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Abstract Microbial aerobic oxidation is known to be a significant sink of marine methane (CH4),
contributing to the relatively minor atmospheric release of this greenhouse gas over vast stretches of the
ocean. However, the chemical kinetics of aerobic CH4 oxidation are not well established, making it difficult
to predict and assess the extent that CH4 is oxidized in seawater following seafloor release. Here we
investigate the kinetics of aerobic CH4 oxidation using mesocosm incubations of fresh seawater samples
collected from seep fields in Hudson Canyon, U.S. Atlantic Margin and MC118, Gulf of Mexico to gain a
fundamental chemical understanding of this CH4 sink. The goals of this investigation were to determine the
response or lag time following CH4 release until more rapid oxidation begins, the reaction order, and the
stoichiometry of reactants utilized (i.e., CH4, oxygen, nitrate, phosphate, trace metals) during CH4 oxidation.
The results for both Hudson Canyon and MC118 environments show that CH4 oxidation rates sharply
increased within less than one month following the CH4 inoculation of seawater. However, the exact
temporal characteristics of this more rapid CH4 oxidation varied based on location, possibly dependent on
the local circulation and biogeochemical conditions at the point of seawater collection. The data further
suggest that methane oxidation behaves as a first‐order kinetic process and that the reaction rate constant
remains constant once rapid CH4 oxidation begins.

Plain Language Summary In and below the seafloor resides the largest global reservoir of
methane, a potent greenhouse gas. Following the release of methane from the seafloor, a significant
fraction dissolves in the overlying seawater and is oxidized by indigenous microorganisms, helping to
prevent its atmospheric release. However, the timing and chemical requirements for this process to occur are
not well established, making it difficult to predict and assess the efficiency of methane oxidation following
seafloor release. This study systematically measured the chemical changes that are associated with aerobic
methane oxidation in seawater using water collected from regions of active seafloor methane release along
the U.S. Atlantic margin and the Gulf of Mexico. These results help to refine our understanding of how
quickly and how much methane can typically be oxidized in seawater.

1. Introduction

The atmospheric concentration of methane (CH4) has increased by a factor of 2.5 from preindustrial levels of
~700 to 1,850 ppb today, showing the importance of determining the sources and sinks of this greenhouse
gas (Dlugokencky et al., 2011). While the oceans account for only ~1 to 3% (4–15 Tg yr−1) of all atmospheric
sources of CH4 today (Dlugokencky et al., 2011), the CH4 sequestered in and below the seafloor forms the
largest CH4 reservoir on Earth, whose stability is in part controlled by temperature and pressure (Ruppel
& Kessler, 2017). The oceanic CH4 system is dynamic with formation mechanisms of CH4 including thermo-
genic, biogenic, and abiogenic processes (e.g., Karl et al., 2008; Kelley & Früh‐Green, 1999; Oremland &
Taylor, 1978; Sherwood Lollar et al., 2002). While seafloor emissions are capable of releasing CH4 from all
of these sources to the overlying waters, the depth below the sea surface, the temperature of the
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surrounding water, and total CH4 concentration can cause CH4 to be trapped in sediments as ice‐like clath-
rate hydrates (Ruppel & Kessler, 2017). Nonetheless, globally significant releases of CH4 carbon from the
seafloor have been hypothesized to have occurred during the geologic past, influencing past climate, and
possibly occur today (Ruppel & Kessler, 2017). For example, seafloor CH4 releases are one possible explana-
tion for the global change in carbon cycle dynamics at the Paleocene‐Eocene Thermal Maximum (PETM;
Dickens, 2011; Dickens et al., 1995; Higgins & Schrag, 2006; Zeebe et al., 2016). This hypothesis postulates
that CH4 hydrates were destabilized through deep‐ocean warming and that the newly released CH4 was oxi-
dized in sediments and the overlying water column, injecting globally significant amounts of carbon into the
active global carbon system (Dickens et al., 1995). In the modern ocean, seafloor CH4 releases are likely not
insignificant (Ruppel & Kessler, 2017), yet the relatively minimal emission of oceanic CH4 to the atmosphere
indicates active CH4 oxidation in seawater (Reeburgh, 2007; Valentine, 2011).

The single largest seafloor CH4 release that was directly observed occurred during the 2010 Deepwater
Horizon (DWH) well blowout. In addition to oil, large quantities of CH4 were emitted into the deep
waters of the Gulf of Mexico during this incident, and measurements suggest that the released CH4

was contained in intrusion layers in the deep Gulf waters (800–1,100 m) with minimal direct emission
to the atmosphere (Camilli et al., 2010; Crespo‐Medina et al., 2014; Kessler et al., 2011; Ryerson et al.,
2012; Socolofsky et al., 2011; Valentine et al., 2010; Yvon‐Lewis et al., 2011). Several studies investigated
the microbial oxidation of released CH4 in the Gulf waters during and following this release (Crespo‐
Medina et al., 2014; Du & Kessler, 2012; Dubinsky et al., 2013; Kessler et al., 2011; Rogener et al.,
2018; Shiller et al., 2017; Valentine et al., 2010), as other work has shown aerobic CH4 oxidation to be
a substantial removal mechanism for CH4 entering the ocean water column (e.g., de Angelis et al.,
1993; Leonte et al., 2017; Mau et al., 2013; Pack et al., 2015; Valentine et al., 2001). Metatranscriptomes
showed a clear increase in hydrocarbon monooxygenase gene expression in late May 2010, providing evi-
dence that the oxidation of CH4 and another low‐molecular‐weight alkane had already commenced at 30
days after the onset of the spill (Rivers et al., 2013), while Valentine et al. (2010) suggested that the oxida-
tion of ethane and propane was occurring more rapidly than CH4 in early June. Also, stable isotope prob-
ing experiments were carried out with DWH samples, indicating that methanotrophs responded more
slowly compared to other organisms responsible for the oxidation of ethane, propane, and some higher
molecular weight hydrocarbons (Redmond & Valentine, 2012).

Kessler et al. (2011) and Du and Kessler (2012) used the decrease in dissolved oxygen (DO) in the deepwater
CH4 and hydrocarbon intrusion layers as a tracer of CH4 oxidation during the DWH incident and deter-
mined that the DO loss integrated over the entire plume area was sufficient to account for complete oxida-
tion of released CH4. The Kessler et al. (2011) study also assembled a pseudo‐first‐order model to predict that
the greatest amount of CH4 oxidation (averaged over the entire deep‐water plume) occurred ~60–120 days
from the start of the spill, and the more comprehensive DO anomaly data set presented in Du and Kessler
(2012) supported the timing of the predicted rapid CH4 oxidation. Crespo‐Medina et al. (2014) presented
numerous measurements of CH4 oxidation rates spanning this entire event, from spring through winter of
2010. The first‐order oxidation rate constants produced from their CH4 oxidation rate measurements
(Crespo‐Medina et al., 2014) generally support the predicted average values for first‐order CH4 oxidation rate
constants (Kessler et al., 2011) up to 70 days after the start of the spill (Figure 1). However, many measured
CH4 oxidation rate constants do not agree with the model for times greater than 120 days after the spill when
the dissolved CH4 concentrations decreased significantly below values measured during active emission
from the well. The model implicitly assumed that CH4 oxidation rate constants were proportional to cell
density or the activity of the microbial population involved in aerobic CH4 oxidation, and thus would
increase following CH4 injection and decrease as the new microbial population was remineralized when
CH4 concentrations decreased (Kessler et al., 2011). However, the measurements suggested that the rate con-
stants remain high following rapid CH4 oxidation and only decrease over longer time scales (Crespo‐Medina
et al., 2014; Rogener et al., 2018; Figure 1). Unfortunately, only two CH4 oxidation rate measurements were
reported in the deep intrusion layer (800–1,100 m) during the ~60‐ to 120‐day window when Kessler et al.
(2011) predicted that the highest average amounts of CH4 oxidation would occur, and the dates of collection
for those two samples are uncertain (Crespo‐Medina et al., 2014). Thus, the investigation presented here was
initially motivated by the DWH blowout to provide empirical biogeochemical data to thoroughly
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characterize the temporal changes in microbial oxidation following a CH4

release. However, these experiments were designed to not only help inter-
pret the fate of CH4 following the DWH blowout but also to provide more
general information on the chemical kinetics of aerobic CH4 oxidation.

