
University of Texas Rio Grande Valley University of Texas Rio Grande Valley 

ScholarWorks @ UTRGV ScholarWorks @ UTRGV 

Earth, Environmental, and Marine Sciences 
Faculty Publications and Presentations College of Sciences 

11-7-2019 

Investigations of Aerobic Methane Oxidation in Two Marine Seep Investigations of Aerobic Methane Oxidation in Two Marine Seep 

Environments: Part 2—Isotopic Kinetics Environments: Part 2—Isotopic Kinetics 

Eric W. Chan 
The University of Texas Rio Grande Valley 

Allan M. Shiller 
University of Southern Mississippi 

Dongjoo J. Joung 
University of Southern Mississippi 

Eleanor C. Arrington 
University of California, Santa Barbara 

David L. Valentine 
University of California, Santa Barbara 

See next page for additional authors 
Follow this and additional works at: https://scholarworks.utrgv.edu/eems_fac 

 Part of the Earth Sciences Commons, Environmental Sciences Commons, and the Marine Biology 

Commons 

Recommended Citation Recommended Citation 
Chan, E. W., A. M. Shiller, D. J. Joung, E. C. Arrington, D. L. Valentine, M. C. Redmond, J. A. Breier, S. A. 
Socolofsky, and J. D. Kessler. 2019. “Investigations of Aerobic Methane Oxidation in Two Marine Seep 
Environments: Part 2—Isotopic Kinetics.” Journal of Geophysical Research: Oceans 124 (11): 8392–99. 
https://doi.org/10.1029/2019JC015603. 

This Article is brought to you for free and open access by the College of Sciences at ScholarWorks @ UTRGV. It has 
been accepted for inclusion in Earth, Environmental, and Marine Sciences Faculty Publications and Presentations 
by an authorized administrator of ScholarWorks @ UTRGV. For more information, please contact 
justin.white@utrgv.edu, william.flores01@utrgv.edu. 

https://scholarworks.utrgv.edu/
https://scholarworks.utrgv.edu/eems_fac
https://scholarworks.utrgv.edu/eems_fac
https://scholarworks.utrgv.edu/cos
https://scholarworks.utrgv.edu/eems_fac?utm_source=scholarworks.utrgv.edu%2Feems_fac%2F19&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/153?utm_source=scholarworks.utrgv.edu%2Feems_fac%2F19&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/167?utm_source=scholarworks.utrgv.edu%2Feems_fac%2F19&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1126?utm_source=scholarworks.utrgv.edu%2Feems_fac%2F19&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1126?utm_source=scholarworks.utrgv.edu%2Feems_fac%2F19&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:justin.white@utrgv.edu,%20william.flores01@utrgv.edu


Authors Authors 
Eric W. Chan, Allan M. Shiller, Dongjoo J. Joung, Eleanor C. Arrington, David L. Valentine, Molly C. 
Redmond, John A. Breier, Scott A. Socolofsky, and John D. Kessler 

This article is available at ScholarWorks @ UTRGV: https://scholarworks.utrgv.edu/eems_fac/19 

https://scholarworks.utrgv.edu/eems_fac/19


Investigations of Aerobic Methane Oxidation in Two
Marine Seep Environments: Part 2—Isotopic Kinetics
E. W. Chan1 , A. M. Shiller2 , D. J. Joung2 , E. C. Arrington3 , D. L. Valentine4 ,
M. C. Redmond5 , J. A. Breier6 , S. A. Socolofsky7 , and J. D. Kessler1

1Department of Earth and Environmental Sciences, University of Rochester, Rochester, NY, USA, 2Division of Marine
Science, University of Southern Mississippi, Stennis Space Center, MS, USA, 3Interdepartmental Graduate Program in
Marine Science, University of California, Santa Barbara, CA, USA, 4Department of Earth Science and Marine Science
Institute, University of California, Santa Barbara, CA, USA, 5Department of Biological Sciences, University of North
Carolina at Charlotte, Charlotte, NC, USA, 6School of Earth, Environment, and Marine Sciences, University of Texas Rio
Grande Valley, Brownsville, TX, USA, 7Zachry Department of Civil Engineering, Texas A&M University, College Station,
TX, USA

