocity correlation function, R, in the APBL. Csanady (1973)
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shows, however, that because the solution for the transport equation is insensitive to the

shape of the velocity correlation function, this limitation is not dramatic and we will

continue to use solutions similar to those in the previous section.

Based on (6.15) and (6.16), we expect different results for short and long times. The

processes at short times occur near the source and are called near-field processes. Similarly,

the processes at long times occur far from the source and are called far-field processes.

6.3.1 Near-field solution

In the near-field of a release, it is reasonable to assume that the results given above

are valid without modification. This is because, at short times, the release has not fully

sampled the velocity field and does not know that the turbulence field is bounded by a

permeable capping inversion. Hence, the cloud width grows in the near field as

σy =
(v′2)

v
x = iyx (6.20)

σz =
(w′2)

w
x = izx. (6.21)

The relationships for the turbulent intensities at a height z were given above. For a release

at z = h, it is reasonable to use average turbulence intensities. Taking the average from

z = 0 to z = h gives

iy =
0.88

ln(h/z0) − 1
(6.22)

iz =
0.5

ln(h/z0) − 1
. (6.23)

Csanady (1973) shows that the near-field solution is valid for a considerable range, often

up to the distance where the plume grows so large that is touches the ground, in which

vicinity also the maximum ground level concentrations are observed. This is because the

Lagrangian time scale is very large, given approximately by

tL =
zi

u
(6.24)

where zi is the height of the capping inversion.

6.3.2 Far-field solution

Far from the source, the growth of the cloud should depend on the Lagrangian time scale

and, due to the shear velocity profile, should be affected by dispersion. Sutton (1932) and

Sutton (1953) propose power law formulas for the standard deviations

2σ2
y = C2

yx
2−n (6.25)

2σ2
z = C2

zx
2−n (6.26)

where Cy, Cz, and n are constants, their value depending on atmospheric stability and

source height h (Csanady 1973). Under neutral conditions Sutton found the values n =
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Fig. 6.6. Horizontal (a.) and vertical (b.) atmospheric mixing coefficients. Taken from Csanady (1973).

0.25, while over flat grass-land near ground level he proposed Cy = 0.4 cm1/8 and Cz =

0.2 cm1/8 (Csanady 1973). Though this formula is rarely used today, it is important

because it represents observed facts.

Under non-neutral conditions, the coefficients introduced above are functions of the

stability. Looking first at the horizontal growth of the cloud, n has been found to be

roughly constant for all stability regimes; Cy is sufficient to adjust σy to unstable and

stable conditions; and, higher values of Cy are observed in CBLs, and lower values of

Cy are observed in SBLs. For vertical cloud growth, both parameters are functions of

the stability. Figure 6.6 shows the values of σy and σz for the range of stability classes

introduced above. In CBLs, the vertical growth of the cloud becomes vary large due to

the large upward velocities of the convective currents. In SBLs, the vertical growth of the

cloud is damped due buoyancy effects.

Summary

This chapter introduced mixing in the lower part of the atmosphere, the planetary atmo-

spheric boundary layer (APBL). Turbulence properties in idealized boundary layers were

discussed first and then extended to the APBL. The effects of heating and cooling in the

APBL result in a range of stability classes, from convectively unstable when heating is

from below to stable when cooling is from below. Turbulent mixing in homogeneous sta-

tionary turbulence was reviewed and solutions for a continuous source at a height h above

a solid boundary were introduced. The results in idealized turbulence were extended in

the final section to turbulence in the atmosphere. Simplified atmospheric mixing models

were introduced for the near- and far-field cases.
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Exercises

6.1 Boundary influence. The effects of a solid boundary are only felt after a plume grows

large enough to touch the boundary. Assuming a total plume depth of 4σz, find the

distance downstream of the release point to where a continuous source release at a height

h above a solid boundary first touches the boundary.

6.2 Smoke-stack exhaust. A power company releases 1 kg/s of CO2 from a height of

30 m into a wind with average velocity 4 m/s. The sky is partly cloudy and the terrain

down-wind of the release is pasture land. Estimate the turbulence intensities and find the

maximum concentration at ground level downstream of the release. How do the results

change if the release point is lowered by 15 m?

6.3 Urban roughness. The results presented in this chapter were for surfaces with uniform

roughness and elevations much greater than the roughness height z0. How do you expect

relationships for turbulence intensity to change near the street level in an urban setting

(where the roughness is largely due to buildings and houses)?
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7. Water Quality Modeling

Until now we have derived governing equations for and sought solutions to idealized

cases where analytical solutions could be found. Many problems in the natural world,

however, are complex enough that simplified analytical solutions are inadequate to predict

the transport and mixing behavior. In these situations, approximations of the governing

transport equations (such as finite difference) must be made so that numerical solutions

can be found. These approximations can be simple or complex, but often result in a large

number of equations that must be solved to predict the concentration distribution. Hence,

computer algorithms are used to make the numerical solutions tractable.

In this chapter, we introduce the field of water quality modeling based on computerized

(numerical or digital) tools. This chapter begins by outlining how to select an appropriate

numerical tool. The next two section describe common computer approximations. First,

simple numerical models based on plug-flow and continuously-stirred tank reactors are

introduced. Second, an overview of numerical approximations to the governing equations

is presented. Because we are now dealing with approximate solutions, new procedures are

needed to assure that our results are acceptable. The final section outlines the crucial

steps necessary to test the accuracy of a numerical result. Although computer power is

rapidly growing, it remains important to use simple tools and thorough testing in order

to understand and synthesize the meaning of numerical results.

7.1 Systematic approach to modeling

A model is any analysis tool that reduces a physical system to a set of equations or

a reduced-scale physical model. Moreover, all of the solutions in previous chapters are

analytical models of natural systems. Whether analytical or numerical, the main question

the modeler must answer is: which model should I use?

7.1.1 Modeling methodology

The ASCE & WPCF (1992) design manual Design and Construction of Urban Stormwater

Management Systems outlines a four-step selection processes for choosing a water quality

analysis tool. These steps are discussed in detail in the following and include (1) defining

project goals, (2) describing an acceptable modeling tool, (3) listing the available tools

that could satisfy the goals and model description, and (4) selecting the model to be used

based on an optimal compromise between goals and available tools.
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1. Define project goals. It may sound like an obvious first step, but it is essential and,

regrettably, often overlooked: define the project goals before even choosing the model.

Fischer et al. (1979) emphasize this step as well, saying that the choice of a model depends

crucially on what the model is to do. Modeling goals are quite variable, ranging from the

practical (provide the analysis necessary to get the client his discharge permit) to the

research oriented (develop a new tool that overcomes some current modeling shortfall).

During this step, as much as possible should be learned about the system to be modeled.

Fischer et al. (1979) suggest that if possible, the investigator should become personally

familiar with the water body by going out on it in the smallest boat that is safe. Then,

before venturing near a computer or a model basin, he or she should make all possible

computations, being approximate where necessary, but seeking a feel for what the model

will predict. Only after we understand our system can we formulate appropriate project

goals. In the words of the famous landscape photographer Ansel Adams, “Visualization

is of utmost importance; many failures occur because of our uncertainty about the final

image” (quoted in Fischer et al. (1979)). During this stage one begins to formulate the

necessary attributes of the model. This leads naturally the next step.

2. Describe an acceptable modeling tool. Before selecting the model for the analysis,

formulate a list of abilities and characteristics that the model must have. These can

include things like input/output flexibility, common usage in the regulatory community,

and physical mixing processes the model must include. Our simplified predictions from

step 1 of how the system behaves are used in this step to formulate the model requirements.

For instance, if we expect rapid near-field mixing, we may suggest using a one-dimensional

model. This step should keep in mind what models are available, but not limit the analysis

to known tools if they would be inadequate to meet the project goals. In this stage the

project goals may also need to be revised. If the only acceptable modeling tool to meet a

particular goal is too costly in terms of computation time and project resources, perhaps

that goal can be reformulated within a reasonable project scope. The purpose, therefore,

of this step is to optimize the modeling goals by describing practical requirements of the

modeling tool.

3. List applicable tools. Once the analysis tool has been adequately described, one must

formulate a list of available tools that meet these requirements. In engineering practice,

we must often choose an existing model with a broad user base. Appendix D lists several

public-domain models. Most of them are available free of charge from government sponsor

agencies, but some are also commercial. The purpose of choosing an existing model is that

it has been thoroughly tested by many previous users and that the regulatory agencies

are accustomed to seeing and interpreting its output. However, available tools may not

always be adequate to meet the project goals.

If existing tools are inadequate, then a new tools must be developed, and a list of

existing methods is an important step. Methods are the building blocks of models. A

one-dimensional finite difference model employs two methods: a one-dimensional approxi-

mation and a finite difference numerical scheme. Going a step deeper, the finite-difference
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method can have many attributes, such as forward, central, or backward differencing,

implicit or explicit formulation, and first-, second-, or higher-order solution algorithms.

Section 7.3 describes what some of these terms mean. The point is that, when designing a

new tool, there are many existing building blocks from which to choose, and these can be

quite helpful. It may turn out that simply adding an unsteady algorithm to an existing

steady-state model will meet the project goals. Hence, knowing as much as possible about

existing models and methods is essential to implementing and/or designing an analysis

tool.

4. Make an optimal compromise between goals and available tools. In the final

step of choosing a modeling tool, we seek an optimal compromise between the project

goals and the available tools. This is where the decision to proceed with a given modeling

tool is made. The project goals are the guide to choosing the model. It sounds simple, but

choose the best model to meet the project goals, not just the best available model. As

computers become faster, the tendency is to just pick the biggest, boldest model and to

force it to meet your needs. However, the enormous amount of output from such a model

may be overwhelming and costly and unnecessary in the light of certain project goals.

Therefore, choose the most appropriate, simplest model that also satisfies the scientific

rigor of the project goals, and when necessary, develop new tools.

7.1.2 Issues of scale and complexity

Throughout the process of choosing a modeling tool one is confronted with issues of system

scale and complexity. The world is inherently three-dimensional and turbulent, but with

current computer resources, we must often limit our analysis to one- and two-dimensional

approximations with turbulence closure schemes that approximate the real world. Hence,

we must make trade offs between prototype complexity and model ability.