Here we conducted mesocosm experiments with CH4‐laden seawater
while measuring the chemical changes over time during CH4 oxidation
events. To assess regional variability in CH4 oxidation kinetics, seawater
was collected in two different locations where CH4 bubbles were escaping
the seafloor: (a) Hudson Canyon off the coast of NewYork and New Jersey
near the upper limit of CH4 hydrate stability and (b) the deep Gulf of
Mexico near waters once impacted by the DWH blowout (Figure 2).
Two goals guided this investigation. The first goal was to determine the
chemical kinetics for this oxidation reaction, which included the lag time,
or the time between CH4 exposure and the onset of rapid consumption,
and the reaction order. The second goal was to determine the stoichiome-
try of reactants utilized (i.e., CH4, oxygen, nitrate, phosphate, trace
metals) during CH4 removal from seawater. The results of these studies
can be used to predict the timing of and limitations on CH4 oxidation fol-
lowing natural or anthropogenic release based on the ambient concentra-
tions of bioactive compounds.

2. Materials and Methods

Waters influenced by known CH4 seep activity were chosen to examine
CH4 oxidation kinetics. The first research expedition was aboard the
R/V Endeavor on the North Atlantic Bight from 7–12 July 2014 (Table 1
and Figure 2). The recently discovered CH4 seeps off the coast of New
York and New Jersey in Hudson Canyon (HC; Rona et al., 2015; Skarke
et al., 2014; Weinstein et al., 2016) provided an appropriate site for these
experiments. Water samples were collected both inside the seep field as
well as outside of HC in waters not directly impacted by CH4 seeps, as

determined by the presence or absence of acoustically detected bubbles (Leonte et al., 2017; Weinstein
et al., 2016). The second research expedition was from 9–20 April 2015 aboard the E/V Nautilus at the
Sleeping Dragon seep field site (MC118) in the Gulf of Mexico (Table 1 and Figure 2). MC118 is 17 km from
the Deepwater Horizon wellhead and provided physical‐chemical conditions similar to what may have been
experienced during the DWH blowout in 2010. The results obtained from HC and MC118 were analyzed to
determine regional similarities and variabilities in CH4 oxidation kinetics.

2.1. Incubation and Analysis System

A dissolved gas analyzer system (DGAS) and mesocosm incubation system (MIS) were recently developed
(Chan et al., 2016) and were used here to measure the concentration and natural stable isotopes of gases dis-
solved in seawater throughout mesocosm incubation experiments. (The natural stable isotope results are
presented in Chan et al., 2019.) In brief, the DGAS unit was developed for the automated analysis of seawater
incubations at user‐defined intervals, allowing for the relatively high temporal resolution analysis of bio-
chemical changes associated with aerobic CH4 oxidation. The MIS was developed to house large mesocosm
samples in a temperature‐controlled and clean manner that did not allow gases to diffuse between the sam-
ple and the outside environment over the time frame of this experiment. TheMIS contains custom 15‐L sam-
ple bags that were tested for their cleanliness (i.e., no leaching of trace metals and nutrients) and gas
impermeability over time (Chan et al., 2016). They were determined to be a better alternative than borosili-
cate glass as sample containers for these experiments because the bag material does not leach trace metals, is
impermeable to gas exchange, and is of sufficient strength to house sample volumes >10 L. Additionally,
since the bags are flexible, aliquots can be periodically removed without contaminating the mesocosm by
introducing a headspace for displacement. Since the DWH CH4 oxidation event occurred over

Figure 1. Predicted and measured first‐order rate constants for the oxida-
tion of CH4 released during the Deepwater Horizon blowout (DWH) in
the Gulf of Mexico. Here we assume that CH4 oxidation rate constants vary
proportionally to the cell density or activity of the microbial population
involved in aerobic CH4 oxidation. Red dashed line = modeled change in
CH4 oxidation rate constants averaged over the entire deepwater plume
from Kessler et al. (2011). Blue cross = individual rate constants reported in
Crespo‐Medina et al. (2014) in the deep plume (800–1,100‐m water depth).
Black diamond = rate constants, averaged daily, reported in Crespo‐Medina
et al. (2014) in the deep plume (800–1,100‐m water depth). Green
triangle = rate constants, averaged daily when the number of data points in
a specific day is >3, reported in Crespo‐Medina et al. (2014) in the deep
plume (800–1,100‐m water depth). The vertical gray line represents the day
the blowout was stopped and no longer emitting CH4. The lack of empirical
data is apparent between 60 and 120 days after the initiation of the spill
when Kessler et al. (2011) predicted the greatest change in methane oxida-
tion rate constants averaged over the entire deepwater plume.
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approximately 80 days, mesocosm incubations were designed to contain enough seawater to provide the
necessary aliquots for analysis over that same time. To protect the bags from physical harm and provide a
storage solution inside the incubator, the bags were housed in custom‐made polycarbonate protective
cartridges. In addition, the cartridges provide an easier way to carry the bags during sampling. Once the
mesocosms were collected, the DGAS and MIS were connected to analyze the mesocosms based on set
intervals, thus allowing near‐real‐time dissolved gas concentration and stable isotope measurements
(Chan et al., 2016). The dissolved gas concentrations of CH4, O2, and CO2 were measured every few
seconds during each mesocosm analysis, and the individual measurements were averaged over a 2‐min

Figure 2. Study locations (a) Hudson Canyon and (b) a gas seep atop Woolsey Mound (also known as Sleeping Dragon)
which is part of lease block MC118 in the northern Gulf of Mexico. Seawater samples in Hudson Canyon were collected
with Niskin bottles cleaned for trace metal analysis and were used to sample waters that were both directly impacted
and not directly impacted by CH4 seepage. Water from MC118 was collected via ROV in locations visibly impacted by
seafloor bubble emissions. On the left are the Mesocosm Incubation System (MIS) cartridges mounted to the chassis of
ROVHercules. On the right is the Suspended‐Particle Rosette (SUPR) sampler inlet mounted to the starboard manipulator
of ROV Hercules and methane bubbling upward from the seep site. A bubble‐deflecting shield (red disk) was attached to
the inlet of the SUPR sampler to collect seawater without collecting gas bubbles.