Abstract During aerobic oxidation of methane (CH4) in seawater, a process whichmitigates atmospheric
emissions, the 12C‐isotopologue reacts with a slightly greater rate constant than the 13C‐isotopologue,
leaving the residual CH4 isotopically fractionated. Prior studies have attempted to exploit this systematic
isotopic fractionation from methane oxidation to quantify the extent that a CH4 pool has been oxidized in
seawater. However, cultivation‐based studies have suggested that isotopic fractionation fundamentally
changes as a microbial population blooms in response to an influx of reactive substrates. Using a systematic
mesocosm incubation study with recently collected seawater, here we investigate the fundamental isotopic
kinetics of aerobic CH4 oxidation during a microbial bloom. As detailed in a companion paper, seawater
samples were collected from seep fields in Hudson Canyon, U.S. Atlantic Margin, and atop Woolsey Mound
(also known as Sleeping Dragon) which is part of lease block MC118 in the northern Gulf of Mexico, and
used in these investigations. The results from both Hudson Canyon and MC118 show that in these natural
environments isotopic fraction for CH4 oxidation follows a first‐order kinetic process. The results also show
that the isotopic fractionation factor remains constant during this methanotrophic bloom once rapid CH4

oxidation begins and that the magnitude of the fractionation factor appears correlated with the first‐order
reaction rate constant. These findings greatly simplify the use of natural stable isotope changes in CH4 to
assess the extent that CH4 is oxidized in seawater following seafloor release.

Plain Language Summary The aerobic oxidation of methane in seawater is a process that
prevents methane produced in the oceanic environment from being emitted to the atmosphere. During
this process, isotopic forms of methane are oxidized at slightly different rates leading to changes in the
natural methane isotope ratios with the extent of oxidation. While these changes in isotope ratios would
seem to be a proxy for the extent of methane oxidation, laboratory‐based studies involving pure cultures have
shown that these isotope ratio changes vary as a microbial population blooms in response to an increase in
substrates. This study systematically measured the stable isotope changes that are associated with aerobic
methane oxidation in recently collected seawater collected from regions of active seafloor methane release
along the U.S. Atlantic margin and the Gulf of Mexico. Results show that these isotope changes are
systematic during methane oxidation, greatly simplifying the use of isotope changes to determine the extent
of methane oxidation.

1. Introduction

Kinetic processes, such as microbial oxidation, are known to systematically change the isotopic abundance
of various molecules. Typically, the light isotopologue reacts with a slightly faster rate constant than the
heavy isotope, leaving the residual reactant isotopically fractionated. For example, studies of oceanic
methane (CH4) have utilized this isotopic fractionation as a proxy for the extent of CH4 oxidation and have
gone so far as to use it to help determine oxidation rates (e.g., Kessler et al., 2006; Leonte et al., 2017). The
oceanic CH4 reservoir is one of the largest CH4 reservoirs on Earth, and significant releases of CH4 from
the seafloor into the overlying waters have been documented in the modern ocean ([Ruppel & Kessler,
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2017). However, the minimal emission of oceanic CH4 to the atmosphere (Dlugokencky et al., 2011)
underscores active CH4 oxidation in seawater and surface sediments that limits atmospheric release.

Traditionally, CH4 oxidation rates are not measured using natural stable isotope changes. Instead, CH4 oxi-
dation rate measurements are generally conducted by collecting seawater samples in glass vials, inoculating
the samples with radioactive or stable isotopically labeled CH4 immediately after collection, incubating at in
situ temperatures for a measured time period, and terminating further oxidation with the addition of a toxic
agent such as mercuric chloride (e.g., Crespo‐Medina et al., 2014; Mendes et al., 2015; Niemann et al., 2015;
Pack et al., 2011, 2015; Valentine et al., 2001, 2010). The labeled CH4 allows for tracing the reactant as it is
incorporated into product by native methanotrophs. Beyond not maintaining in situ pressures, a consistent
challenge with these techniques is amending the seawater sample while minimizing the disturbance to the
natural concentrations of the dissolved gases (Pack et al., 2011), trace metals, and nutrients. Typically, these
studies involve multiple samples per rate determination that are often collected in different glass vials and
not allowed to incubate in the same reservoir (e.g., Crespo‐Medina et al., 2014; Leonte et al., 2017;
Mendes et al., 2015; Pack et al., 2011). This creates individual samples—pseudoreplicates—that might pro-
ceed at differing oxidation rates due to slight differences in initial microbial populations or in dissolved gases
and substrates (e.g., nutrients and trace metals) utilized in the oxidation processes. Further adding to com-
plications, borosilicate glass serum vials that are traditionally used for CH4 oxidation rate measurements
have been shown to leach trace metals (e.g., Fe and Cu) from the borosilicate glass, potentially fertilizing
the samples with greater amounts of essential trace metals than occur naturally (Batley & Gardner, 1977;
Robertson, 1968). Additionally, certain rubber stoppers used to seal these vials have been shown to have
toxic effects on methanotrophs (Niemann et al., 2015).