We can evaluate these trade offs by doing a scale analysis to determine the important

scales in our problem. This is the essence of steps one and two, above, where we try to

predict what the model will tell us and use this information to characterize the needed

tool. For transport problems, we must consider the advective, diffusing reaction equation.

For illustration, consider a first-order reaction

∂C

∂t
+

∂(uC)

∂x
+

∂(vC)

∂y
+

∂(wC)

∂z
= Dx

∂2C

∂x2
+ Dy

∂2C

∂y2
+ Dz

∂2C

∂z2
± kC. (7.1)

This equation has three unit scales: mass, time, and length. It also has three processes:

advection, diffusion, and reaction. We would like to formulate typical scales of these three

processes from the typical units in the problem. For example, the advection time scale is

the time it takes for fluid to move through our system. If we are modeling a river reach

of length L with mean velocity U , then the advective time scale is

Ta = L/U. (7.2)
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Processes that occur on time scales much shorter than Ta can neglect advection. We can

use these scales to non-dimensionalize the governing equation. To do this, we define the

non-dimensional variables using primes as follows

x = Lxx
′; y = Lyy

′

z = Lzz
′; u = Uu′

v = V v′; w = Ww′

C = C0C
′; t = T0t

′

k = 1/Trk
′ (7.3)

where the upper-case variables are typical scales in the problem. For example T0 is an

external time scale, such as a discharge protocol or the diurnal cycle and Tr is the reaction

time scale, such as the half-life for a dye-off reaction. The L’s are system dimensions and

U , V , and W are average velocities. Substituting into (7.1) gives

1

T0

∂C ′

∂t′
+

U

Lx

∂(u′C ′)

∂x′
+

V

Ly

∂(v′C ′)

∂y′
+

W

Lz

∂(w′C ′)

∂z′
=

Dx

L2
x

∂2C ′

∂x′2
+

Dy

L2
y

∂2C ′

∂y′2
+

Dz

L2
z

∂2C ′

∂z′2
± 1

T1/2

k′C ′. (7.4)

Note that to make this equation fully non-dimensional, we must multiple each term by a

time scale, for example T0. We can now determine the relative importance of each term

by considering their leading coefficients. Comparing the convective terms

Longitudinal advection

Lateral advection
=

U

V
· Ly

Lx

(7.5)

Longitudinal advection

Vertical advection
=

U

W
· Lz

Lx

(7.6)

If these ratios are much greater than one, then longitudinal advection is the only advection

term that we must keep in the equation. Thus, the importance of a given convection term

depends on the velocity scales in our problem and the length of river we are considering.

In many river problems, these ratios are much greater than one, and we only keep the

longitudinal advection term. Likewise, we can compare the diffusion terms to the advection

term. For longitudinal diffusion we have

Longitudinal diffusion

Longitudinal advection
=

Dx

L2
xTa

(7.7)

which is our familiar Peclet number. For large Peclet numbers, we only consider diffusion,

and for small Peclet numbers, we only consider advection. Hence, the important terms in

the equation again depend on the length of river we are considering.

As an example, when might a one-dimensional steady-state model with dye-off be an

acceptable model for a given river reach? The governing model equation would be

u
∂C

∂x
= Dx

∂2C

∂x2
− kC. (7.8)
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By comparing with the non-dimensional equation above, this equation implies several

constraints on the river. Consider first the external time-scale. This model implies

UT0

Lx

� 1. (7.9)

For the convective terms, this model implies that

ULy

V Lx

� 1 (7.10)

ULz

WLx

� 1 (7.11)

or alternatively

∂C

∂y
=

∂C

∂z
= 0. (7.12)

Similarly, for diffusion this model implies that

UL2
y

LxDy

� 1 (7.13)

UL2
z

LxDz

� 1 (7.14)

or, again, alternatively

∂C

∂y
=

∂C

∂z
= 0. (7.15)

Finally, for the reaction, this model implies that

UT1/2

Lx

≈ 1. (7.16)

Therefore, by comparing the relevant scales in our problem to the approximations made

by models, we can determine just how complex the model must be to approximate our

system adequately.

7.1.3 Data availability

As a final comment on the selection and implementation of an analysis tool, we discuss

a few points regarding the data that are used to validate the model (Section 7.4 below

discusses how to test a model in more detail). The only test available to determine whether

the model adequately reproduces our natural system is to compare model output to data

(measurements) taken from the prototype system. In general, as the model complexity

increases, the number of parameters we can use to adjust the model results to match the

prototype also increases, giving us more degrees of freedom. The more degrees of freedom

we have, the more data we need to calibrate our model. Hence, the data requirements of a

model are directly proportional to the model complexity. If very limited data are available,

then complex models should be avoided because they cannot be adequately calibrated or

validated.
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Q Q

Fig. 7.1. Schematic of a plug-flow reactor.

7.2 Simple water quality models

Some simple water quality models can be developed for special cases where advection or

diffusion is dominant. As introduced in Chapter 2, the Peclet number is a measure of

diffusion to advection dominance. The Peclet number, Pe, is defined as

Pe =
D

uL
(7.17)

=
D

u2t
(7.18)

where the two definitions are equivalent. The Peclet number is small when advection is

dominant and large when diffusion is dominant. Two simple models can be developed for

the limiting cases of Pe → 0 and Pe → ∞. A third hybrid model is also introduced in

this section for simplified application to arbitrary Pe.

7.2.1 Advection dominance: Plug-flow reactors

For Pe → 0 we can neglect longitudinal diffusion and dispersion, and we have the so-called

plug-flow reactor. Shown in Figure 7.1, a slab of marked fluid is advected with the mean

flow, perhaps undergoing reactions, but not spreading in the lateral. Taking D = 0, the

governing reactive transport equation becomes

∂C

∂t
+ u

∂C

∂x
= ±R. (7.19)

To solve this equation, we make the familiar coordinate transformation to move our co-

ordinate system with the mean flow. That is,

ξ = x − ut (7.20)

τ = t. (7.21)

As demonstrated in Chapter 2, using the chain rule to substitute this coordinate trans-

formation into (7.19) gives

∂C

∂τ
= ±R (7.22)

which is easily solved after defining an initial condition and the transformation reaction

R.

For example, consider a first-order die-off reaction for a slab with initial concentration

C0. The solution to (7.22) is

C(τ) = C0 exp(−kτ) (7.23)
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Fig. 7.2. Schematic of a continuously-stirred tank reactor (CSTR).

or in the original coordinate system, we have the interchangeable solutions

C(t) = C0 exp(−kt) (7.24)

C(x) = C0 exp(−kx/u). (7.25)

The residence time for a plug-flow reactor depends on the distance of interest L0. From

the definition of residence time

tres =
V

Q

=
L0A

Q
(7.26)

where A is the cross-sectional area of the channel and Q is the steady flow rate. The fluid

residence time, the travel time for a slab to move the distance L0, can also be expressed

using the same variables

tslab =
L0

u

=
L0A

Q

= tres. (7.27)

Hence, the fluid and species residence times are equal.

7.2.2 Diffusion dominance: Continuously-stirred tank reactors

For Pe → ∞ we can neglect advection and we have the so-called continuously-stirred

tank reactor (CSTR). Shown in Figure 7.2, fluid that enters the reactor is assumed to

instantaneously mix throughout the full reactor volume. To write the governing equation,

consider mass conservation in the tank

dM

dt
= ṁin − ṁout. (7.28)

The inflow provides the mass flux into the control volume, ṁin. Loss of mass, ṁout is

given by the outflow and possible die-off reactions. Writing the conservation of mass in

concentrations and flow rates yields

d(CV )

dt
= Q(Cin − Cout) ± S (7.29)
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where V is the volume of the tank and S = V R is a source or sink reaction term. Because

the tank is well mixed, we can assume that Cout is equal to the concentration in the

tank C. Taking V as constant, we can move it outside the derivative, and the governing

equation becomes

dC

dt
=

Q

V
(Cin − C) ± R. (7.30)

Substituting the definition of the residence time, we have finally

dC

dt
=

1

tres

(Cin − C) ± R (7.31)

which is the governing equation for a CSTR.

Consider first the conserving case, where R = 0. Taking the initial condition as a clean

tank C0 = 0, the solution to (7.31) is

C(t) = Cin

[

1 − exp
(

− t

tres

)]

. (7.32)

Thus, the concentration in the tank increases exponentially with a rate constant k =

1/tres. The concentration in the tank reaches steady state asymptotically. If we define

steady state as the time, tss, until C = 0.99C0, then

tss = 4.6tres. (7.33)

Therefore, without reactions, steady state is reached in about 4.6 residence times.

The solution for the reacting case is slightly more complicated because (7.31) is an

inhomogeneous differential equation with forcing function ±R. Consider the case of a first-

order die-off reaction and an initial tank concentration of C0 = 0. Assuming a particular

solution (see Appendix C for an example of solving an inhomogeneous equation) of the

form Cp = ACin, the solution is found to be

C(t) =
Cin

1 + ktres

[

1 − exp

[

−
(

1 + ktres

tres

)

t

]]

. (7.34)

Because of the reaction, the steady state concentration in the tank is no longer the inflow

concentration, but rather

Css =
Cin

1 + ktres

(7.35)

and the coefficient 1/(1 + ktres) is one minus the removal rate. The time to reach steady

state, tss, is the time to reach 0.99Css or

tss =
4.6tres

1 + ktres

. (7.36)

7.2.3 Tanks-in-series models

The simplest type of river-flow model that incorporates some form of diffusion or disper-

sion is the tanks-in-series model, which is a chain of linked CSTRs. An example tanks-in-

series model is shown in Figure 7.3. In the example each tank has the same dimensions,
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Fig. 7.3. Schematic of a tanks-in-series model. The model is made up of several CSTR linked in series.

and the flow rate is constant. The method also works for variable volume tanks, and un-

der gradually-varied flow conditions, stage-discharge relationships can be used to route

variable flows through the tanks. To see why the tanks-in-series model produces diffusion,

consider an instantaneous pulse injection in the first tank. The outflow from that tank

would be the solution to the CSTR given by (7.32). The outflow from the first tank is,

therefore, exponential, clearly not the expected Gaussian distribution. But, this outflow

goes into the next tank. At first, that tank is clean, and the little bit of tracer entering the

tank in the beginning is quickly diluted; hence, the outflow concentration starts at zero

and increases slowly. Eventually, a large amount of the tracer in the first tank has moved

on to the second tank and the outflow from the second tank reaches a maximum con-

centration. The inflow from the first tank becomes increasingly cleaner, and the outflow

from the second tank also decreases in concentration. Eventually, all the tracer has flowed

through both tanks and the concentration is zero at the outlet of the second tank. The

concentration curve over time for the second tank started at zero, increased smoothly to a

maximum concentration, then decreased slowly back down to zero. These characteristics

are very similar to the Gaussian distribution; hence, we expect that by dimensioning the

tanks properly, we should be able to reproduce the behavior of advective diffusion in the

downstream tanks.