Table 1
Hudson Canyon and Sleeping Dragon (MC118) Characteristics

Site Hudson Canyon Sleeping Dragon (MC118)

Approximate coordinates 39°33′N,
72°24′W

28°51′N,
88°29.5′W

Topography Semi‐enclosed Open
Sampling depths (m) 482–515 794, 888
Bottom temperature (°C) 5.25°–6.24° 5.31°–8.79°
Sampling dates 10 July 2014 13–17 April 2015
Sampling method Niskin bottles ROV (SUPR sampler)
Presence of oil No Yes
Salinity (ppt) 35.01–35.05 34.91–35.04
In situ dissolved oxygen
concentration range (μM)

201–232 141–198

In situ CH4 concentration
range (nM)

2.94–78.8 51,000–221,000

Additional CH4 added for
incubation

Yes No
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window. After analysis of the data, it was determined that the DO analyzer manifold malfunctioned during
the HC mesocosm incubations, resulting in the DO data from this experiment being sporadically unusable.
For this reason, none of the DO data for HC was considered in the biogeochemical analyses. The DO analy-
zer manifold was redesigned before the MC118 experiments, resulting in usable DO data.

2.2. Mesocosm Collection

HC mesocosm experiments were initiated aboard the R/V Endeavor from 7–12 July 2014. Seawater was col-
lected using trace metal cleaned Niskin bottles with external springs mounted to a CTD rosette (Figure 2;
Shiller et al., 2017). Once the samples were back on the ship's deck, two 10‐L Niskin bottles were connected
to a MIS cartridge to fill with 15 L of seawater. The bags were acid cleaned, rinsed with distilled water, and
rinsed with the sample seawater before filling to 15 L with seawater. Water samples were collected from
inside the seep field (39°32.705′N, 72°24.259′W) and from outside HC in waters not directly influenced by
CH4 seeps (39°17.236′N, 72°12.080′W). Due to the spatial variance of the seafloor seeps, the initial CH4 con-
centrations ranged from 2.94 to 78.8 nM. Therefore, a measured amount (150 ± 1.5 mL) of isotopically stan-
dardized CH4 (δ

13C‐CH4 =−20‰; Kessler & Reeburgh, 2005) was systemically added to each sample using a
mass flow controller and gas filter apparatus to increase dissolved CH4 concentrations to approximately 300
μMCH4. These samples were allowed 24 hr to mix and equilibrate inside the MIS before the headspace was
removed prior to long‐term incubation.

The MC118 mesocosms in the Gulf of Mexico were collected 12–17 April 2015 aboard the E/V Nautilus
located at 28°51.129′N, 88°29.51′W directly from seeps at the seafloor between 794‐ and 888‐m depth
(Table 1 and Figure 2). This experiment was carried out using the Suspended‐Particle Rosette (SUPR) sam-
pler (Breier et al., 2009) mounted to the Remotely Operated Vehicle (ROV)Hercules. The SUPR sampler is an
in situ seawater pumping system and was developed to sample dynamic, high gradient, and ocean geochem-
ical features at areas such as seep sites. The inlet attached to the ROV arm pumps the seawater into bottles
mounted to the SUPR sampler chassis. However, for this study, the systemwas adapted to pump directly into
three of the MIS cartridges mounted to the ROV chassis, which improved the sampling precision substan-
tially (Figure 2). Since samples were taken directly at the seafloor from waters visibly impacted by CH4 bub-
bles, the natural dissolved CH4 concentrations were high (51 to 221 μM); thus, it was not necessary to add
additional CH4 to these mesocosms. This simplified the procedure to incubate the MC118 mesocosms as
there was no added headspace equilibration time, in contrast to the HC samples.

2.3. Dissolved Gas Concentration Calculations

The dissolved concentrations of CH4 measured with the DGAS system give units of ppm (Chan et al., 2016),
and it was preferred to convert this into units of μmol of CH4 L

−1. Two independent methods were used to
convert the measured ppm concentrations into the molar concentrations of dissolved CH4. The first method
prepared dissolved CH4 standards by filling mesocosm incubation bags with sterile water containing known
concentrations of dissolved CH4. These CH4 standards were also stored in the MIS and analyzed with the
DGAS system during the mesocosm experiments at sea. Standard calibration curves were determined for
each experiment and were used to convert measured ppm units into units of μmol of CH4 L

−1. A second
independent technique used the solubility of CH4 (Wiesenburg & Guinasso, 1979) along with the known
volumes of the liquid aliquot and the gaseous headspace being analyzed with the DGAS system to convert
the measured ppm concentrations into units of μmol of CH4 L

−1. Both techniques produced similar results.
The measured CO2 concentration values were converted from ppm to μmol of CO2 L

−1 following the second
technique, but by incorporating the solubility for CO2 at a salinity of 35 and 5 °C (53350 μM atm−1;
Weiss, 1974).

2.4. Microbial Community Analyses

Samples for DNA analysis were collected by removing 1‐L aliquots from the mesocosm experiments at sev-
eral time intervals and filtering them through 0.22‐μm Sterivex filters (Millipore). The filters were stored at
−80 °C until analysis. DNA was extracted with the FastDNA SPIN Kit for Soil (MP Biomedicals). DNA was
quantified with a Qubit 2.0 fluorometer (Life Technologies) and the Qubit dsDNA HS Assay Kit (Thermo
Fisher Scientific). Amplification and sequencing of the V4 region of the 16S rRNA gene was done by
Seqmatic with the Illumina MiSeq platform (2 × 250 bp), following the protocol described by Caporaso
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et al. (2011). Sequence analysis was conducted with Mothur version 1.36.0 as described in the MiSeq SOP
(Kozich et al., 2013), except that the SILVA (version 123) reference taxonomy was used for classification.
This resulted in an average of 149,373 reads per sample. Sequences are available in the Sequence Read
Archive under BioProject number PRJNA311933.

Aliquots were taken to detect bacterial cell abundance at various time points throughout both HC and
MC118 mesocosms and were enumerated using flow cytometry following the protocol of Wear et al.
(2015). Samples were collected in sterile cryovials, preserved with 0.2% final concentration of paraformalde-
hyde (Electron Microscopy Sciences, Hatfield, PA), flash frozen in liquid nitrogen, and stored frozen until
analysis. Bacteria were stained with SYBRGreen I (Molecular Probes) and enumerated with a BD LSRII flow
cytometer (Becton Dickinson, San Jose, CA) with an autosampler attachment. Measurement of bacterial
abundances for the HC samples was not successful due to technical failure with the flow cytometer after
the preserved samples had already been thawed. However, the MC118 samples were analyzed successfully.

2.5. Macronutrient and Trace Metal Analyses

For eachmacronutrient analysis, 20 mL of seawater were removed from the mesocosm and passed through a
33‐mm‐diameter syringe filter with a 0.45‐μm‐pore‐size PVDF membrane (EMD Millipore) and stored fro-
zen in HDPE scintillation vials until analysis. A Lachat Instruments QuikChem 8500 Series 2 Automated
Ion Analyzer (Hach) was used by the UCSB Marine Science Institute Analytical Laboratory to obtain nutri-
ent concentrations. Detection limits for nitrate + nitrite (NO3

− + NO2
−), ortho‐phosphate (PO4

−3), and
ammonium (NH4

+) are 0.20, 0.10, and 0.10 μM, respectively.