An alternative to using isotopic labeling techniques for measuring CH4 oxidation rates is the use of natu-
rally occurring stable isotopes (Leonte et al., 2017). Recent advances in technology enable these measure-
ments to be conducted at sea and in situ (Chen et al., 2013; Wankel et al., 2013). A strong advantage with
this approach is that integrated CH4 oxidation rates are determined based on the in situ isotopic condi-
tions without the need to externally incubate samples, which can potentially cause alterations to biologi-
cal, chemical, temperature, and pressure conditions (Leonte et al., 2017). During CH4 oxidation,

12CH4 is
oxidized with a slightly greater rate constant than 13CH4, causing the residual CH4 pool to become rela-
tively enriched in the heavy isotopes over time (Whiticar, 1999). Similarly, the lighter 12C of the oxidized
CH4 has been traced into the products of cellular biomass and CO2 (Orphan et al., 2001; Radajewski et al.,
2000; Summons et al., 1994). This isotopic fractionation process can be used to quantify the extent of CH4

oxidation if the fractionation factor (α) is known or can be determined (Leonte et al., 2017). The α is the
ratio of the rate constants of the lighter isotope over the heavy isotope assuming first‐order kinetics for
this oxidation process. Interestingly, culture studies of methane‐producing archaea have reported that
the fractionation factor changes during microbially mediated reactions as the microbial population grows
(Botz et al., 1996; Penning et al., 2005; Valentine et al., 2004), potentially complicating the use of natural
isotopes and isotopic fractionation to quantify CH4 oxidation in natural environments that are not in
steady‐state conditions. This complication would be especially noticeable in environments where the dis-
solved CH4 concentration rapidly increased in a parcel of water, such as a seep field or hydrocarbon spill
(e.g., Kessler et al., 2011; Leonte et al., 2017), resulting in a significant bloom of the CH4‐oxidizing popu-
lation. This proxy would only be quantitative during a microbial bloom/oxidation event once CH4 oxida-
tion isotopic fractionation factors stabilized. Thus, this study was motivated by the need to thoroughly
quantify the changes in stable isotope kinetics as a population of methanotrophic bacteria grew to oxidize
an enhanced CH4 input.

Here we conducted mesocosm experiments with CH4‐laden seawater measuring isotopic changes over time
during CH4 oxidation events. The goal of this investigation was to determine fundamental stable isotopic
fractionation parameters associated with aerobic CH4 oxidation. To assess potential regional variabilities
in CH4 oxidation kinetics, seawater was collected in two different locations where CH4 bubbles were seeping
from the seafloor: (a) Hudson Canyon off the coast of New York and New Jersey near the upper limit of CH4

hydrate stability and (b) the deep Gulf of Mexico near waters once impacted by the Deepwater Horizon blow-
out. The results of these studies can be used to help quantify the extent and rates of CH4 oxidation based on
natural changes of CH4 isotopes.
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2. Materials and Methods

All information relating to the seawater sample collection, incubation, and analysis can be found in the com-
panion paper (Chan et al., 2019). To briefly summarize, waters directly influenced by, or adjacent to, known
CH4 seep activity were chosen to examine CH4 oxidation kinetics. The first research expedition was aboard
the R/V Endeavor along the North Atlantic Bight from 7–12 July 2014. The recently discovered CH4 seeps off
the coast of New York and New Jersey in Hudson Canyon (HC; Rona et al., 2015; Skarke et al., 2014;
Weinstein et al., 2016) provided an appropriate site for these experiments. Water samples were collected
both inside the seep field (39°32.705′N, 72°24.259′W) as well as outside of HC in waters not directly impacted
by CH4 seeps (39°17.236′N, 72°12.080′W), as determined by the presence or absence of acoustically detected
bubbles (Leonte et al., 2017; Weinstein et al., 2016). These water samples were collected via Niskin bottles
that were precleaned for trace‐metal analyses. A measured amount (150 ± 1.5 mL) of isotopically standar-
dized CH4 (δ

13C‐CH4 = −20‰; Kessler & Reeburgh, 2005) was systemically added to each sample using a
mass flow controller and gas filter apparatus to increase dissolved CH4 concentrations to approximately
300 μMCH4. Therefore, these mesocosm incubations using waters collected from the HC region began with
similar values for dissolved CH4 concentration and δ13C‐CH4.