To find the proper tank dimensions, consider the mass conservation equation for a

central tank. Inflow comes from the upstream tank, and outflow goes to the downstream

tank; thus, we have

dMi

dt
= Q(Ci−1 − Ci) ± V R. (7.37)

For the remaining analysis we will neglect the reaction term. Assuming each tank has the

same length, the tank volume can be written as V = A∆x = A(xi − xi−1). Using this

definition to write Mi in concentration units gives

dCi

dt
= u

Ci−1 − Ci

xi − xi−1

(7.38)

which is the discrete equation describing the tanks-in-series model.

The difference term on the right-hand-side of (7.38) is very close to the backward

difference approximation to ∂C/∂x:

∂C

∂x
=

Ci − Ci−1

xi − xi−1

(7.39)
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which has no error for ∆x → 0. For finite grid size, the Taylor-series expansion provides

an estimate of the error. The second-order Taylor-series expansion of Ci−1 about Ci is

Ci−1 = Ci +
∂Ci

∂x

∣

∣

∣

∣

∣

i

(xi−1 − xi) +
1

2

∂2Ci

∂x2

∣

∣

∣

∣

∣

i

(xi−1 − xi)
2 + · · · (7.40)

as given in Thomann & Mueller (1987). Rearranging this equation, we can obtain

Ci − Ci−1

xi − xi−1

=
∂Ci

∂x
− 1

2

∂2Ci

∂x2
(xi − xi−1). (7.41)

Multiplying this result by −1 gives

Ci−1 − Ci

xi − xi−1

= −∂Ci

∂x
+

1

2

∂2Ci

∂x2
(xi − xi−1) (7.42)

which can be substituted immediately for the right-hand-side of (7.38) leaving

dCi

dt
= −u

∂Ci

∂x
+

u(xi − xi−1)

2

∂2Ci

∂x2
. (7.43)

Dropping the subscripts and recognizing ∆x = (xi − xi−1) gives the governing equation

dC

dt
+ u

∂C

∂x
=

u∆x

2

∂2C

∂x2
. (7.44)

Thus, our derived governing equation for a tanks-in-series model has the same form as

the advective diffusion equation with a diffusion coefficient of Dn = u∆x/2.

The effective diffusion coefficient, Dn, for a tanks-in-series model is actually a numerical

error due to the discretization. As the discretization becomes more course, the numerical

error increases and the numerical diffusion goes up. For ∆x → 0, the numerical diffusion

vanishes, and we have the plug-flow reactor. Hence, for a tanks-in-series model, we choose

the tank size such that Dn is equal to the physical longitudinal diffusion and dispersion

in the river reach.

7.3 Numerical models

Although the tank-in-series model was shown to be a special discretization of the advec-

tive diffusion equation, other numerical techniques specifically set out to discretize the

governing equation. For our purposes, a numerical model is any model that seeks to solve

a differential equation by discretizing that equation on a numerical grid.

7.3.1 Coupling hydraulics and transport

To simulate chemical transport, the velocity field, represented by u in the transport

equation must also be computed. The model that calculates u is called the hydrodynamic

or hydraulic model. Thus, to simulate transport, the hydrodynamic and transport models

must be properly coupled.

Whether the hydrodynamic and transport models must be implicitly coupled or

whether they can be run in series depends on the importance of buoyancy effects. If the
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system is free from buoyancy effects, the hydrodynamics are independent of the transport;

hence, they can be run first and their output stored. Then, many transport simulations

can be run using the hydrodynamic data without re-running the hydrodynamic code. If

buoyancy effects are present in the water body, then the transport of buoyancy (heat or

salinity or both) must be coupled with the hydrodynamics, and both models must be

run together. Once the output from the coupled model is stored, further transport sim-

ulations can be run for constituents that do not influence the buoyancy (these are called

passive constituents). Because the hydrodynamic portion of the model is computation-

ally expensive, the goal in transport modeling is to de-couple the two models as much as

possible.

7.3.2 Numerical methods

There are probably as many numerical methods available to solve the coupled hydrody-

namic and advective transport equations as there are models; however, most models can

be classified by a few key words.

There are three main groups of numerical methods: finite difference, finite volume, and

finite element. For special selections of basis functions and geometries, the three methods

can all be made equivalent, but in their standard applications, the methods are all slightly

different. The finite difference method is built up from a series of nodes, the finite volume

method is built up from a group of cells, and the finite element method is made up of

a group of elements, where each element is comprised of two or more grid points. In the

finite difference case, the differential equation is discretized over the numerical grid, and

derivatives become difference equations that are functions of the surrounding cells. In

the finite volume case, the fluxes through the cell network are tracked and the differential

equations are integrated over the cell volume. For finite elements, a basis function is chosen

to describe the variation of an unknown over the element and the coefficients of the basis

functions are found by substituting the basis functions as solutions into the governing

equations. Because finite difference methods are easier to implement and understand,

these methods are more widely used.

A numerical method may further be explicit or implicit. An explicit scheme is the

easiest to solve because the unknowns are written as functions of known quantities. For

instance, the concentration at the new time is dependent on concentrations at the previous

time step and at upstream (known) locations. In an implicit scheme, the equations for

the unknowns are functions of other unknown quantities. For instance, the concentration

at the new time may depend on other concentrations at the new time or on downstream

locations not yet computed. In the implicit case, the equations represent a system of

simultaneous equations that must be solved using matrix algebra. The advantage of an

implicit scheme is that it generally has greater accuracy.

Finally, numerical methods can be broadly categorized as Eulerian or Lagrangian. Eu-

lerian schemes compute the unknown quantities on a fixed grid based on functions of other
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grid quantities. Lagrangian methods use the method of characteristics to track unknown

quantities along lines of known value. For instance, in a Lagrangian transport model,

the new concentration at a point could be found by tracking the hydrodynamic solution

backward in time to find the point where the water parcel originated and then simply

advecting that concentration forward to the new time. Because the Lagrangian method

relies heavily on the velocity field, small errors in the velocity field (particularly for fields

with divergence) can lead to large errors in the conservation of mass. The advantage of

the Lagrangian method is that it can backtrack over several hydrodynamic time steps;

hence, there is no theoretical limitation on the size of the time step in a Lagrangian trans-

port model. An example of a one-dimensional Lagrangian scheme is the Holly-Preissman

method. By contrast, for the Eulerian model, the time step is limited by a so-called

Courant number restriction, that says that the time step cannot be so large that fluid in

one cell advects beyond the next adjacent cell over one time step. Mathematically, this

can be written as

∆t ≤ ∆x

u
(7.45)

where ∆t is the time step and ∆x is the grid size.

7.3.3 Role of matrices

In the case of explicit models, matrices are not a necessity, but for implicit models and

models simulating many contaminant, matrices provide a comfortable (and often neces-

sary) means of solving the governing equations. For an implicit scheme, the equations for

a given node at the new time are dependent on the solutions at other nodes at the same

time. This means that implicit schemes are inherently a system of equations (sometimes

non-linear), which are best solves with matrices. The general matrix equation is

Ax = b (7.46)

where A is an n x n matrix of equation coefficients, x is an n x 1 vector of unknowns (for

example, flow rates), and b is an n x 1 vector of forcing functions. Writing the equations

in such a way makes derivation of the model equations manageable and implementation

in the computer algorithm straightforward. The solution of (7.46) is

x = A−1b (7.47)

where A−1 is the matrix inverse. Most computer languages have built-in methods for

solving matrices. For the non-linear case, an iteration technique must be employed. A

common method is the Newton-Raphson method.

7.3.4 Stability problems

One limitation already mentioned for an Eulerian transport scheme is the Courant number

restriction. In general, all schemes have a range of similar restrictions that limit the
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allowable spatial grid size and time step such that the scheme remains stable. If the time

step is set longer than such a constraint, the model is unstable and will give results with

large errors that eventually blow up. The full hydrodynamic equations are hyperbolic and

generally have more stringent limitations than the parabolic transport equation. Before

implementing a model, it is advised to seek out the published stability criteria for the

model; this can save a lot of time in getting the model to run smoothly.

7.4 Model testing

An unfortunate fact of numerical modeling is that implementation and calibration is very

time consuming, and little time is available for a thorough suite of model tests. This does

not excuse the fact that model testing is necessary, but rather explains why it is often

neglected. Even when using well-known tools, the following suite of tests is imperative to

ensure that the model is working properly for your application. The following tests are

specific to transport models, but apply in a generalized sense to all models.

7.4.1 Conservation of mass

All transport (water quality models) must conserve mass! This is a zeroth-order test

that confirms whether the zeroth-moment of the concentration distribution is accurately

reproduced in the solution. Clearly, when reactions are present, a given species may be

loosing or gaining mass due to the reaction. This test must confirm, then, that the total

system mass remains constant and that a species only gains mass at the rate allowed by the

reaction equation. This test is often conducted in conjunction with the next test. However,

it should always also be conducted for the complex real-world case being simulated, where

analytical solutions are not available.

7.4.2 Comparison with analytical solutions

The model should be tested in idealized conditions to compare its results to known analyt-

ical solutions. This test confirms whether the model actually solves the governing equation

that it was designed to solve. Deviations may be caused by many sources, most notably

programming errors and numerical inaccuracy. Although most widely used models are

free from programming errors, this cannot be tacitly assumed. In this author’s experi-

ence, programming errors have been found in well-known, government-supported models

by running this test. The issue of numerical inaccuracy arises due to the discretization, as

in the case of numerical diffusion mentioned for the tanks-in-series model described above.