Water samples were isolated at interspersed time intervals to quantify the concentration of trace metals in
the incubations. The specific trace metals targeted were Mn, Fe, Cu, Zn, Mo, La, Ce, Pr, Nd, Sm, and Eu.
For analysis of dissolved trace elements, 7 mL of sample was spiked with a mixture of isotopically enriched
Fe‐57, Cu‐65, Zn‐68, Nd‐145, Sm‐149, and Eu‐153 (Oak Ridge National Labs). Samples were then
extracted/preconcentrated using a SeaFAST system (Elemental Scientific, Inc.) operated in off‐line mode.
A similar online SeaFAST extraction procedure is described by Hathorne et al. (2012). The extracted samples
were subsequently analyzed using a Thermo‐Fisher high‐resolution ICP‐MS (Element XR) with an Apex‐
FAST high‐efficiency sample introduction system including a Spiro desolvator (Elemental Scientific, Inc.).
The enriched isotope spikes allowed for isotope dilution quantification of the spiked elements and also
served to provide counts/sec calibration factors for elements that were not spiked with enriched isotopes
(Mn, Mo, La, Ce, and Pr). This calibration was also examined with a standard made in dilute nitric acid.
Precision and recovery were checked by analysis of a large‐volume composite North Atlantic surface sea-
water sample. Spiked (with a natural isotopic abundance elemental spike) and unspiked aliquots of this sam-
ple were analyzed twice in each analytical run. A Ba standard was also run to check for BaO+ interference on
several isotopes and Ba in the extracted samples was also monitored. Due to the extraction resin in the
SeaFAST system (Nobias PA‐1) discriminating against Ba, in addition to the reduction of the BaO+ interfer-
ence by the desolvation system, BaO+ was less than 0.1% of the counts in Eu‐151 and Eu‐153. A detailed
description of the methods can be found in Shiller et al. (2017) and Ho et al. (2018). Detection limits were
typically <1% of the concentrations reported here except for Ce and Eu, where detection limits were <5%
of the reported concentrations. Precision (1 σ) was typically ±2% and recoveries were typically 102 ± 3%.

All data and descriptions of the analyses from these experiments are available through the Gulf of Mexico
Research Initiative Information & Data Cooperative (GRIIDC; Kessler & Chan, 2017).

3. Results
3.1. Chemical Kinetics for Aerobic CH4 Oxidation

Each incubation was monitored for unambiguous indications of aerobic CH4 oxidation by assessing changes
in dissolved gas concentrations, isotope composition, microbial community composition, cell densities, and
micronutrients and macronutrients, and this information was used to determine the beginning and ending
of more rapid CH4 oxidation. While all experiments appeared to support microbial growth based on the
microbial community composition and changes in cell density, partial blockages in some of the 1/8″ tubing
used to remove water from the MIS for chemical analysis caused variable results in several specific meso-
cosms. (To avoid this potential complication, future experiments are advised to insulate the 1/8″ tubing
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when working at temperatures approaching 0 °C.) Considered here are the experiments that did not
experience such analytical variabilities. Six of the 10 mesocosms with waters collected inside and adjacent
to HC displayed clear biogeochemical signs of CH4 oxidation (Figures 3a, 3b, and S1). Four of the 10
mesocosms collected with waters at MC118 displayed clear characteristics of CH4 oxidation (Figures 3c,
3d, S3, and S4).

3.1.1. Time to Onset of Rapid CH4 Oxidation

For the Hudson Canyon experiments, seawater was collected from waters impacted by known CH4 seeps as
well as waters outside of Hudson Canyon, not directly impacted by seeps. All samples were incubated at the
same near in situ temperature (6 °C) to determine whether the presence of natural CH4 seepage influenced
methanotrophy. The mesocosms collected at the seep site (samples HC‐S1 to ‐S2) initiated CH4 oxidation
approximately one week faster than the off‐seep mesocosms (samples HC‐S3 to ‐S6; Figures 3a, 3b, and S1

Figure 3. Dissolved concentrations of CH4 (blue diamonds), CO2 (red squares), and DO (black triangles), as well as δ13C‐CH4 (green circles) over the course of the
incubations. (a) HC‐S1 (on seep), (b) HC‐S5 (off seep), (c) MC118‐S2 (on seep), and (d)MC118‐S3 (on seep). All data in these figures are available through the Gulf of
Mexico Research Initiative Information & Data Cooperative (GRIIDC; Kessler & Chan, 2017).

Table 2
The Characteristics for Chemical Kinetics Determined in Hudson Canyon (HC) and MC118

Sample Location Lag time (day) Duration (day) DO:CH4 (molar ratio) k (day−1)

HC‐S1 On seep 5.42 2.17 ND 0.25 ± 0.03
HC‐S2 On seep 5.43 1.9 ND 0.18 ± 0.04
Ave and standard deviation On seep 5.43 ± 0.01 2.0 ± 0.2 0.22 ± 0.05
HC‐S3 Off seep 14.09 4.05 ND 0.054 ± 0.004
HC‐S4 Off seep 12.64 3.05 ND 0.12 ± 0.01
HC‐S5 Off seep 12.37 2.53 ND 0.24 ± 0.03
HC‐S6 Off seep 8.85 6.34 ND 0.061 ± 0.003
Ave and standard deviation Off seep 12 ± 2 4 ± 2 0.12 ± 0.09
MC118‐S1 On seep 9.60 6.06 0.77 0.107 ± 0.005
MC118‐S2 On seep 19.28 5.99 0.81 0.26 ± 0.04
MC118‐S3 On seep 18.49 6.78 0.60 0.36 ± 0.04
MC118‐S4 On seep 9.82 11.04 0.59 0.20 ± 0.02
Ave and standard deviation On seep 14 ± 5 7.5 ± 2.4 0.7 ± 0.1 0.2 ± 0.1

Note. The units for lag time and duration are days, DO:CH4 is unitless (μM/μM), and first‐order oxidation rate constants (k) is day−1.
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and Table 2). After the onset of rapid methane oxidation, the on‐seep
mesocosms depleted their nutrient and trace metal resources and thus
completed oxidation in two days on average, whereas the off‐seep meso-
cosms completed oxidation in four days on average (Figure S1 and
Table 2). The results from the Atlantic margin suggest that CH4 oxidation
can occur in waters with and without the direct influence of CH4 seeps.
However, seeps in a partially enclosed environment such as a submarine
canyon, likely keep the waters with a higher starting density of methano-
trophic bacteria and thus “primed” for a faster methanotrophic response.
This finding appears consistent with previous studies (Leonte et al., 2017;
Weinstein et al., 2016).