A second research expedition was conducted from 9–20 April 2015 aboard the E/V Nautilus at the Sleeping
Dragon seep field site (MC118) in the Gulf of Mexico. MC118 is 17 km from the Deepwater Horizon (DWH)
wellhead and provided physical‐chemical conditions similar to what may have been experienced during the
DWH hydrocarbon spill in 2010. The Suspended‐Particle Rosette (SUPR) sampler (Breier et al., 2009) was
mounted to the ROV Hercules and was used for the high‐precision collection of water that was visibly
impacted by CH4 bubbles. This sampling strategy enabled water to be collected that contained naturally high
concentrations of dissolved CH4, so no additional CH4 was added. The results obtained fromHC andMC118
were analyzed to determine regional similarities and variabilities in CH4 oxidation kinetics.

Full details of the sample collection, analysis, and calibration procedures can be found in the companion
paper (Chan et al., 2019). In addition, the specific details and validation tests for the system used to incubate
and analyze these mesocosms are presented in Chan et al. (2016). Finally, all data and descriptions of the
analyses from these experiments are available through the Gulf of Mexico Research Initiative Information
& Data Cooperative (GRIIDC; Kessler & Chan, 2017).

3. Results and Discussion
3.1. General Stable Isotope Changes

Every incubation experiment was examined to determine whether clear signs of aerobic CH4 oxidation had
occurred by comparing changes in dissolved gas concentrations, isotope measurements, microbial commu-
nity, cell densities, and micronutrients and macronutrients (see companion paper for complimentary ana-
lyses). Six of the 10 mesocosms with waters collected inside and adjacent to HC exhibited CH4 oxidation
(Figures 1a, 1b, and S1). Four of the 10 mesocosms collected with waters at MC118 displayed clear charac-
teristics of CH4 oxidation (Figures 1c, 1d, S3, and S4). While we do not have clear evidence to explain this
observation, we offer two possibilities. First, themesocosmsmay have grown successfully but a partial block-
age in the water sampling tubes may have prevented accurate measurements. Second, the process of remov-
ing the samples from their deep ocean environment may have harmed the indigenous population.

Along with the measurement of the changes in chemical concentrations and microbial populations (see
companion paper), δ13C‐CH4 and δ13C‐CO2 were measured using real‐time monitoring to assess microbial
isotopic fractionation of the substrate and product. Since the HC samples were equilibrated with standar-
dized CH4, these incubations began close to the δ13C‐CH4 standardized value of −20‰ (Chan et al., 2019;
Kessler & Reeburgh, 2005). The HCmesocosms showed an average change in δ13C‐CH4 of 11 ± 1‰ to more
positive (heavier) values (Figures 1 and S1 and Table S1). The measurement of δ13C‐CO2 was unsuccessful
for the HC mesocosms due to a manifold failure; however, the system was redesigned for the MC118 experi-
ments producing usable results.

The starting δ13C‐CH4 for MC118 varied based on the natural input of dissolved CH4 supplied by the
Sleeping Dragon seep. The average starting δ13C‐CH4 was approximately −28 ± 11‰ and for those samples
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exhibiting oxidation, the average increase in δ13C‐CH4 was 37 ± 15‰ (Figures 1, S3, and S4 and Table S1).
Additionally, CO2 became more depleted in 13C over time with an average change of −10 ± 10‰ (Figure S4
and Table S1). These isotopic shifts (δ13C‐CH4 to heavier values and δ13C‐CO2 to lighter values) throughout
these incubations suggest that CH4 oxidation is occurring and transferring carbon from the dissolved CH4

pool to the dissolved CO2 pool.

3.2. Fractionation Factor (α) for Aerobic CH4 Oxidation

The isotopic fractionation factor (α) is a constant describing the extent that isotopes of one compound
change during a kinetic process, fundamentally defined in this experiment as the ratio of the first‐order rate
constants for the oxidation of 12CH4 over

13CH4 (equation (1)).

α ¼ k12C
�
k13C

(1)

where k is the first‐order rate constant with units of day−1 such that

Rate ¼ k CH4½ � (2)

and [CH4] is dissolved CH4 concentration.