Hence, the idealized case should have length and time scales as close to the prototype as

possible in order to accurately assess the importance of numerical inaccuracy arising from

the numerical method and the discretization.

This step can save a lot of time in applying the model to the prototype because the

source of errors can often be identified faster in idealized systems. First, the analytical
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solution is a known result. If the model gives another result, the model must be wrong.

Second, the complexity of the real-world case makes it difficult to assess the importance

of deviations from measured results. Once the model has been thoroughly tested against

analytical results, deviations can be explained by physical phenomena in the prototype

not present or falsely implemented in the model. Third, this test helps determine the

stability requirements for complex models.

7.4.3 Comparison with field data

Only after it is certain that the model is solving the equations properly and within a

known level of error can the model be compared to field or laboratory measurements

of the prototype. The comparison of model results with these date serves two purposes.

First, the model must be calibrated; that is, its parameters must be adjusted to match

the behavior of the prototype. Second the model must be validated. This means that

a calibrated model must be compared to data not used in the calibration to determine

whether the model is applicable to cases outside the calibration data set. These prototype

measurements fall into two categories: tracer studies and data collection of natural events.

Tracer studies. In a tracer study, dye is injected into the natural system, and concen-

trations are measured in time and space to record how the dye is transported and diluted.

The advantage of a tracer study is that the source injection rate and location are known

with certainty and that reactions can (often) be neglected. Tracer studies help calibrate

the model parameters (such as diffusion and dispersion coefficients and turbulent closure

schemes) to the real-world case. These studies also help to confirm whether the model

assumptions are met (such as the one-dimensional approximation) and are good tests of

both the hydrodynamic and water quality models.

Water quality data. The final set of data available for model testing is actual mea-

surements of the modeled constituents in the prototype under natural conditions. These

measurements represent true values, but are difficult to interpret because of our incomplete

description of the prototype itself. We often do not know the total loading of constituent,

and all the model equations are approximations of the actual physical processes in the

prototype. These measurements further help to confirm whether the model assumptions

are valid and to calibrate model parameters. Once the tests listed above are completed,

the modeler should have a good understanding of how the complex physical processes

in the model combine to give the model results. Deviations between the model and the

field measurements should then be explained through the physical insight available in the

model.

It is important to point out that the water quality measurement campaign should

compliment the output available from the model. That is, the data should be collected

such that they can be used to calibrate and test the model. If the model only outputs daily

predictions, then the measurements should be able to predict daily values; instantaneous

point measurements are only useful for a parameter that does not vary much over the
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diurnal cycle. In summary, the model is only as good as the data that support it, and

the data must be compatible with the model and flex the parts of the model that are the

most uncertain.

Summary

This chapter introduced the concept of water quality modeling. A model is defined as

any analysis tool that reduces a physical system to a set of equations or a reduced-scale

physical model. A four-step procedure was suggested to help select the appropriate model:

(1) define project goals, (2) describe an acceptable modeling tool, (3) list the available

tools that could satisfy the goals and model description, and (4) select the model to be used

based on an optimal compromise between goals and available tools. Because analytical

solutions are not always adequate, numerical techniques were introduced. These included

tank reactor models and numerical solution methods for differential equations, such as

finite difference and finite element. Because numerical solutions result in a large number

of calculations, a rigorous procedure for testing a numerical model was also suggested.

These steps include (1) confirming that model conserves mass, (2) testing the model in

idealized cases against analytical solutions, and (3) comparing the model to field data in

the form of dye studies and the collection of water quality data. Good modeling projects

should follow all of these suggested procedures.

Exercises

7.1 Equation scaling. Non-dimensionalize the one-dimensional momentum equation

∂u

∂t
+ u

∂u

∂x
=

1

ρ

∂p

∂x
+ ν

∂2u

∂x2
(7.48)

using the non-dimensional variable definitions

u = U0u
′ ; x = Lx′ (7.49)

t = (L/U0)t
′ ; p = ρU 2

0 p′ (7.50)

Divide the equation by the coefficient in front of ∂u′/∂t′. What familiar non-dimensional

number becomes the leading coefficient of the viscous term? When is the viscous term

negligible?

7.2 Finite difference. Write the explicit backward-difference approximation to the reaction

equation

dC

dt
= kC. (7.51)

Program this solution in a computer and suggest a criteria for selecting the appropriate

time step ∆t by comparing to the analytical solution

C(t) = C0 exp(kt). (7.52)
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Fig. 7.4. Measured dye concentration for example dye study. Dye fluctuations are due to instrument uncertainty,
not due to turbulent fluctuations.

7.3 Tanks-in-series model. A river has a cross-section of h = 1 m deep and B = 10 m

wide. The mean stream velocity is 22.5 cm/s. A dye study was conducted my injecting

2.25 g/s of dye uniformly across the cross-section 150 m upstream of a measurement point.

The measurements of dye concentration at L = 150 m are given in Figure 7.4. From the

figure, determine the value of the dispersion coefficient. Based on this value, how many

tanks in a tanks-in-series model would be needed to reproduce this level of dispersion in

the numerical model?



A. Point-source Diffusion in an Infinite Domain:

Boundary and Initial Conditions

In this appendix we discuss how the boundary and initial conditions for a point source

in an infinite, one-dimensional domain are applied to find the solution of the diffusion

equation. The governing equation is

∂C

∂t
= D

∂2C

∂x2
(A.1)

with boundary conditions C(±∞, t) = 0 and initial condition C(x, 0) = (M/A)δ(x) (for

more detail, refer to Chapter 1).

A.1 Similarity solution method

In Chapter 1 the similarity method was applied using the coordinate transform

C =
M

A
√

Dt
f(η) (A.2)

η =
x√
Dt

. (A.3)

Substituting this transformation into (A.1) and integrating once leads to

df

dη
+

1

2
fη = C0 (A.4)

(compare with (1.43)). Here, we want to show that choosing C0 = 0 satisfies both bound-

ary conditions and the initial condition.

First, we solve the homogeneous equation

df

dη
+

1

2
fη = 0, (A.5)

which, as found in Chapter 1, has the general solution

f(η) = C1 exp(−C2η
2). (A.6)

Substituting this solution into (A.4) gives

C1e
−C2η2

(

−2C2η +
η

2

)

= C0. (A.7)

Combining this result with the definition of C in (A.2), we have

C(x, t) =
M

A
√

Dt
f(η) =

M

A
√

Dt

C0

(η
2
− 2C2η)

. (A.8)
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Substituting the definition of η and simplifying leaves us with

C(x, t) =
M

A

C0

(x
2
− 2C2x)

, (A.9)

which is a form we can use to compare values of C0 with the boundary and initial con-

ditions. This is not as mathematically rigorous as we might like, but it points out the

important features of this solution.

A.1.1 Boundary conditions

Comparing the boundary conditions to the result in (A.9), we see that for any value of C0,

C will vanish at infinity. Thus, choosing C0 = 0 does not violate the boundary conditions.

More importantly, though, the boundary conditions do not constrain the value of C0;

thus, we must look also at the initial condition.

A.1.2 Initial condition

Substituting (A.9) into the initial condition, we have

δ(x) =
C0

(x
2
− 2C2x)

(A.10)

which is only true for C0 = 0. Thus, we have shown that choosing C0 = 0 is necessary

and satisfies both the boundary conditions and the initial condition.

A.2 Fourier transform method

If the hand-waving of the previous section was not satisfactory to you, looking at the

Fourier transform method proves C0 = 0 rigorously. For this method we use the Fourier

exponential transformation defined by

F(α, t) =
∫ ∞

−∞
F (x, t)e−iαxdx (A.11)

where F(α, t) is the Fourier transformation of F (x, t), α is a transformation variable, and

i is the imaginary number. This method implicitly satisfies the boundary conditions at

±∞. The following application of this method to the diffusion equation is taken from Mei

(1997).

The Fourier transform of the governing diffusion equation gives

dC
dt

+ Dα2C = 0. (A.12)

The power of the Fourier transform, is that it converts partial differential equations into

ordinary differential equations, this time a simple, first-order ODE with solution

C(α, t) = F(α) exp(−Dα2t). (A.13)

F(α) is the initial condition, given by
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F(α) = C(α, 0)

=
∫ ∞

−∞
(M/A)δ(x)e−iαxdx

= M/A. (A.14)

The drawback of the Fourier transform method is that the inverse transform to get back

to our desired dimensional space is often a difficult integral.

We stop here to take a look at what we have done so far. The Fourier transform method

implicitly satisfies the boundary conditions; therefore, we do not have to think about them

anymore. Further, the initial condition was used to find the solution to the ODE obtained

after the Fourier transform. Thus, our solution

C(α, t) = (M/A) exp(−Dα2t) (A.15)

satisfies all our boundary and initial conditions. The remaining task is to perform a Fourier

inverse transform on this solution.

The Fourier inverse transform is defined in general as

F (x, t) =
1

2π

∫ ∞

−∞
F(α, t)eiαxdα. (A.16)

For our problem, the inverse transform becomes

C(x, t) =
1

2π

∫ ∞

−∞
(M/A) exp(−Dα2t)eiαxdα. (A.17)

We can simplify a little by recognizing that eiαx = cos(αx) + i sin(αx). Since e−Dα2t is

an even function and i sin(αx) is an odd function, we can neglect the sin-contribution,

leaving us with the integral

C(x, t) =
M

2πA

(

2
∫ ∞

0
e−Dα2t cos(αx)dα

)

(A.18)

which we still must solve.