At MC118, since the mesocosms were collected directly from the seep site
with an ROV, the waters all contained naturally high concentrations of
CH4 leading us to the hypothesis that CH4 oxidation would occur more
rapidly than in Hudson Canyon. However, this was not the case, with
the mesocosms taking 14 days on average to initiate rapid CH4 oxidation
and an additional 7.5 days on average until oxidation became limited by a
reactant (Figures 3c, 3d, S3, and S4 and Table 2). We suspect that the less
topographically restricted MC118 seep field results in more rapid replace-
ment of the ambient waters likely leading to a lower resident methano-
trophic population than HC.
3.1.2. Rate Constants for CH4 Oxidation
For the mesocosms that displayed CH4 oxidation, we determined
whether CH4 oxidation after the onset of rapid CH4 oxidation followed
zeroth‐, first‐, or second‐order kinetic rate laws as well as the rate con-
stants for the resulting rate law throughout this rapid oxidation process.
The procedures used for determining the rate constants can be found in
the supporting online information. While the concentration data alone
did not clearly distinguish between these reaction orders, the isotope
data more clearly indicated that methane consumption followed first‐
order kinetics (see below and the companion paper). This conclusion is

congruent with the Kessler et al. (2011) model and the Crespo‐Medina et al. (2014) data from the DWH
incident (Figure 1). The HC mesocosms exhibited the highest first‐order oxidation rate constant from
HC‐S1 at 0.25 ± 0.03 day−1 and the lowest from HC‐S3 at 0.054 ± 0.004 day−1, with an on‐seep average
of 0.22 ± 0.05 day−1 and an off‐seep average of 0.12 ± 0.09 day−1. The highest first‐order oxidation rate
constant at MC118 was MC118‐S3 at 0.36 ± 0.04 day−1, the lowest was MC118‐S1 at 0.107 ± 0.005 day
−1, and the average was 0.2 ± 0.1 day−1 (Table 2). These rate constants are within the range, but occasion-
ally slightly higher than the rate constants predicted in Kessler et al. (2011; 0.0001–0.200 day−1) and mea-
sured in Crespo‐Medina et al. (2014; 0.0001–0.425 day−1) for CH4 oxidation in the deepwater plumes
during the DWH blowout (Figure 1). Since the rate constants reported here were determined in a
closed‐system without dilution of cells and substrates, it is not surprising that the rate constants are ele-
vated compared to those determined in the natural environment where such dilution was experienced
(Crespo‐Medina et al., 2014). It is also interesting to note the differences between the observations here
and what was assumed in the Kessler et al. (2011) model. The Kessler et al. (2011) model assumed that
the rate constants would increase at the start of rapid CH4 oxidation and decrease as CH4 concentrations
decreased and this process became reactant limited. However, the empirical data here suggest that the rate
constants remain invariant for the remainder of this experiment after the onset of rapid CH4 oxidation
(Table 2, see “Duration” column for length of time it was invariant), more similar to the rate constant data
reported in Crespo‐Medina et al. (2014) for the deepwater plumes (Figure 1).
3.1.3. Microbial Community
The goal of the biological analyses was to determine what microbial community was supporting CH4 oxida-
tion and the extent to which this microbial population bloomed during CH4 oxidation. To accomplish this
goal, changes in bacterial abundance were quantified (Figure 4a) and the 16S rRNA gene was sequenced

Figure 4. (a) Bacterial abundance across MC118 mesocosm samples. All
samples exhibited cellular increases throughout the mesocosm incuba-
tions. Red triangles = MC118‐S1, black cross = MC118‐S2, blue squares
= MC118‐S3, and green circles = MC118‐S4. (b) Microbial community
compositions (%) from HC and MC118. Data displayed were collected at the
end of each mesocosm.
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to determine the composition of the microbial communities (Figure 4b). Comparing these microbial
analyses can suggest a growing population of specific microbial communities identified by the 16S rRNA
analyses. For both the HC and MC118 mesocosms, the overall results suggest a growing population of
organisms previously linked to CH4 oxidation over the course of these incubations. All incubations began
with an extended lag period typical for required adaptation and growth of the bacteria.

Bacterial abundance measurements for the HC mesocosms were not measured because of the aforemen-
tioned technical failure. However, the DNA measurements and the change in respiration rate suggest such
a bloom occurred. The DNA samples from the beginning of the incubation had low DNA yields and were
difficult to amplify. This contrasts with the DNA samples from the end of the incubation, where the sequen-
cing of the 16S rRNA gene was successful consistent with higher cellular abundances (Table S2).
Methylococcales, which have been previously linked to aerobic CH4 oxidation (e.g., Redmond et al., 2010;
Redmond & Valentine, 2012), constituted 78–97% of 16S rRNA genes sequenced in HC (Figure 4b). The
dominance of organisms previously linked to CH4 oxidation in the HC incubations is likely due to CH4 being
the primary substrate in these mesocosms.

The MC118 bacterial abundance indicates cellular growth across all mesocosms (Figure 4a). Similar to the
HC experiments, Methylococcales was also present in MC118 experiments, and when considered alongside
cell abundance, indicates a growing population of organisms previously linked to CH4 oxidation. While
Methylococcales constituted a lower percentage of the microbial community in the MC118 mesocosms com-
pared to the HCmesocosms, the MC118 mesocosms were collected directly from a seep that also emits other
oil and gaseous hydrocarbons. Thus, this smaller fraction of putative methanotrophs is presumably due to

Figure 5. Nutrient and trace metal results fromHC andMC118mesocosms. (a and b) Blue = time 0 day sample collected directly from the Niskin bottle, red = time
0 day sample collected from the mesocosm bag, and green = samples collected from the mesocosm bag at the end of the incubation, time = 19–21 days. The two
t = 0 day samples (blue and red) were analyzed to determine if there was any nutrient or trace metal contamination associated with the transfer to the sample
bags. (c and d) Since the MC118 seawater samples were collected directly into the incubation bags, all samples were collected from the bags at different times.
Blue = 0 day, red = 17–22 days, green = 25 days, violet = 29 days.
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concurrent blooms of other hydrocarbon degrading species (Figure 4; Reddy et al., 2012; Redmond &
Valentine, 2012; Redmond et al., 2010). Redmond and Valentine et al. (2012) observed very similar commu-
nities in samples collected in this region of the Gulf of Mexico during the DWH oil spill. Overall, in addition
to a growing population of organisms previously linked to CH4 oxidation, these data also suggest that for
both HC and MC118, a significant amount of the methanotrophic biomass remained when the mesocosms
were terminated that had not been fully remineralized to CO2.

3.2. Amounts of Substrates Required to Oxidize a Quantity of CH4

3.2.1. General Dissolved Gas Concentration Changes

Of the six mesocosms in HC that exhibited CH4 oxidation, an average of 98 ± 24 μM (standard deviation of
natural variability between mesocosms) of the CH4 available in each sample was consumed. The average
increase in dissolved CO2 concentration was 4.7 ± 1.4 μM (Table S1).

Since the initial concentration of dissolved CH4 was variable in the samples collected at MC118 and dif-
ferent from the HC samples, differences in the absolute concentration changes were also observed. Of the
four mesocosms that displayed CH4 oxidation, dissolved CH4 concentration showed an average decrease
of 83 ± 58 μM over the course of the mesocosm experiments. Where there was CH4 oxidation, there were
concomitant decreases in DO and increases in dissolved CO2 concentrations (Figures 3c, 3d, S3, and S4).
On average, the DO decreased by 56 ± 38 μM during the incubations from MC118. The average ratio of
DO:CH4 removed in MC118 was 0.7 ± 0.1 (Table 2). Dissolved CO2 being produced further supports the
occurrence of CH4 oxidation, with an average increase of 18 ± 4 μM throughout the MC118 experiments
(Table S1).