Since the mesocosm incubations are closed‐system experiments, not allowing for the addition or loss of reac-
tants or products to the outside environment, isotopic fractionation can be modeled with the Rayleigh equa-
tion (Bigeleisen & Wolfsberg, 1958). This allows for calculating α using a method previously outlined in
Leonte et al. (2017). This method linearizes the Rayleigh equation and determines α from the slope of the
linearized data (equation (3)).

ln CH4½ � ¼ α
1−α

*ln δRþ 1; 000½ �− α
1−α

*ln δR0 þ 1; 000½ � þ ln CH4;0
� �

(3)

Here, [CH4] is the dissolved CH4 concentration, [CH4,0] is the dissolved CH4 concentration at the start of the
reaction, δR is δ13C‐CH4, and δR0 is δ

13C‐CH4 at the start of the reaction. The slope of ln[CH4] versus ln[δR+

Figure 1. Dissolved concentrations of CH4 (blue diamonds), CO2 (red squares), δ
13C‐CH4 (green circles; Chan et al., submitted), and δ13C‐CO2 (purple cross) over

the course of the incubations. (a) HC‐S1 (on seep), (b) HC‐S5 (off seep), (c) MC118‐S2 (on seep), and (d) MC118‐S3 (on seep). All data in these figures are available
through the Gulf of Mexico Research Initiative Information & Data Cooperative (GRIIDC; Kessler & Chan, 2017).
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1,000] is α/(1 − α), which can be rearranged to determine α (Leonte et al.,
2017). The geometric mean regression is used here when determining the
linear regression between ln[CH4] and ln[δR+ 1,000] because it takes into
account uncertainty in both variables.

The average α for the mesocosms collected in the HC over the seep field
was 1.023 ± 0.003. The MC118 mesocosms produced an average α of
1.022 ± 0.003, which is statistically similar to the values obtained directly
in the seep field in HC. However, α was different for the experiments uti-
lizing water that was not directly impacted by CH4 bubbles released from
a seep field, displaying an average α=1.04 ± 0.01. In addition to displaying
a higher average α, the HC mesocosms using water collected outside the
seep field also displayed lower average rate constants (see companion
paper), supporting the conclusion that slower rates of CH4 oxidation pro-
duce larger fractionation factors (Table 1 and Figure 2). Viewed differ-
ently, larger oxidation rate constants cause lower degrees of isotopic
fraction, a conclusion which can be used to predict the largest oxidation
rate constant which would ultimately produce no isotopic fractionation
(i.e., α = 1). To constrain this end‐member, we calculated a linear regres-

sion between k and α again using a geometric mean regression since it takes into account uncertainty in both
variables (Figure 2). This regression predicts amaximum rate constant (kmax) of 0.44 day

−1 to produce no iso-
topic fractionation. However, this conclusion is rather uncertain (kmax = 0.44 ± 3.9 day−1) when the uncer-
tainties in both the slope and y intercept of the geometricmean regression (k= (−9.3 ± 2.7)α+ (9.8 ± 2.8)) are
propagated. Nonetheless, it is interesting to note the similarities between this maximum rate constant which
would produce no isotopic fraction and the rate constants measured during and after the DWH blowout
(Figure 2; Chan et al., 2019, Figure 1).

3.3. Isotopic Fraction With the Stage of Microbial Growth

Previous studies have collected data from laboratory cultures of methanogens suggesting that isotopic frac-
tionation factors change with the stage of microbial growth (Botz et al., 1996; Penning et al., 2005; Valentine
et al., 2004). If applicable to aerobic methanotrophs, the use of natural stable isotopes to determine the extent
of CH4 oxidation (e.g., Leonte et al., 2017) would be significantly more complicated, if not impossible. Not
only would the fractionation factor need to be known, but also how it changes with the stage of microbial
growth and the stage of microbial growth in the natural environment at the time of sampling.

Here we test if the isotopic fractionation factor changed throughout rapid
CH4 oxidation. To do so, we isolated the data between the start and con-
clusion of rapid CH4 oxidation (Kessler & Chan, 2017) and fit the data
with the closed‐system Rayleigh isotope fractionation model (equa-
tion (4)), as was described previously (Leonte et al., 2017).

δR ¼ δR0 þ 1; 000ð Þ 1−fð Þ1 α−1−1;000= (4)

The variables of δR, δR0, and α are as defined above, while f is the fraction
of CH4 that is oxidized. More specifically, f = 1 − C/C0, where C is the
measured [CH4] and C0 is the average concentration of dissolved CH4 at
the start of rapid CH4 oxidation (Leonte et al., 2017).