The first step in solving (A.18) is to simplify the exponential using the change of

variable

α =
x√
Dt

(A.19)

dα =
dx√
Dt

(A.20)

(note, this in an arbitrary change of variable that puts the integral in a form more likely

to be found in integral tables). Further, we define a new variable

η =
x√
Dt

(A.21)

(note, this is also an arbitrary decision). Substituting these definitions leaves us with

C(x, t) =
M

πA
√

Dt

∫ ∞

0
e−x2

cos(ηx)dx. (A.22)

Thus, our solution simplifies to having to solve the integral
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I(η) =
∫ ∞

0
e−x2

cos(ηx)dx. (A.23)

The integral in (A.23) is not a trivial integral, but can be solved by employing the

following tricks. Basically, we need to find the derivative of I with respect to η and then

put it in a useful form. We begin with

dI

dη
=
∫ ∞

0
−xe−x2

sin(ηx)dx. (A.24)

Next, recognize that xdx = (1/2)d(x2), giving

dI

dη
= −1

2

∫ ∞

0
e−x2

sin(ηx)d(x2). (A.25)

Similarly, we make use of the identity e−x2

d(x2) = −d(e−x2

), which lets us write

dI

dη
=

1

2

∫ ∞

0
sin(ηx)d(e−x2

). (A.26)

Now, we integrate by parts (where u = sin(ηx) and dv = d(e−x2

)) yielding

dI

dη
=

1

2
(e−x2

sin(ηx))
∣

∣

∣

∣

∞

0
− 1

2

∫ ∞

0
e−x2

d(sin(ηx))

= 0 − η

2

∫ ∞

0
e−x2

cos(ηx)dx

= −η

2
I(η). (A.27)

We can rearrange the last line as follows

dI

dη
+

η

2
I(η) = 0 (A.28)

which looks remarkably like (A.4) if C0 is taken as zero. The initial condition necessary

to solve the above ODE is given by

I(0) =
∫ ∞

0
e−x2

dx. (A.29)

If we convert I in the previous two equations to our variables used in the similarity

solution, we obtain

df

dη
+

1

2
f(η) = 0 (A.30)

with initial condition
∫ ∞

−∞
f(η)dη = 1. (A.31)

Therefore, we have shown through a rigorous application of the Fourier transform method,

that the above two equations give the solution to the diffusion equation that we seek in

an infinite domain for an instantaneous point source.



B. Solutions to the Advective Reacting

Diffusion Equation

This appendix presents solutions to the advective reacting diffusion equation given by

∂C

∂t
+ u

∂C

∂x
+ v

∂C

∂y
+ w

∂C

∂z
= Ex

∂2C

∂x2
+ Ey

∂2C

∂y2
+ Ez

∂2C

∂z2
− kC (B.1)

for homogeneous, anisotropic turbulence with the steady velocity u = (u, v, w). The Ei’s

are the anisotropic turbulent diffusion coefficients, and k is a constant first-order decay

rate. In previous chapters we denoted the turbulent diffusion coefficient by Dt. We use

Dt = E here so that the subscripts do not get too complicate and to expose the reader

to another notation for the turbulent diffusion coefficient common in the literature.

B.1 Instantaneous point source

An instantaneous point source has an injection of mass, M , at the point x = (x1, y1, z1)

at time t = 0. The following solutions cover different ambient conditions.

B.1.1 Steady, uni-directional velocity field

For a steady velocity field u = (U, 0, 0), the solutions is

C(x, y, z, t) =
M

4πt
√

4πExEyEzt
exp

(

−((x − x1) − Ut)2

4Ext

− (y − y1)
2

4Eyt
− (z − z1)

2

4Ezt
− kt

)

. (B.2)

B.1.2 Fluid at rest with isotropic diffusion

For isotropic diffusion, Ex = Ey = Ez = E, and, in a stagnant ambient without decay,

(B.2) simplifies to

C(x, y, z, t) =
M

(4πEt)3/2
exp

(

− r2

4Et

)

(B.3)

where r =
√

x2 + y2 + z2 and x1 = y1 = z1 = 0.
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B.1.3 No-flux boundary at z = 0

The no-flux boundary condition at z = 0 is enforced by an image source at x =

(x1, y1,−z1), giving the solution for z > 0 neglecting decay and crossflow as

C(x, y, z, t) =
M

4πt
√

4πExEyEzt
·

exp

(

−(x − x1)
2

4Ext
− (y − y1)

2

4Eyt
− (z − z1)

2

4Ezt

)

+
M

4πt
√

4πExEyEzt
·

exp

(

−(x − x1)
2

4Ext
− (y − y1)

2

4Eyt
− (z + z1)

2

4Ezt

)

. (B.4)

B.1.4 Steady shear flow

The following solution, presented in Okubo & Karweit (1969), is for the special shear flow

given by u = (u0(t) + λyy + λzz, 0, 0), where λy and λz are the velocity gradients defined

by

λy =
∂u

∂y
(B.5)

λz =
∂u

∂z
. (B.6)

The solution is

C(x, y, z, t) =
M

4πt
√

4πExEyEzt
√

1 + φ2t2
·

exp





−
(

x − ∫ t
0 u0(t

′)dt′ − 1
2
(λyy + λzz)t

)2

4Ext(1 + φ2t2)

− y2

4Eyt
− z2

4Ezt
− kt

)

, (B.7)

where the injection is at (0, 0, 0) and φ2 is given by

φ2 =
1

12

(

λ2
y

Ey

Ex

+ λ2
z

Ez

Ex

)

. (B.8)

B.2 Instantaneous line source

An instantaneous line source has an injection of mass, m′, per unit length along the line

through x = (x1, y1) for z = ±∞ at time t = 0. The following solutions cover different

ambient conditions.
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B.2.1 Steady, uni-directional velocity field

For a steady velocity field u = (U, 0, 0), the solutions is

C(x, y, z, t) =
m′

4πt
√

ExEy

·

exp

(

−((x − x1) − Ut)2

4Ext
− (y − y1)

2

4Eyt
− kt

)

. (B.9)

B.2.2 Truncated line source

For the line source along the line x = (0, 0) for z = ±z2, the solution is

C(x, y, z, t) =
m′

8πt
√

ExEy

(

erf

(

z + z2√
4Ezt

)

− erf

(

z − z2√
4Ezt

))

·

exp

(

−(x − Ut)2

4Ext
− y2

4Eyt
− kt

)

. (B.10)

B.3 Instantaneous plane source

An instantaneous plane source has an injection of mass, m′′, per unit area distributed

uniformly on the y-z plane passing through x1. The solution for the uni-directional velocity

field given by u = (U, 0, 0) is

C(x, y, z, t) =
m′′

√
4πExt

exp

(

−((x − x1) − Ut)2

4Ext
− kt

)

. (B.11)

B.4 Continuous point source

The solution for a continuous point source is obtained by the time-integration of the

solution for an instantaneous point source. The injection duration is t1, and the general

form of the solution is

C(x, y, z, t) = γ
∫ t1

0

1

(t − τ)3/2
exp

(

− α

(t − τ)
− β(t − τ)

)

dτ (B.12)

where

α =
(x − x1)

2

4Ex

+
(y − y1)

2

4Ey

+
(z − z1)

2

4Ez

(B.13)

β =
U2

4Ex

+ k (B.14)

γ =
ṁ exp

(

(x−x1)U
2Ex

)

4π
√

4πExEyEz

(B.15)

and ṁ is the time rate of mass injection ∂M/∂t.
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B.4.1 Times after injection stops

Assuming an injection period from t = 0 to t = t1, the solution for times greater than t1
(i.e. after injection stops) is

C(x, y, z, t) =
γ
√

π

2
√

α

{

exp(2
√

αβ)

(

erf

(
√

α

(t − t1)
+
√

β(t − t1)

)

−erf
(
√

α

t
+
√

βt
))

+ exp(−2
√

αβ)

(

erf

(
√

α

(t − t1)
−
√

β(t − t1)

)

−erf
(
√

α

t
−
√

βt
))}

(B.16)

B.4.2 Continuous injection

A continuous injection in an injection from time t = 0 to the current time t, and the

solution is

C(x, y, z, t) =
γ
√

π

2
√

α

{

exp(2
√

αβ) erfc
(
√

α

t
+
√

βt
)

+

exp(−2
√

αβ) erfc
(
√

α

t
−
√

βt
)}

. (B.17)

The steady-state solution is found for t → ∞ to be

C(x, y, z) =
γ
√

π√
α

exp(−2
√

αβ). (B.18)

For the special case of a homogeneous, isotropic diffusion at steady state, we have

C(x, y, z) =
ṁ

4πEr
exp

(

−r
√

U2 + 4Ek − xU

2E

)

(B.19)

where r =
√

x2 + y2 + z2.

B.4.3 Continuous point source neglecting

longitudinal diffusion

The steady-state solution for homogeneous turbulence and neglecting longitudinal diffu-

sion is found from the governing equation

U
∂C

∂x
= Ey

∂2C

∂y2
+ Ez

∂2C

∂z2
− kC. (B.20)

For an infinite domain, the solution is

C(x, y, z) =
ṁ

4πx
√

EyEz

exp

(

− y2U

4xEy

− z2U

4xEz

− kx

U

)

. (B.21)
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B.4.4 Continuous point source in uniform flow with

anisotropic, non-homogeneous turbulence

Here, we treat a special type of non-homogeneous turbulence, where the turbulent diffusion

coefficients are functions of x, only, and where we will neglect longitudinal diffusion. The

governing equation at steady state is

U
∂C

∂x
= Ey(x)

∂2C

∂y2
+ Ez(x)

∂2C

∂z2
. (B.22)

where the diffusivities are taken from Walters (1962) as

Ey = ayx
α (B.23)

Ez = azx
β. (B.24)

The solution for this special case is

C(x, y, z) =
ṁ

2π

√

√

√

√

(1 + α)(1 + β)

ayaz

x−(1+ α+β
2 ) ·

exp

(

−(1 + α)U

4x1+α

y2

ay

− (1 + β)U

4x1+β

z2

az

)

. (B.25)

B.4.5 Continuous point source in shear flow with

non-homogeneous, isotropic turbulence

Smith (1957) investigated the specific case of a shear flow of the from

u(z) = a0z
µ (B.26)

where a0 is a constant and µ = 1/2. For this case the turbulent diffusion coefficient can

be taken as

Ez(z) = b0z
1−µ (B.27)

where b0 is another constant. The governing equation at steady state is

u(z)
∂C

∂x
= Ez(z)

∂2C

∂y2
+

∂

∂z

(

Ez(z)
∂C

∂z

)

, (B.28)

and the solution is found to be

C(x, y, z) =
ṁa

1/4
0

2(b0x)5/4
√

3π
exp

(

−a0(y
2 + z2)

4b0x

)

. (B.29)

B.5 Continuous line source

The solution for a continuous line-source injection is obtained by integrating the solution

of an instantaneous line-source (B.9). Taking the line source along the z-axis and assuming

a uniform crossflow in the x-direction, the solution is derived by integrating
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C(x, y, t) =
∫ t

0

ṁ′

4π(t − τ)
√

ExEy

·

exp

(

−(x − U(t − τ))2

4Ex(t − τ)
−

y2

4Ey(t − τ)
− k(t − τ)

)

dτ (B.30)

where ṁ′ is the time rate of mass injection per unit length.