3.2.2. General Nutrient and Trace Metal Concentration Changes
The starting concentrations of nutrients and Fe in the HCmesocosms were lower than for the MC118 meso-
cosms. The proximity to the sediment interface and intermittent resuspension of sediment by violent bursts
of CH4 (EV Nautilus, 2015) likely caused these higher concentrations found at MC118 (D'souza et al., 2016),
which is especially apparent in the Fe concentrations (Figures 5 and S6–S9). For example, the average start-
ing Fe concentration in the HC was 3.2 ± 1.3 nM whereas MC118 displayed average values of 21 ± 10 nM
(Figure 5). Throughout the HC mesocosm incubations, both PO4

3− and NO3
− had high utilization

(Figures 5 and S6) and cietrace metal results from H CH4 oxidation. In contrast, the MC118 incubations
did not display a decrease in PO4

3− and NO3
− to the point of limitation (Figures 5 and S7), but it is worth

noting that the starting concentrations of CH4 were less in MC118 than in HC (Table S1).

The trace metal analysis demonstrated pronounced depletions during all mesocosm incubations. The
methanol dehydrogenase (MDH) enzyme that catalyzes the second step in CH4 oxidation is often Ca (II)‐
dependent (MxaF type) and methane monooxygenase incorporates Cu and Fe (Fox et al., 1988; Murrell
et al., 2000; Ross et al., 2019). However, recent discoveries with methano‐ and methyl‐trophic bacteria have
suggested that light rare earth elements (LREE), specifically La, Ce, Pr, Nd, and Sm, may play a significant
role in the oxidation of methane and methanol (Huang et al., 2018; Picone & Op den Camp, 2019; Pol et al.,
2014). Lanthanum (La), one of the lanthanides identified in CH4 oxidation studies (Pol et al., 2014; Shiller
et al., 2017), had an average decrease of 23 ± 2 pM in the HCmesocosms and 15 ± 2 pM in the MC118 meso-
cosms (Figures 5, S8, and S9). While La displayed the highest percentage removed, other LREEs that were
removed during the microbial bloom were cerium (Ce), praseodymium (Pr), neodymium (Nd), samarium
(Sm), and europium (Eu); these additional LREEs exhibited significant decreases, possibly limiting CH4 oxi-
dation (Kessler & Chan, 2017). Slightly lower depletions in LREEs at MC118 were observed, which we sus-
pect is due to the lower starting concentrations of CH4 than in the HCmesocosms. Cu and Fe decreases were
also notable at 0.8 to 1.3 and 0.7 to 1.8 nM, respectively, in HC mesocosms (Figures 5 and S8). MC118 meso-
cosms showed larger Fe decreases than HC mesocosms at 6.9 to 22.8 nM, perhaps due to the oxidation of
non‐CH4 hydrocarbons (Figures 5 and S9).

4. Discussion
4.1. Mesocosm Stoichiometric Ratios for Aerobic CH4 Oxidation

An elemental stoichiometric ratio for CH4 oxidation would be useful for predicting the sufficiency of the
environment to supply essential nutrients and trace metals to enable the oxidation of CH4. For the most
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accurate determination of a stoichiometric ratio for CH4 oxidation, the analysis of a pure culture of aerobic
methanotrophs would be required. However, using pure culture ratios to predict CH4 oxidation based on
measured concentrations of nutrients or trace metals in the natural environment would be challenging;
competing processes in the natural environment, such as denitrification and the oxidation of nonmethane
hydrocarbons, could also influence changes in these compounds and confuse predictions of the extent of
CH4 oxidation. Furthermore, cultivation tends to favor rapid‐growth phenotypes that may lack
environmental relevance. Thus, our approach was to use mesocosm incubations so that uncertainties due
to these competing processes and potential cultivation bias would be included in the final results. So,
while our mesocosm approach likely incurs more uncertainty for a stoichiometric ratio specific to CH4

oxidation, the intent was that it would provide a reasonable range of possible concentration changes to be
observed during an aerobic CH4 oxidation event in the natural environment. Since concentration changes
in DO, CH4, nutrients, and trace metals were determined throughout these incubations, two different
ratios were established, one for CH4‐to‐nutrients and another for CH4‐to‐trace metals (Table 3).

The CH4:N:P ratios for HC were similar for both the on‐ and off‐seep sampling locations, with an average
ratio of (144 ± 45):(30 ± 5):(1). The CH4:DO:N:P ratio for MC118 mesocosms was (210 ± 190):(140 ±
110):(19 ± 11):(1). The variability in the MC118 nutrient ratio is likely caused by variable competition for
the available nutrients coupled with the oxidation of nonmethane hydrocarbons. Due to the relatively ele-
vated uncertainty in the MC118 ratio, the nutrient ratios are statistically similar between HC and MC118.
Similar conclusions are reached when investigating the ratio of CH4:DO:La:Ce:Pr:Nd:Sm:Eu:Fe:Cu; in that,
the results fromHCwere statistically similar to MC118, given the variability observed in these environments
(Table 3). Increased uncertainty in the MC118 trace metal stoichiometric ratio for CH4 oxidation was most
apparent in Fe, Cu, and Nd, likely caused by different amounts of oxidation of non‐CH4 hydrocarbons. It is
interesting to note that Pol et al. (2014) showed that La‐Ce‐Pr‐Nd are all utilized similarly, and that the uti-
lization decreased with higher MW elements. However, while our stoichiometric ratios for La:Nd are in
roughly equal proportions, our stoichiometric ratios for La:Sm are significantly less than what might have
been expected based the results of Pol et al. (2014) yet are likely related to the decreased utilization of heavier
REEs (Picone & Op den Camp, 2019; Table 3).

Although the biogeochemical conditions are different at the sites investigated, the stoichiometric ratios from
both the HC andMC118 mesocosms indicate that nutrients and trace metals were utilized in similar propor-
tions (Table 3). Despite the MC118 incubations also involving the oxidation of non‐CH4 hydrocarbons
(Figure 4), the similarity of results is likely caused by CH4 being the dominant hydrocarbon available for oxi-
dation at the beginning of each mesocosm. This further suggests that the stoichiometric ratios for aerobic
CH4 oxidation presented here can possibly be used to estimate CH4 consumption at other oceanographic
seep sites, even if concurrent (secondary) biochemical processes are occurring. Certainly, future studies
investigating the chemical requirements for CH4 oxidation should also consider monitoring other biochem-
ical processes occurring concurrently such as the oxidation of higher‐order hydrocarbons and nitrogen
transformations (Voss et al., 2013), both of which likely occurred in these experiments. For example, the
trace metal analyses reported here displayed changing Mo concentrations and the nutrient analyses

Table 3
Mesocosm Stoichiometric Ratios for Aerobic Methane Oxidation

CH4 DO NO3
− PO4

3−

HC 144 ± 45 ND 30 ± 5 1
MC118 210 ± 190 140 ± 110 19 ± 11 1
Average 148 ± 44 140 ± 110 28 ± 5 1

CH4 (×10
6) DO (×106) La Ce Pr Nd Sm Eu Fe Cu

HC 4.4 ± 1.3 ND 1 0.22 ± 0.07 0.17 ± 0.01 0.78 ± 0.08 0.07 ± 0.02 0.02 ± 0.01 57 ± 21 44 ± 7
MC118 5.3 ± 3.3 3.6 ± 2.2 1 0.26 ± 0.13 0.16 ± 0.03 0.71 ± 0.28 0.08 ± 0.04 0.03 ± 0.01 850 ± 420 40 ± 40
Average 4.5 ± 1.2 3.6 ± 2.2 1 0.23 ± 0.06 0.17 ± 0.01 0.77 ± 0.08 0.07 ± 0.02 0.03 ± 0.01 60 ± 20 44 ± 7

Note. The averages reported, and their associated standard deviations, are weighted to the uncertainties of the HC and MC118 values.
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displayed increases in nitrite (Kessler & Chan, 2017), possibly related to nitrogen dynamics in these incuba-
tions (Bertine, 1972; Collier, 1985).

