250 research outputs found

    Learning-based Approaches for Controlling Neural Spiking

    Get PDF
    We consider the problem of controlling populations of interconnected neurons using extrinsic stimulation. Such a problem, which is relevant to applications in both basic neuroscience as well as brain medicine, is challenging due to the nonlinearity of neuronal dynamics and the highly unpredictable structure of underlying neuronal networks. Compounding this difficulty is the fact that most neurostimulation technologies offer a single degree of freedom to actuate tens to hundreds of interconnected neurons. To meet these challenges, here we consider an adaptive, learning-based approach to controlling neural spike trains. Rather than explicitly modeling neural dynamics and designing optimal controls, we instead synthesize a so-called control network (CONET) that interacts with the spiking network by maximizing the Shannon mutual information between it and the realized spiking outputs. Thus, the CONET learns a representation of the spiking network that subsequently allows it to learn suitable control signals through a reinforcement-type mechanism. We demonstrate feasibility of the approach by controlling networks of stochastic spiking neurons, wherein desired patterns are induced for neuron-to-actuator ratios in excess of 10 to 1

    Underpriced Default Spread Exacerbates Market Crashes

    Get PDF
    In this paper, we develop a specific observable symptom of a banking system that underprices the default spread in non-recourse asset-backed lending. Using three different data sets for 18 countries and property types, we find that, following a negative demand shock, the underpricing economies experience far deeper asset market crashes than economies in which the put option is correctly priced. Furthermore, only one of the countries in our sample continues to exhibit the underpricing symptom following a market crash. This indicates that market crashes have a cleansing effect and eliminate underpricing at least for a period of time. This makes investing in such markets safer following a negative demand shock.real estate bubble, lender optimism, disaster myopia, Asian financial crisis

    Underpriced Default Spread Exacerbates Market Crashes

    Get PDF
    In this paper, we develop a specific observable symptom of a banking system that underprices the default spread in non-recourse asset-backed lending. Using three different data sets for 18 countries and property types, we find that, following a negative demand shock, the “underpricing” economies experience far deeper asset market crashes than economies in which the put option is correctly priced. Furthermore, only one of the countries in our sample continues to exhibit the underpricing symptom following a market crash. This indicates that market crashes have a cleansing effect and eliminate underpricing at least for a period of time. This makes investing in such markets safer following a negative demand shock.real estate bubble, lender optimism, disaster myopia, Asian financial crisis

    Loss of SOX10 function contributes to the phenotype of human Merlin-null schwannoma cells.

    Get PDF
    Loss of the Merlin tumour suppressor causes abnormal de-differentiation and proliferation of Schwann cells and formation of schwannoma tumours in patients with neurofibromatosis type 2. Within the mature peripheral nerve the normal development, differentiation and maintenance of myelinating and non-myelinating Schwann cells is regulated by a network of transcription factors that include SOX10, OCT6 (now known as POU3F1), NFATC4 and KROX20 (also known as Egr2). We have examined for the first time how their regulation of Schwann cell development is disrupted in primary human schwannoma cells. We find that induction of both KROX20 and OCT6 is impaired, whereas enforced expression of KROX20 drives both myelin gene expression and cell cycle arrest in Merlin-null cells. Importantly, we show that human schwannoma cells have reduced expression of SOX10 protein and messenger RNA. Analysis of mouse SOX10-null Schwann cells shows they display many of the characteristics of human schwannoma cells, including increased expression of platelet derived growth factor receptor beta (PDGFRB) messenger RNA and protein, enhanced proliferation, increased focal adhesions and schwannoma-like morphology. Correspondingly, reintroduction of SOX10 into human Merlin-null cells restores the ability of these cells to induce KROX20 and myelin protein zero (MPZ), localizes NFATC4 to the nucleus, reduces cell proliferation and suppresses PDGFRB expression. Thus, we propose that loss of the SOX10 protein, which is vital for normal Schwann cell development, is also key to the pathology of Merlin-null schwannoma tumours

    Deciphering the regulatory landscapte of fetal and adult γδ T-cell development at single-cell resolution

    No full text
    γδ T cells with distinct properties develop in the embryonic and adult thymus and have been identified as critical players in a broad range of infections, antitumor surveillance, autoimmune diseases, and tissue homeostasis. Despite their potential value for immunotherapy, differentiation of γδ T cells in the thymus is incompletely understood. Here, we establish a high‐resolution map of γδ T‐cell differentiation from the fetal and adult thymus using single‐cell RNA sequencing. We reveal novel sub‐types of immature and mature γδ T cells and identify an unpolarized thymic population which is expanded in the blood and lymph nodes. Our detailed comparative analysis reveals remarkable similarities between the gene networks active during fetal and adult γδ T‐cell differentiation. By performing a combined single‐cell analysis of Sox13, Maf, and Rorc knockout mice, we demonstrate sequential activation of these factors during IL ‐17‐producing γδ T‐cell (γδT17) differentiation. These findings substantially expand our understanding of γδ T‐cell ontogeny in fetal and adult life. Our experimental and computational strategy provides a blueprint for comparing immune cell differentiation across developmental stages