B.5.1 Steady state solution

The solution to (B.30) for t → ∞ is given by

C(x, y) =
ṁ′

2π
√

ExEy

exp
(

Ux

2Ex

)

K0(2β2) (B.31)

where K0 is the modified Bessel function of second kind of order zero and

β2 =

√

(Eyx2 + Exy2)(U 2Ey + 4ExEyk)

4ExEy

. (B.32)

B.5.2 Continuous line source neglecting longitudinal

diffusion

For the special case where we can neglect longitudinal diffusion, Ex, the solution becomes

C(x, y) =
ṁ′

√

4πxUEy

exp

(

− Uy2

4Eyx
− kx

U

)

. (B.33)

B.6 Continuous plane source

The time integral solution for a continuous infinite (in the y- and z-directions) plane

source is given by integrating the solution for an instantaneous plane, namely:

C(x, t) =
∫ t1

0

ṁ′′

√

4πEx(t − τ)
·

exp

(

−(x − U(t − τ))2

4Ex(t − τ)
− k(t − τ)

)

dτ, (B.34)

where ṁ′′ is the time rate of mass injection per unit area.

B.6.1 Times after injection stops

Assuming an injection period from t = 0 to t = t1, the solution for times greater than t1
is
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C(x, t) =
ṁ′′eUx/(2Ex)

2Ω

(

exp
(

xΩ

2Ex

)

{

erf

(

x + Ωt√
4Ext

)

−

erf





x + Ω(t − t1)
√

4Ex(t − t1)











− exp
(−xΩ

2Ex

)

·






erf

(

x − Ωt√
4Ext

)

− erf





x − Ω(t − t1)
√

4Ex(t − t1)













 , (B.35)

where Ω =
√

U2 + 4kEx.

B.6.2 Continuous injection

For an injection from time t = 0 to the current time t, the solution is

C(x, t) =
ṁ′′eUx/(2Ex)

2Ω

(

exp
(

xΩ

2Ex

)

{

erf

(

x + Ωt√
4Ext

)

∓ 1

}

−

exp
(−xΩ

2Ex

)

{

erf

(

x − Ωt√
4Ext

)

∓ 1

})

. (B.36)

For the location x = 0, the solution simplifies to

C(0, t) =
ṁ′′

Ω
erf

(

Ωt√
4Ext

)

. (B.37)

For the limiting case where the system reaches steady state (t → ∞), the solution becomes

C(x) =
ṁ′′

Ω
exp

(

x

2Ex

(U ∓ Ω)
)

. (B.38)

B.6.3 Continuous plane source neglecting

longitudinal diffusion in downstream section

If we neglect longitudinal diffusion (diffusion in the flow direction) downstream of the

injection plane, then the solution at steady state for x > 0 simplifies to

C(x) =
ṁ′′

U
exp

(

−kx

U

)

. (B.39)

B.6.4 Continuous plane source neglecting

decay in upstream section

If we neglect decay upstream of the injection plane, then the solution at steady state for

x < 0 simplifies to

C(x) =
ṁ′′

U
exp

(

Ux

Ex

)

. (B.40)
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B.7 Continuous plane source of limited extent

B.7.1 Semi-infinite continuous plane source

For a source over the region −∞ < y < 0, −∞ < z < ∞, the governing differential

equation for steady state is

U
∂C

∂x
= Ey

∂2C

∂y2
− kC, (B.41)

and the solution is

C(x, y) =
ṁ′′ekx/U

2U
erfc

(

y

2

√

U

Eyx

)

. (B.42)

B.7.2 Rectangular continuous plane source

For a continuous plane source over the domain −b/2 < y < b/2, −∞ < z < ∞, Brooks

(1960) gives the steady-state solution for a series of cases.

Homogeneous turbulence. For homogeneous turbulence (Ey = constant), the solution

is

C(x, y)

C0

=
ekx/U

2

(

erf

(

y + b/2

2

√

U

Eyx

)

− erf

(

y − b/2

2

√

U

Eyx

))

, (B.43)

where C0 is the concentration at the source. The solution for y = 0 simplifies to

C(x, 0)

C0

= ekx/Uerf

(

b

4

√

U

Eyx

)

. (B.44)

The relationship for the plume width, defined by L(x) = 2
√

3σy(x) is given by

L

b
=

√

1 +
24Eyx

Ub2
. (B.45)

Non-homogeneous turbulence. For non-homogeneous turbulence of the form Ey =

Ey0(L/b), the center-line solution and plume width are given by

C(x, 0)

C0

= ekx/Uerf

√

√

√

√

√

3/2
(

1 + 12Ey0x

Ub2

)2 − 1
(B.46)

and

L

b
= 1 +

12Ey0x

Ub2
, (B.47)

respectively.

For non-homogeneous turbulence of the form Ey = Ey0(L/b)4/3 (the so-called 4/3-

power law), the center-line solution and plume width are given by

C(x, 0)

C0

= ekx/Uerf

√

√

√

√

√

3/2
(

1 + 8Ey0x

Ub2

)3 − 1
(B.48)
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and

L

b
=
(

1 +
8Ey0x

Ub2

)3/2

, (B.49)

respectively.

B.8 Instantaneous volume source

For the one-dimensional case of an instantaneous injection of mass M over the range

L1 < x < L2, producing the initial concentration Ci given by

Ci =
M

A(L2 − L1)
, (B.50)

where A is a cross-sectional area perpendicular to the x-axis, the solution is

C(x, t)

Ci

=
e−kt

2

(

erf

(

(x − L1) − Ut√
4Ext

)

− erf

(

(x − L2) − Ut√
4Ext

))

. (B.51)

For the special case of L1 = −∞ and L2 = 0, the solution is

C(x, t)

Ci

=
1

2

(

1 − erf

(

x − Ut√
4Ext

))

. (B.52)
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C. Streeter-Phelps Equation

The Streeter-Phelps equation is the solution to the differential equation

dD

dt
= kdL0 exp(−kdt) − KrD, (C.1)

derived in Section 5.2.2. The oxygen deficit is D = [O2]sat − [O2], kd is the degradation

rate of organic matter, L0 is the total carbonaceous oxygen demand, and Kr is the river

oxygen aeration coefficient. The solution is subject to the initial condition D(t = 0) = D0.

Since this is an inhomogeneous equation, we first find the complimentary solution,

which is the solution to the homogeneous equation

dD

dt
= −KrD, (C.2)

which has the solution

Dc(t) = C1 exp(−Krt), (C.3)

where C1 is a constant that must satisfy the initial condition in the final solution.

To find a particular solution, we assume the solution has the same form as the forcing

function (kdL0 exp(−kdt)). Thus, we assume the solution

Dp(t) = A exp(−kdt). (C.4)

Substituting into (C.1) and solving for A, we obtain

A =
kdL0

Kr − kd

. (C.5)

The general solution is the sum of the complimentary and particular solutions:

D(t) =
kdL0

Kr − kd

exp(−kdt) + C1 exp(−Krt). (C.6)

Setting t = 0 and equating with the initial condition, leads to

C1 = D0 −
kdL0

Kr − kd

. (C.7)

Substituting this result into the general solution yields the classic Streeter-Phelps equa-

tion:

D(t) =
kdL0

Kr − kd

(exp(−kdt) − exp(−Krt)) + D0 exp(−Krt). (C.8)
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D. Common Water Quality Models

In this appendix we introduce a few of the common models used in water quality analysis.

This is by no means a complete list, but does provide a starting point from which to work.

Much of the text in this appendix was copied from the internet home pages describing

each of the models. The web page for this course1 provides links to each of these models

in the web.

D.1 One-dimensional models

One-dimensional models are most commonly used in rivers, but can also be used in special

cases in estuaries and lakes with large length-to-width ratios. Accept for the ATV model,

these models are publicly available free of charge, and most can be downloaded over

the internet. The list of models below progresses from steady-state models, to dynamic

tanks-in-series models, to fully-dynamic numerical models. Refer to Chapter 7 for an

introduction to water quality modeling and its methodology.

D.1.1 QUAL2E: Enhanced stream water quality model

The qual2e series of models has a long history in stream water quality modeling. It was

primarily developed by the U.S. Environmental Protection Agency (EPA) in the early

1970s. Since, it has gained a broad user base, including applications outside the U.S. in

Europe, Asia, and South and Central America.

The Enhanced Stream Water Quality Model (qual2e) is applicable to well mixed,

dendritic streams. It simulates the major reactions of nutrient cycles, algal production,

benthic and carbonaceous demand, atmospheric reaeration and their effects on the dis-

solved oxygen balance. It can predict up to 15 water quality constituent concentrations.

It is intended as a water quality planning tool for developing total maximum daily loads

(TMDLs) and can also be used in conjunction with field sampling for identifying the

magnitude and quality characteristics of nonpoint sources. By operating the model dy-

namically, the user can study diurnal dissolved oxygen variations and algal growth. How-

ever, the effects of dynamic forcing functions, such as headwater flows or point source

loads, cannot be modeled with qual2e. Qual2e-u is an enhancement allowing users to

1 http://www.ifh.uni-karlsruhe.de/ifh/studneu/envflu I/envflu I.htm



146 D. Common Water Quality Models

perform three types of uncertainty analyses: sensitivity analysis, first-order error analysis,

and Monte Carlo simulation.

The model only simulates steady-state streamflow and contaminant loading conditions;

the reference to dynamic modeling above refers only to water quality forcing functions

of climatologic variables (air temperature, solar radiation, among others). The transport

scheme in the model is the implicit backward-difference finite difference method.