4.2. Evaluating the Reaction Chain for Aerobic CH4 Oxidation to Interpret the Observed DO:CH4

The overall reaction for aerobic CH4 oxidation is generally described with equation (1), indicating that if one
mole of CH4 is fully oxidized to CO2, two moles of DO will be removed.

CH4 þ 2 O2→CO2 þ 2 H2O (1)

However, if CH4 is not fully converted to CO2, for example, through the formation of biomass or intermedi-
ates, less than two moles of O2 will be utilized. Only after the biomass/intermediates are mineralized to CO2

will the full two moles of O2 be removed. For each of the mesocosm experiments conducted in MC118, the
DO:CH4 ratio was less than two (Table 2), suggesting that the formation of biomass and intermediates was
significant. Since both the cell count and 16S rRNA gene survey data also indicate that significant methano-
trophic biomass formed during these incubations and was still present when these experiments were termi-
nated (Figure 4), it is not surprising that less DO was removed than would have been expected for complete
remineralization to CO2. What is surprising is that the average values for the DO:CH4 ratios were slightly
less than one (Table 2). While we cannot fully discredit that this slight deviation from unity is explained
by an unidentified analytical error, we instead investigate the reaction mechanism of aerobic CH4 oxidation
to raise possible biochemical explanations.

Since aerobic CH4 oxidation is a microbially mediated process, biological growth processes occur concur-
rently, utilizing a portion of the substrates to produce cellular organic matter. It has been well documented
that CH4 oxidation occurs through soluble and particulate CH4 monooxygenase enzymes (sMMO and
pMMO, respectively), and that most type I methanotrophs closely related to those identified in these meso-
cosms predominantly use the membrane‐bound pMMO (Kalyuzhnaya et al., 2013; Murrell et al., 2000).
While sMMO function is well documented, the exact mechanism of pMMO is not completely known with
only predicted biochemical pathways (Kalyuzhnaya et al., 2013). The first step of the CH4 oxidation process
with pMMO has CH4 being converted to methanol (CH3OH; equation (2)), requiring electron acceptors and
donors (i.e., redox cofactors such as nicotinamide adenine dinucleotide (NAD) and pyrroloquinoline qui-
none (PQQ) represented simply in the equations here as A and AH2). Next, methanol is converted to formal-
dehyde (CH2O; equation (3)) via methanol dehydrogenase (MDH; Bédard & Knowles, 1989; Kalyuzhnaya
et al., 2013). Following this step, there are three possible pathways for formaldehyde to be utilized by the cell:
(1) assimilation into biomass via the ribulose monophosphate (RuMP) pathway (equation (4); Dalton &
Leak, 1985; Kalyuzhnaya et al., 2013; Quayle & Ferenci, 1978), (2) further oxidation to CO2 (equations (5)
and (6); Bédard & Knowles, 1989; Kalyuzhnaya et al., 2013), or (3) assimilation into the serine pathway.
Concerning pathway (2), the formaldehyde is converted to formate by formaldehyde dehydrogenase
(FalDH; equation (5); Bédard & Knowles, 1989). Formate is then converted to CO2 via formate dehydrogen-
ase (FDH; equation (6); Bédard & Knowles, 1989). Thus, CO2 can be produced and measured in these meso-
cosms without first forming cellular biomass via the RuMP pathway. However, part of the formaldehyde is
used to create biomass in pathway (1), and thus, the amount of carbon remaining as biomass must
be considered.

To produce a balanced aerobic CH4 oxidation reaction series, we hypothesize the following stoichiometry.
Since three moles of formaldehyde are required for biomass assimilation via the RuMP pathway
(Kalyuzhnaya et al., 2013) and one mole of formaldehyde is required for the oxidation to CO2 via pathway
(2), there needs to be a total of four moles of CH4 and four moles of O2 that begin this microbially mediated
reaction. To balance the system of equations, the oxidization of the biomass that is created must be consid-
ered (equation (7)). In equation (7), biomass is more generally represented as a−CH2O− chain. Lastly, these
reactions would not occur without electron transport within a biological system, and thus, an equation for a
terminal electron acceptor/donor pair is needed. In an aerobic CH4 oxidation environment, it is DO that
serves as this electron acceptor with many electron transport chains, cytochromes, etc. that facilitate this
process (equation (8)). The simplification of this system of equations results in the overall aerobic CH4 oxi-
dation equation (equation (1)).
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4 CH4 þ 4 O2 þ 4 AH2 →
pMMO

4 CH3OHþ 4 H2Oþ 4 A (2)

4 CH3OHþ 4 A →
MDH

4 CH2Oþ 4 AH2 (3)

3 CH2Oþ 4 AH2 →
RuMP

Biomass (4)

CH2OþH2Oþ A →
FalDH

CH2O2 þ AH2 (5)

CH2O2 þ A →
FDH

CO2 þ AH2 (6)

3 Biomass represented as−CH2O−ð Þ þ 3 O2→3 CO2 þ 3 H2O (7)

2 AH2 þ O2→2 Aþ 2 H2O (8)

Based on these hypothesized reactions, the DO:CH4 ratio should not drop below 1:1. However, the MC118
incubations ended with an average DO:CH4 of 0.7 ± 0.1. While synergies with other organisms can remove
more CH4 and provide more electron donors, such as anaerobic oxidation of CH4 linked to denitrification
identified near the sediment‐water interface (Raghoebarsing et al., 2006; Waki et al., 2002) or aerobic
methane oxidization coupled with nitrate reduction in hypoxic environments (Kits et al., 2015), our meso-
cosms did not have enough dissolved nitrate to account for the extra DO demand. For example, if we assume
that nitrate provides oxygen to further oxidize CH4, the measured decrease in nitrate during the MC118
mesocosms is only sufficient in one of the four mesocosms to raise the DO:CH4 to 1:1. A DO:CH4 of less than
1:1 could also be explained if equation (2) did not produce water. In this hypothetical reaction mediated with
pMMO, the DO:CH4 in the initial step of aerobic CH4 oxidation would only be 0.5:1. We note that this stoi-
chiometry is consistent with the first step of the pMMO‐catalyzed reaction cycle, but requires differences in
the latter stages than assumed for pMMO in biochemical studies (Culpepper & Rosenzweig, 2012; Sirajuddin
& Rosenzweig, 2015). While additional systematic experiments are required to confirm the true reaction
mechanism and explain the occurrence of DO:CH4 ratios <1, our data clearly indicate that two moles of
DO is not an inherent requirement for the oxidation of one mole of CH4. Even though the goal of this study
was not to determine cellular biochemical functions in methanotrophs, the hypothesized reaction mechan-
ism produced from these experiments can serve as a starting point for future experiments.