    The high mobility group transcription factor Sox8 is a negative regulator of osteoblast differentiation

    Get PDF
    Bone remodeling is an important physiologic process that is required to maintain a constant bone mass. This is achieved through a balanced activity of bone-resorbing osteoclasts and bone-forming osteoblasts. In this study, we identify the high mobility group transcription factor Sox8 as a physiologic regulator of bone formation. Sox8-deficient mice display a low bone mass phenotype that is caused by a precocious osteoblast differentiation. Accordingly, primary osteoblasts derived from these mice show an accelerated mineralization ex vivo and a premature expression of osteoblast differentiation markers. To confirm the function of Sox8 as a negative regulator of osteoblast differentiation we generated transgenic mice that express Sox8 under the control of an osteoblast-specific Col1a1 promoter fragment. These mice display a severely impaired bone formation that can be explained by a strongly reduced expression of runt-related transcription factor 2, a gene encoding a transcription factor required for osteoblast differentiation. Together, these data demonstrate a novel function of Sox8, whose tightly controlled expression is critical for bone formation

    Lowering Low-Density Lipoprotein Particles in Plasma Using Dextran Sulphate Co-Precipitates Procoagulant Extracellular Vesicles

    Get PDF
    Plasma extracellular vesicles (EVs) are lipid membrane vesicles involved in several biological processes including coagulation. Both coagulation and lipid metabolism are strongly associated with cardiovascular events. Lowering very-low- and low-density lipoprotein ((V)LDL) particles via dextran sulphate LDL apheresis also removes coagulation proteins. It remains unknown, however, how coagulation proteins are removed in apheresis. We hypothesize that plasma EVs that contain high levels of coagulation proteins are concomitantly removed with (V)LDL particles by dextran sulphate apheresis. For this, we precipitated (V)LDL particles from human plasma with dextran sulphate and analyzed the abundance of coagulation proteins and EVs in the precipitate. Coagulation pathway proteins, as demonstrated by proteomics and a bead-based immunoassay, were over-represented in the (V)LDL precipitate. In this precipitate, both bilayer EVs and monolayer (V)LDL particles were observed by electron microscopy. Separation of EVs from (V)LDL particles using density gradient centrifugation revealed that almost all coagulation proteins were present in the EVs and not in the (V)LDL particles. These EVs also showed a strong procoagulant activity. Our study suggests that dextran sulphate used in LDL apheresis may remove procoagulant EVs concomitantly with (V)LDL particles, leading to a loss of coagulation proteins from the blood

    Transcription factor Sox10 orchestrates activity of a neural crest-specific enhancer in the vicinity of its gene

    Get PDF
    The Sox10 transcription factor is a central regulator of vertebrate neural crest and nervous system development. Its expression is likely controlled by multiple enhancer elements, among them U3 (alternatively known as MCS4). Here we analyze U3 activity to obtain deeper insights into Sox10 function and expression in the neural crest and its derivatives. U3 activity strongly depends on the presence of Sox10 that regulates its own expression as commonly observed for important developmental regulators. Sox10 bound directly as monomer to at least three sites in U3, whereas a fourth site preferred dimers. Deletion of these sites efficiently reduced U3 activity in transfected cells and transgenic mice. In stimulating the U3 enhancer, Sox10 synergized with many other transcription factors present in neural crest and developing peripheral nervous system including Pax3, FoxD3, AP2α, Krox20 and Sox2. In case of FoxD3, synergism involved Sox10-dependent recruitment to the U3 enhancer, while Sox10 and AP2α each had to bind to the regulatory region. Our study points to the importance of autoregulatory activity and synergistic interactions for maintenance of Sox10 expression and functional activity of Sox10 in the neural crest regulatory network

    Bank Lending and Real Estate in Asia: Market Optimism and Asset Bubbles

    Get PDF
    This paper investigates the Asian real estate price run-up and collapse in the 1990s. We identify financial intermediaries ’ underpricing of the put option imbedded in non-recourse mortgage loans as a potential cause for the observed price behavior. This underpricing is due to behavioral causes (lender optimism and disaster myopia) and/or rational response of lenders to market incentives (agency conflicts, deposit insurance, or limited liability of bank shareholders). The empirical evidence suggests that underpricing occurred in Thailand, Malaysia, and Indonesia. Consequently, these countries experienced a more severe market crash then Hong Kong and Singapore, where underpricing was kept under control by strong government intervention and/or more appropriate incentive mechanisms
    corecore