D.1.2 HSPF: Hydrological Simulation Program–FORTRAN

Developed in the late 1970s by the EPA, hspf is a union between the Stanford Watershed

Model, an advanced, continuous-simulation, process-oriented hydrologic model, and sev-

eral water quality models developed by the EPA, including the Agricultural Runoff Model

(arm) and the NonPoint Source model (nps). The model is intended for both conven-

tional and toxic organic pollutants. Contaminant loads are either user-input point sources

or nonpoint sources modeled by build-up and wash-off parameterizations. It is the only

comprehensive model of watershed hydrology and water quality that allows the integrated

simulation of land and soil contaminant runoff processes with in-stream hydraulic and

sediment-chemical interactions. However, make no mistake: it is not a three-dimensional

model.

An advantage of hspf is in its software development, which resulted in a complete

data-management tool. A disadvantage of hspf is its large data requirements, which

include physical data such as watershed data, river network discretization, soil types,

geologic setting, vegetative cover, towns, and other regional data, meteorologic data such

as hourly data for precipitation, solar radiation, air temperature, dew-point temperature,

and wind speed and daily evapotranspiration. In addition, the model has a wealth of

empirical calibration parameters that must be determined from handbook values and by

calibrating to field measurements.

The river transport model is a tanks-in-series model that uses flood routing via stage-

discharge relationships (which must be input by the user from external knowledge).

D.1.3 SWMM: Stormwater Management Model

In urban settings, where pressurized pipe flow in sewer systems is to be modeled, the

EPA model swmm is recommended. The swmm model is actually a package of models.

In one mode, it can function as a design model which undertakes detailed simulations

of storm events, using relatively short time steps and as much catchment and drainage

system detail as necessary. In another mode it can be used as a routine planning model

for an overall assessment of the urban runoff problems and proposed abatement options.

The planning mode is typified by continuous simulation for several years using long (e.g.

hourly) time steps and minimum detail in the catchment scheme. Like hspf, the model

requires a great deal of input data (both physical and meteorological).
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The modular nature of Swmm allows it to simulate diverse situations. Both single-

event and continuous simulation can be performed on catchments having storm sewers,

or combined sewers and natural drainage, for prediction of flows, stages and pollutant

concentrations. The Extran Block solves complete dynamic flow routing equations (St.

Venant equations) for accurate simulation of backwater, looped connections, surcharging,

and pressure flow. The modeler can simulate all aspects of the urban hydrologic and

quality cycles, including rainfall, snowmelt, surface and subsurface runoff, flow routing

through drainage networks, storage and treatment. Statistical analyses can be performed

on long-term precipitation data and on output from continuous simulation.

The strength of this model is in its hydrodynamics. The transport modules, which

are also quite flexible, use simple tanks-in-series formulation, and are not available in the

Extran Block (where the complete dynamic flow equations are solved).

D.1.4 DYRESM-WQ: Dynamic reservoir water quality model

The model dyresm-wq is a one-dimensional hydrodynamics model for predicting the

vertical distribution of temperature, salinity and density in lakes and reservoirs. It is

assumed that the water bodies comply with the one-dimensional approximation in that

the destabilizing forcing variables (wind, surface cooling, and plunging inflows) do not

act over prolonged periods of time. Dyresm-wq has been used for simulation periods

extending from weeks to decades. Thus, the model provides a means of predicting seasonal

and inter-annual variation in lakes and reservoirs, as well as sensitivity testing to long term

changes in environmental factors or watershed properties.

Dyresm-wq can be run either in isolation, for hydrodynamic studies, or coupled to

caedym for investigations involving biological and chemical processes. The computational

demands of dyresm-wq are quite modest and multi-year simulations can be performed on

PC platforms under Windows operating systems. The code is written in modular fashion

to support future updates and improvements.

D.1.5 CE-QUAL-RIV1: A one-dimensional, dynamic flow and water quality

model for streams

Administered and developed by the U.S. Army Corps of Engineers, ce-qual-riv1, or

more commonly just riv1, is a fully dynamic (flow and water quality) one-dimensional

model. The hydrodynamic portion is computed first, solving the St. Venant equations

using the four-point implicit finite difference scheme. The hydrodynamic model does not

allow for super-critical flow. This can lead to problems for natural streams under low

flow where steep river sections form cataracts. Following the hydrodynamics, the trans-

port equation is solved using an explicit two-point, fourth-order accurate Holly-Preissman

scheme. The Holly-Preissman scheme is a backward method of characteristics; however,

because the search routine in RIV1 for finding the feet of the characteristic lines only

searches the upstream segment, the Courant number restriction still applies. The water
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quality model can predict variations in each of 12 state variables: temperature, carbona-

ceous biochemical oxygen demand (CBOD), organic nitrogen, ammonia nitrogen, nitrate

+ nitrite nitrogen, dissolved oxygen, organic phosphorus, dissolved phosphates, algae,

dissolved iron, dissolved manganese, and coliform bacteria. In addition, the impacts of

macrophytes can be simulated. Because of the use of the characteristic method, numeri-

cal accuracy for the advection of sharp gradients is preserved.

D.1.6 ATV Gewässergütemodell

The ATV Gewässergütemodell, also called the AVG (allgemein verfügbares Gewässergüte-

modell) or in English the ATV water quality model, was developed in Germany as a new

model to bridge the problems (limitations) inherent in some of the models listed above. It

is designed as a series of building blocks, each building block to be implemented as needed.

The first building block is the hydrodynamic model, which solves the St. Venant equations

for either the steady or unsteady case. The remaining building blocks can be added to the

hydraulics as needed, including water temperature, conservative tracers, (C)BOD, phos-

phorus, nitrogen cycle, silicon, algae, zooplankton, sediment/water exchange, suspended

sediment transport, oxygen dynamics, pH dynamics, heavy metals, and organic chemicals.

The solution to the transport equation uses the method of characteristics and does not

have a Courant number constraint. Because of the model’s modular design, simulations

can be made as simple or as complicated as desired; however, the numerical expense of

the hydrodynamic routine should not be underestimated.

D.2 Two- and three-dimensional models

Two- and three-dimensional models are typically used in reservoirs, lakes, and estuaries.

They are almost exclusively finite element, finite volume, or finite difference. Because

large water bodies are generally stratified, they must simulate buoyancy effects; thus,

the hydrodynamic and transport equations are coupled. Because buoyancy effects are a

major complication in these models (and the subject of next semester) this section briefly

summarizes each model without discussing the details.

D.2.1 CORMIX: Cornell Mixing-Zone Model

Begun at Cornell and currently under continued development at the Oregon Graduate

Institute, the cormix system is a near-field model for the analysis, prediction, and design

of aqueous toxic or conventional pollutant discharges into diverse water bodies. Major

emphasis is on computation of plume geometry and dilution characteristics within a re-

ceiving water’s initial mixing zone so that compliance with regulatory constraints can be

judged. It also computes discharge plume behavior at larger distances. The model has

three modules: cormix1 for submerged single-point discharges, cormix2 for submerged
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multi-port diffuser discharges, and cormix3 for buoyant surface discharges. As implied

by the title, the model predicts mixing (dilution) of the input chemicals, but does not al-

low for interaction among multiple chemicals (though first-order decay of a single species

is implemented).

The model equations are based on jets and plumes, which traditionally are modeled

using integral equations. Integral equations rely on self-similarity to reduce the three-

dimensional equations to a one-dimensional ODE. The model then solves for the three-

dimensional trajectory of the plume centerline using the one-dimensional integral equa-

tions. Hydrodynamic conditions (though allowed to be unsteady) must be supplied as

input to the model.

D.2.2 WASP: Water Quality Analysis Simulation Program

The wasp system is a generalized framework for modeling contaminant fate and trans-

port in surface waters. The model does not solve a set of multi-dimensional dynamical

equations, but rather is based on the flexible compartment modeling approach. Wasp

can be applied in one, two, or three dimensions. Problems that have been studied using

the wasp framework include biochemical oxygen demand and dissolved oxygen dynamics,

nutrients and eutrophication, bacterial contamination, and organic chemical and heavy

metal contamination.

Because wasp in an EPA model, input and output linkages also have been provided to

other stand-alone models. Flows and volumes predicted by the link-node hydrodynamic

model dynhyd can be read and used by wasp. Loading files from przm and hspf can

be reformatted and read by wasp. Toxicant concentrations predicted by toxi can be

read and used by both the wasp Food Chain Model and the fish bioaccumulation model

fgets.

A body of water is represented in WASP as a series of computational elements or

segments. Environmental properties and chemical concentrations are modeled as spatially

constant within segments. Segment volumes and type (surface water, subsurface water,

surface benthic, subsurface benthic) must be specified, along with hydraulic coefficients

for riverine networks.

D.2.3 POM: Princeton ocean model

Pom is the precursor to ecom-si (see the next section), and was developed in the late

1970s. It is a fully three-dimensional hydrodynamic numerical model, designed to predict

ocean circulation. The pom model is freely available to non-commercial applications.

The pom model contains an imbedded second moment turbulence closure sub-model

to provide vertical mixing coefficients. It is a sigma coordinate model in that the vertical

coordinate is scaled on the water column depth. The horizontal grid uses curvilinear

orthogonal coordinates. The horizontal time differencing is explicit whereas the vertical

differencing is implicit. The latter eliminates time constraints for the vertical coordinate
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and permits the use of fine vertical resolution in the surface and bottom boundary layers.

The model has a free surface and a split time step. The external mode portion of the model

is two-dimensional and uses a short time step. The internal mode is three-dimensional and

uses a long time step. Complete thermodynamics have been implemented.

D.2.4 ECOM-si: Estuarine, coastal and ocean model

Ecom-si is a three-dimensional ocean circulation model developed principally by Alan

Blumberg of HydroQual. It is similar to the pom model, but incorporates a semi-implicit

scheme for solving the gravity wave so that the need for separate barotropic (external) and

baroclinic (internal) time steps is eliminated. The ecom-si model is not freely available,

but must be obtained through HydroQual.

Ecom-si includes a free surface, nonlinear advective terms, coupled density and veloc-

ity fields, river runoff, heating and cooling of the sea surface, a 2.5 level turbulence closure

scheme to represent vertical mixing, and is designed to easily allow “realistic” simulations.