While the previous experiments that displayed a change in isotopic frac-
tionation factor with the stage of microbial growth involved open‐system
pure cultures of methanogens (Botz et al., 1996; Penning et al., 2005), our
data from these closed‐system mesocosm experiments investigating
methanotrophy could be modeled with a constant isotopic fractionation
factor after rapid CH4 oxidation initiated (Figures 3, S2, and S5), despite
large changes in microbial biomass (see companion paper). This result

Table 1
The Characteristics for Isotopic Kinetics Determined in Hudson Canyon
(HC) and MC118

Sample Location k (day−1) α

HC‐S1 On seep 0.25 ± 0.03 1.021 ± 0.002
HC‐S2 On seep 0.18 ± 0.04 1.025 ± 0.005
Average On seep 0.22 ± 0.05 1.023 ± 0.003
HC‐S3 Off seep 0.054 ± 0.004 1.054 ± 0.007
HC‐S4 Off seep 0.12 ± 0.01 1.032 ± 0.002
HC‐S5 Off seep 0.24 ± 0.03 1.023 ± 0.001
HC‐S6 Off seep 0.061 ± 0.003 1.034 ± 0.003
Average: Off seep 0.12 ± 0.09 1.04 ± 0.01
MC118‐S1 On seep 0.107 ± 0.005 1.025 ± 0.001
MC118‐S2 On seep 0.26 ± 0.04 1.024 ± 0.002
MC118‐S3 On seep 0.36 ± 0.04 1.024 ± 0.001
MC118‐S4 On seep 0.20 ± 0.02 1.016 ± 0.001
Average: On seep 0.2 ± 0.1 1.022 ± 0.004

Note. The units for the first‐order oxidation rate constants (k) is day−1 and
isotopic fractionation factors (α) in unitless (day−1/day−1).

Figure 2. The first‐order rate constant (k) for aerobic CH4 oxidation as a
function of isotopic fractionation factor (α) for δ13C‐CH4. The linear
regression was determined using the Geometric Mean to consider the
uncertainties in both the rate constant and isotopic fractionation factor.
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greatly simplifies the use of natural stable isotope changes in seawater to determine the extent of aerobic
oxidation since only one fractionation factor is necessary to estimate the extent of CH4 oxidation (e.g.,
Leonte et al., 2017).

4. Conclusions

Measurements of natural δ13C‐CH4 in seawater are a powerful tool to assess the extent of aerobic oxidation.
Following seafloor release and dissolution into the overlying waters, CH4 can either be oxidized by indigen-
ous microorganisms or diluted prior to atmospheric emission. While both oxidation and dilution decrease
the initial dissolved CH4 concentration, only oxidation systematically changes the natural δ13C‐CH4. Here
we investigated the stable isotope kinetics of aerobic CH4 oxidation usingmesocosm incubations of seawater
collected in two seep fields, one in the North Atlantic Bight in and near Hudson Canyon and the other in the
Gulf of Mexico. The results produced from these experiments led to three conclusions regarding the funda-
mental isotope kinetics of aerobic CH4 oxidation. First, the isotope data are best modeled with the Rayleigh
model, an isotope model for a closed‐system following first‐order reaction kinetics. Second, the fractionation
factor produced was correlated with the overall reaction rate constant. Reactions with larger rate constants
had smaller fractionation factors and vice versa. While the isotopic fractionation factors were different
between on‐seep and off‐seep waters at HC, the isotopic fractionation factors were similar when using
waters directly impacted by CH4 seeps, regardless of oceanic location. Third, despite a large increase in
microbial biomass during these oxidation experiments and previous reports concluding that isotope fractio-
nation factors changed with the stage of microbial growth, the results here indicate that the fractionation

Figure 3. Values of δ13C‐CH4 plotted as a function of the fraction of CH4 reacted in these mesocosm experiments. The model (red curve) fits the measurements
(black dots) when a constant isotopic fractionation is considered (Table 1). The model incorporates the closed‐system Rayleigh approach (equation (4)) and an
average CH4 concentration at the start of rapid CH4 oxidation, as described previously [Leonte et al., 2017].
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factor remained constant throughout these oxidation events. These fundamental results are encouraging, as
they suggest that the extent of CH4 oxidation can be determined using traditional isotopic fractionation
equations without regard to the stage of microbial growth so long as the fractionation factor can be deter-
mined for that specific environment.
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