4.3. Deepwater Horizon Implications

The information learned from the mesocosm incubations can be used to better understand the fate of CH4

dissolved in the deep hydrocarbon intrusion layers during the DWH blowout in the Gulf of Mexico. First,
the biogeochemical conditions at the start of the MC118 incubations were likely more similar to the condi-
tions experienced during the DWH blowout than the samples from HC. The nutrient and trace metal con-
centrations in the MC118 mesocosm were similar to those experienced during the DWH (Joung & Shiller,
2013; Shiller & Joung, 2012) and there was likely competition between methanotrophs and other hydrocar-
bon oxidizers for available resources. The MC118 mesocosms showed that approximately 80% of the dis-
solved CH4 was oxidized in approximately 19–25 days (Tables 2 and S1 and Figures 3, S3, and S4).
Certainly, outside of these mesocosm incubation bags mixing in the deep Gulf of Mexico would influence
these results since mixing would dilute CH4 concentrations and methanotrophic cell density but would
add fresh DO, nutrients, and trace metals into a parcel of CH4‐laden water. Nonetheless, the results pre-
sented here display that a near‐complete oxidation is possible even without added reactants from mixing.
Second, the Kessler et al. (2011) model of DWH CH4 oxidation (Figure 6) suggests that CH4 oxidation rate
constants averaged over the entire plume peaked approximately 20 days after the CH4 source to the water
column stopped. Perhaps coincidently, the highest rate constant determined from the mesocosm experi-
ments presented here for MC118 occurs approximately 20 days after the parcel of CH4‐laden water was iso-
lated (Figure 6). In addition, the magnitude of the oxidation rate constants determined here is in agreement
with the model and previous measurements. Third, applying the stoichiometric ratio derived from the HC
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samples for CH4 oxidation to Fe concentrations measured in waters dur-
ing the DWH blowout (0.3–2.2 nmol/kg; Joung & Shiller, 2013) suggests
that 23 to 170 μMof CH4 could potentially be oxidized. Using the stoichio-
metric ratio derived from the MC118 mesocosms predicts that 2 to 14 μM
CH4 oxidation could be supported. Estimating CH4 oxidation using
decreases in La during the DWH blowout (Shiller et al., 2017) and apply-
ing the stoichiometric ratio from HC seeps, respectively, yields 18 to 53
μMof CH4 oxidation that could be supported, while using theMC118 stoi-
chiometric ratio suggests that 21 to 64 μM of CH4 oxidation could be sup-
ported. The range of estimates for DWH CH4 oxidation potential is due to
the different concentrations of initial reactants in these experiments as
well as resource competition with bacteria conducting other concurrent
metabolisms. While CH4 concentrations heterogeneous over the extent
of the deep intrusion layers during the DWH incident, the capacity for
DWH CH4 to be oxidized, as predicted here with the mesocosm results,
is greater than all but a handful of measurements of CH4 concentration
during and after conditions of active release from the well (Crespo‐
Medina et al., 2014; Joye et al., 2011; Kessler et al., 2011; Reddy et al.,
2012; Valentine et al., 2010; Yvon‐Lewis et al., 2011).

Also, if we scale the average concentration of CH4 removed via oxidation
in these mesocosm incubations (90 ± 40 μM) to the entire volume of the
deepwater plume during the DWH incident (approximately 7.3 × 1015 L;
Du & Kessler, 2012), we can estimate the total capacity for CH4 oxidation
during the DWH incident. This scaling exercise results in a value of 7 ± 3

× 1011 moles of CH4. Reddy et al. (2012) determined that 6.23 × 109 moles of CH4 were released during the
DWH event which is <1% of the CH4 oxidation potential of the impacted waters. This does not provide proof
of the fate of CH4 during this event; however, it does add further support to our previous contention that
DWH CH4 was fully oxidized in the deep intrusion layers and provides empirical biogeochemical data to
characterize an entire oxidation event.

Finally, another result reported here relevant to the DWH blowout is the DO:CH4 ratio. In MC118 meso-
cosms, the DO:CH4 ratios suggest that a significant portion of the oxidized CH4 is being converted to biomass
and potentially intermediates (e.g., methanol) instead of fully to CO2. Du and Kessler (2012) estimated that
60% ± 40% of the deep intrusion layer hydrocarbonmass was oxidized based on complete conversion to CO2.
However, if a significant portion of this CH4‐C remained as biomass, the DO demand for CH4 oxidation
would have been less, and a near‐complete removal of CH4 could have been supported.

5. Conclusions

Mesocosm incubations of seawater collected in two seep fields, one in the North Atlantic Bight in and near
Hudson Canyon and the other in the Gulf of Mexico, were used for the controlled study of biogeochemical
changes during aerobic CH4 oxidation. The analysis of dissolved gases (CH4, CO2, DO) in real‐time and in
high resolution permitted monitoring of each mesocosm experiment and provided the opportunity to ana-
lyze for other parameters such as microbial genetics, cell abundance, nutrients, and trace metals at critical
times during this CH4 oxidation process. This sampling frequency captured the different stages of these
CH4 oxidation events and was possible due to the controlled and isolated nature of the mesocosm incuba-
tions; conducting a similar study of a CH4 perturbation in nature, such as the DWH blowout, would have
been logistically challenging due to more heterogeneous and multivariate conditions occurring at‐depth
over an area of approximately 73,000 km2 (Du & Kessler, 2012).

While the initial biogeochemical conditions at the seeps on the Atlantic Margin were different from those in
the Gulf of Mexico, several similarities in the characteristics of CH4 oxidation were observed. The stoichio-
metric ratio results for CH4 oxidation were statistically similar between both environments despite greater
natural variability in the Gulf of Mexico, likely due to the influence of non‐CH4 hydrocarbon oxidation

Figure 6. The first‐order rate constants for aerobic CH4 oxidation deter-
mined here from HC and MC118 superimposed on the DWH data pre-
sented in Figure 1. Violet diamonds = rate constants determined here from
the HC experiments. Orange circles = rate constants determined here from
the MC118 experiments. All other symbols are the same as indicated in
Figure 1. The horizontal (i.e., time in days) position for the data determined
here is the time until the start of rapid CH4 oxidation plotted relative
to the day the DWH blowout was stopped and no longer injecting CH4 into
Gulf of Mexico waters (vertical gray line).
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processes. Both the experiments presented here (Figure 3) and those from the DWH blowout (Figure 1) sug-
gest that a significant lag phase precedes rapid CH4 oxidation. In the semiconfined environment of Hudson
Canyon, this lag time was approximately one week on average while it was approximately two weeks in
more open ocean environments outside of Hudson Canyon and in the Gulf of Mexico. Following this lag
time, our experiments show that the CH4 oxidation rate constants increased substantially and remained high
even after the CH4 concentration decreased significantly, a finding which appears congruent with measure-
ments during and after the DWH blowout (Figure 1; Crespo‐Medina et al., 2014; Rogener et al., 2018). Since
CH4 oxidation follows first‐order kinetics, the persistence of elevated rate constants suggests that the remi-
neralization of methanotrophic biomass may be slow and thus that CH4 oxidation could start rapidly with-
out a lag phase, or with an abbreviated lag phase, if CH4 concentrations again rose, as modeled previously
(Valentine et al., 2012). Thus, these data suggest that a natural environment may remain primed to oxidize
future releases of CH4, although the extent and duration remains untested.
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