In addition, the combination of orthogonal curvilinear coordinates in the horizontal plane

and sigma-coordinates in the vertical dimension allows grid refinement in regions of inter-

est without sacrificing the well-known characteristics of Cartesian grid schemes. For water

quality modeling, both pom and ecom-si must be combined with a transport model.
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adjacent [angrenzend o. benachbart ]:

Next to, nearby, or having a common endpoint or border.

advection [Advection]:

Transported by an imposed ambient current, as in a river or coastal waters.

ambient (fluid) [umgebend(es Fluid)]:

Existing or present on all sides. Ambient fluid is the fluid surrounding the region of

interest.

application [Anwendung ]:

An act of putting to use new techniques. A use to which something is put.

approach [Vorgehensweise]:

In science: a methodology applied to solve a problem.

assumption [Annahme]:

A fact or statement (as in a propostition, axiom, postulate, or notion) that is taken

for granted (assumed).

average [Durchschnitt ]:

A single value (as a mean, mode, or median) that summarizes or represents the general

significance of a set of unequal values.

boundary condition [Randbedingung ]:

A constraint applied to a differential equation at a physical location (boundary) in

space.

buoyancy [Auftrieb]:

The tendency of a body to float or to rise when submerged in a fluid; the power of a

fluid to exert an upward force on a body placed in it, also, the upward force exerted

on the body.

coherent [zusammenhängend o. kohrent ]:

Ordered of integrated in way that produces an interdependence.

control volume [Kontrollvolumen]:

The three-dimensional region defined by the boundaries of a system. Usually, a differ-

ential element used to derive conservation laws.

convection [Konvektion]:

Vertical transport induced by hydrostatic instability, such as the flow over a heated

plate, or below a chilled water surface in a lake.
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current [Strömung ]:

The part of a fluid body (such as air or water) moving continuously in a certain

direction.

decay [Abbau o. Zerfall ]:

To decrease gradually in quantity, activity, or force.

density [Dichte]:

The mass of a unit volume.

derivation [Ableitung o. Herleitung ]:

The act or processes of forming a physical relationship from basic, accepted relation-

ships.

diffusion (molecular) [Diffusion (molekulare)]:

The scattering of particles by random molecular motions, which may be described by

Fick’s law and the classical diffusion equation.

diffusion (turbulent) [Diffusion (turbulente)]:

The random scattering of particles by turbulent motion, considered roughly analogous

to molecular diffusion, but with eddy diffusion coefficients (which are much larger than

molecular diffusion coefficients).

dilution [Verdünnung ]:

The act of reducing the strength, or concentration by adding more liquid.

dispersion [Dispersion]:

The scattering of particles or a cloud of contaminants by the combined effects of shear

and transverse diffusion.

dissolve [lösen]:

To cause to pass into solution.

droplets [Tröpfchen]:

Small drops (as of a liquid), such as rain drops, drops of oil, and others. The liquid-

phase version of a gas bubble.

dye [Farbstoff ]:

A soluble or insoluble coloring matter.

eddy [Wirbel ]:

A current of water or air running contrary to the main current, especially, a circular

current.

effluent [Ausfluß o. ausfließend ]:

The fluid flowing out from a discharge.

entrainment [Einmischung ]:

To draw in and transport (as solid particles or ambient fluid) by the flow of a fluid.

environmental impact statement [Umweltverträglichkeitsstudie]:

Legal document reporting the projected positive and negative results to the environ-

ment of a proposed engineering project.

equation [Gleichung ]:

A mathematical statement of equality or inequality.
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estuary [Flußmündung o. Meeresbucht o. Ästuar ]:

The a tidal region where fresh water (from continental sources) mixes with ocean water.

The estuary is generally defined up to the point where salt concentrations equal the

ambient ocean salinity.

evaporation [Evaporation]:

The transport of water vapor from a water or soil surface to the atmosphere.

fluctuation [Schwankung ]:

A shirt back and forth uncertainly, or to ebb and flow in waves.

gauge (water gauge) [Meßgerät (Wasserstandsanzeiger)]:

An instrument with a graduated scale or dial for measuring or indicating quantity.

impact [Auswirkung o. Einfluß ]:

The changes, both positive and negative, on a natural system due to an external

influence (as an engineering project).

inertia [Trägheit ]:

a property of matter by which it remains at rest or in uniform motion in the same

straight line unless acted upon by some external force

initial condition [Anfangsbedingung ]:

A constraint applied to a differential equation at a physical moment in time (generally

at t = 0).

interface [Grenzfläche]:

The boundary between two fluids.

jet [Strahl ]:

A momentum-driven boundary-layer flow. A usually forceful stream of fluid (as water

or gas) discharged from a narrow opening or a nozzle.

manifold [Verteiler- bzw. Sammelrohr ]:

A pipe fitting with several lateral outlets.

mean [Mittel ]:

See average.

mixing [Mischung ]:

Diffusion or dispersion as described above; turbulent diffusion in buoyant jets and

plumes; any process which causes one parcel of water to be mingled with or diluted

by another.

momentum [Impuls ]:

A property of a moving body that the body has by virtue of its mass and motion and

that is equal to the product of the body’s mass and velocity.

nozzle [Düse]:

A short tube with a taper or constriction used (as on a hose) to speed up or direct a

flow of fluid.

order of magnitude [Größenordnung ]:

A range of magnitude extending from some value to ten times that value.
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orifice [Düse o. Öffnung o. Mündung ]:

An opening (as a vent, mouth, or hole) through which something may pass.

particle entrainment [Teilcheneinmischen]:

The picking up of particles, such as sand or organic detritus, from the bed of a water

body by turbulent flow past the bed.

particle settling [Teilchenabsetzen]:

The sinking (or rising) of particles having densities different from the ambient fluid,

such as sand grains or dead plankton. (In lakes and oceans the latter may be the

dominant mechanism for downward transport of nutrients, often all the way to the

bottom.)

persistent [beständig ]:

Existing for a long or longer than usual time or continuously; continuing without

change in function or structure. Also, degraded only slowly by the environment (as

persistent contaminants).

plume [Fahne]:

A buoyancy-driven boundary-layer flow. A stream of fluid (as water or gas) with

density different from the ambient, recieving fluid, discharged from a narrow opening

or nozzle, or the fluid flow resultant from a discharge of heat.

plunge [eintauchen]:

To cause to penetrate or enter quickly and forcibly into something. To descend or dip

suddenly.

pollutant [Schmutzstoff ]:

A substance that makes physically impure or unclean. To contaminant especially with

man-made waste.

porous media flow [Strömung in porösem Medium]:

Groundwater flow. Flow through a solid matrix containing many interconnected pores

or cavities (voids).

port [Öffnung ]:

An opening (as in a valve seat or valve face) for intake or exhaust of a fluid. See also

orifice.

precipitation [Niederschlag ]:

A deposit on the earth of hail, mist, rain, sleet, or snow; also the quantity of water

deposited.

probability [Wahrscheinlichkeit ]:

The chance that a given event will occur. The branch of mathematics concerned with

the study of probabilities.

radiation [Strahlung ]:

The flux of radiant energy, such as at a water surface.

random [Zufall ]:

Without definite aim, direction, rule, or method; lacking a definite plan, purpose, or

pattern.
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residual [Rest ]:

The remaining product or substance.

salinity [Salzgehalt ]:

A measure of the salt content of seawater, specifically, the ratio of the mass of dissolved

salts to the total mass of water and salt.

saturated [gesättigt ]:

Being a solution that is unable to absorb or dissolve any more of a solute at a given

temperature and pressure.

sewage [Abwasser ]:

The raw refuse liquids or waste matter carried off by sewers.

sewage treatment plant [Klärwerk o. Kläranlage]:

The facility where sewage is prepared (cleaned) before releasing it into the environment

as effluent.

shear flow [Scherströmung ]:

The advection of fluid at different velocities at different positions; this may be simply

the normal velocity profile for a turbulent flow where the water flows faster with

increasing elevation above the bed of the stream; or shear may be the changes in both

magnitude and direction of the velocity vector with depth in complex flows such as in

estuaries or coastal waters.

shear stress [Scherspannung ]:

A force exerted from one fluid layer to another, due to differences in their velocity,

that tends to pull on, push against, or compress or twist the fluid body.

soluble [löslich]:

The property of being able to be dissolved in a fluid (the dissolving fluid is called the

solute).

source [Quelle]:

The location and flux of a flow (usually of a contaminant or substance of interest).

spatial [räumlich]:

Relating to, occupying, or having the character of space. A spatial distribution is the

description of the variation of a quantity in space. Compare with temporal.

standard deviation [Standardabweichung ]:

A statistical quantity describing the degree of spread of a distribution. Defined as the

square root of the variance. The variance is the mean of the squared deviations from

the mean.

steady [stationär ]:

In steady state, or unchanging. The mathematical representation is that the time

derivative is zero.

stratification [Schichtung ]:

The property of being stratified. An organization of a fluid body based on density. The

most common form of density stratification is the stable form, where density decreases

as height increases.
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submerged [abgetaucht ]:

The state of being emersed within a fluid (as being underwater).

temporal [zeitlich]:

Relating to, occupying, or having the character of time. A temporal distribution is the

description of the variation of a quantity in time. Compare with spatial.

tracer [Tracer ]:

Any conservative (non-transforming) substance that moves exactly with the fluid (i.e.

does not move relative to the fluid).

transformation [Transformation]:

The changing of a chemical substance into another chemical substance, usually ac-

companied by the loss of the original substance (i.e. carbon dioxide transformed into

oxygen by photosynthesis).

transport [Transport ]:

The movement of a parcel of water or tracer by advection, diffusion, or mixing.

unsteady [instationär ]:

Changing, or developing in time. The mathematical representation is that the time

derivative is not zero. See also steady.

volatile [flüchtig ]:

Readily vaporizable at a relatively low temperature.

vortex [Wirbel ]:

See eddy.

vorticity [Wirbelstärke]:

A vector measure of the local rotation in a fluid flow.

wake [Nachlaufwirbel ]:

The region of velocity deficit behind an object held stationary relative to an ambient

fluid flow.

wastewater [Abwasser ]:

An effluent flow of fluid no longer of use. See also sewage.
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